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Hypothesis
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Abstract Genomes, functional genomics data and 3D structure
reflect different aspects of protein function. Here, we combine
these data to predict that BolA, a widely distributed protein fam-
ily with unknown function, is a reductase that interacts with a
glutaredoxin. Comparisons at the 3D structure level as well as
at the sequence profile level indicate homology between BolA
and OsmC, an enzyme that reduces organic peroxides. Comple-
mentary to this, comparative analyses of genomes and genomics
data provide strong evidence of an interaction between BolA and
the mono-thiol glutaredoxin family. The interaction between
BolA and a mono-thiol glutaredoxin is of particular interest be-
cause BolA does not, in contrast to its homolog OsmC, have evo-
lutionarily conserved cysteines to provide it with reducing
equivalents. We propose that BolA uses the mono-thiol glutare-
doxin as the source for these.
� 2004 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

In the genomics era, we obtain many correlates of protein

function, such as a protein�s 3D structure, its gene expression,

its physical interaction partners, the location of its gene on the

genome and its phylogenetic distribution. The various sources

of information are stored in dedicated databases that provide

invaluable resources for the prediction of the biological func-

tion of a protein. Nevertheless, none of these give a direct an-

swer to the question: what does the protein do at the molecular

level? However, by combining on the one hand homology

information, that can be deduced from 3D structure compari-

sons and that provides information about the molecular func-

tion of a protein, with on the other hand genomics context

data that provide information about the interaction partners
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or substrates of a protein, one can derive specific hypotheses

about its function.

Here, we combine genome sequences, physical interaction

data and 3D structures to provide a specific prediction for

the function of BolA, a protein family that is widespread

among proteobacteria and eukaryotes including Homo sapiens.

Despite a considerable amount of research on the function of

BolA, its molecular function remains unknown. Originally,

bolA been identified as a gene that causes round morphology

in Escherichia coli when overexpressed [1]. No phenotype for

strains lacking bolA has been found for cells growing on a rich

medium. Consistent with this is that bolA is mainly expressed

under the stress conditions like the stationary phase, osmotic

shock, carbon starvation and oxidative stress [2]. The gene

bolA is under control of RpoS, which also regulates the expres-

sion of other stationary-phase-induced stress genes [3]. A

homolog of bolA in Schizosaccharomyces pombe, uvi31+, is ex-

pressed under UV radiation [4], which is known to stimulate

the intracellular synthesis of reactive oxygen species. Although

no direct evidence about BolA�s function is available, its asso-

ciated phenotypes link BolA to cell morphology and cell divi-

sion. Under nutrient-restrictive conditions bolA in E. coli is

required for normal cell morphology [2], while uvi31+ in S.

pombe has been implicated in the regulation of septation and

cytokinesis [5]. How the link between BolA and cell division

and morphology is effectuated is however not clear. Overex-

pression of bolA in E. coli leads to the upregulation of cell wall

synthesis genes dacA (PBP5), dacC (PBP6) and ampC (AmpC),

and BolA�s effect on the cell morphology appears dependent

on PBP5 and PBP6 [6]. Bola has therewith been proposed to

be a regulator of cell wall biosynthetic enzymes [6]. Recently,

the structure of the BolA homolog in Mus musculus has been

determined [7]. BolA has a class II KH fold, instances of which

are known to bind DNA and RNA and therewith support a

regulatory role for BolA.

Here, we show that the accumulating wealth of genomics

data indicates however a different molecular function for

BolA. We show that BolA is homologous to the peroxide

reductase OsmC and, relative to other class II KH-fold pro-

teins, most closely related to it, and that BolA has a very

strong genomic association with the mono-thiol glutaredox-

ins/PICOT-HD [8] family. These data point to a role of BolA

as a reductase that functions in conjunction with a mono-thiol

glutaredoxin. The thiol group of the latter would potentially be

used by BolA to reduce and/or deglutathionylate substrates.
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Phylogeny of the BolA family with interaction predicting genomics data. Different types of genomic contexts are indicated, ‘‘GRX’’ indicates
the mono-thiol glutaredoxin family. Physical interaction between BolA and a mono-thiol glutaredoxin is supported by various types of genomics
data across a wide phylogenetic range.

Table 1
Similarity of BolA to other class II KH-fold proteins

Protein family
(PDB entry)

3D similarity to
Bola, Z scores

Sequence profile
similarity to Bola.
SW score (E value)

OsmC (1ml8A/1lqlA) 5.8/5.5 73 (2.4E � 5)
Ohr (1n2fA) 5.2
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2. Methods

The phylogeny of the BolA family (Fig. 1) was reconstructed with
PhyML [9] based on a sequence alignment created with muscle [10],
the sequence identifiers are: Q9VC53 Q9D8S9 YCE3_HUMAN
YN1I_CAEEL Q92ME9 Q84W65 Q9ZDT0 UV31_SCHPO Q87BI5
Q8XYL3 BOLA_ECOLI Q7VKT0 Q88M18 ENSCBRP00000005226
Q8CEI1 Q9USK1 YAE6_YEAST Q8F4C9 MY16_HUMAN
MY16_MOUSE Q8ML41 YGX0_YEAST O14280 Q9FIC3
Q9XVJ0 Q98NN9 Q9HQ28 Q7P9Z5 YRBA_ECOLI YA82_HAEIN
Q9HVW6 Q8DKI4 Q87DN9 Q8F4D1 Q8XV77 Q9LF68.
Sequence alignments for the comparison of BolA with the other

class II KH-fold families were obtained from PFAM [11]. The E values
for the profile comparison were calculated with Compass, the database
size used (-d option in compass) was the combined length of all the
KH-fold alignments.
KH 1 (1hnxC) 5.3 46 (9.4E � 3)
DUF150 (1ib8A) 3.7 44 (4.2E � 2)
GMP synthase C (1gpmA) 2.9 57 (7.0E � 4)
KH 2 (1egaB) 3.8 35 (2.7E � 1)
RBFA (1kkgA) 4.2 40 (9.6E � 2)

The similarities of the BolA structure to other protein structures of the
class II KH fold are indicated at the 3D structure level as well as at the
sequence profile level. The Z scores are calculated with DALI [35],
using pairwise comparisons of the BolA structure with other class II
KH folds in the DALI database. The higher the Z score, the less likely
it is that the similarity between the 3D structures is ‘‘random’’. The
Smith–Waterman scores and E values for the comparison of sequence
profiles were calculated with Compass [15], the higher the score, the
more similar the sequence profiles. For the profile similarity analysis,
one combined alignment was used of the OsmC and Ohr subfamilies,
as they form one protein family. Both structure comparison as well as
sequence profile comparison clearly indicate that BolA is homologous
to the OsmC/Ohr family as well as most similar to the OsmC/Ohr
family relative to other members of the class II KH fold.
3. Results

3.1. BolA is homologous to the peroxide reductase OsmC

Comparative sequence analyses indicate that homologs of

bolA are present in Bacterial and Eukaryotic genomes. Consis-

tent with earlier findings from large-scale phylogenetic analyses

[12], the eukaryotic representatives of bolA appear derived from

the proteobacteria (Fig. 1) and presumably have hitchhiked

along with the endosymbiosis of an a-proteobacterium that be-

came the mitochondrion. The molecular function of BolA is

unknown and using sequence-to-profile searches (PSI-Blast)

[13], we could not detect homology of BolA to sequences with

a known molecular function. Recently, however, the 3D struc-

ture of a Mus musculus member of the BolA family has been

published [7]. According to the Dali 3D structure classification
system, BolA is homologous to OsmC (Table 1). BolA and the

N-terminal domain of OsmC have a class II KH fold. They dis-

tinguish themselves from other members of this fold because

they both miss the GxxG element [7], which otherwise is well

conserved in the class II KH fold and which appears essential



Fig. 2. Superposition of the 3D structures of BolA (red) and OsmC
(green). The structures, BolA of M. musculus (1v9j) and OsmC of E.
coli (1ml8), were aligned with SHEBA [36]. Indicated are the a1, a2, a3
helix and the 310 helix of BolA, the nomenclature is adapted from
Kasai et al. [7]. The main difference between the structures is that the
a3 helix of OsmC is one turn longer than the one of BolA.

Fig. 3. Phylogenetic distribution of BolA and of the mono-thiol glutaredox
sequenced genomes, the phylogenetic distribution of the genes is virtually ide
brevipalpis does not contain bolA in the COG orthology database [37] that is
COGs has been classified as bolA�s paralog yrbA.
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for nucleic acid binding [14]. In terms of 3D structure similarity,

BolA is most similar to OsmC (Table 1), relative to other pro-

teins with a class II KH fold and the structures can readily be

superimposed (Fig. 2). The main difference between the BolA

and OsmC structures is that the a3-helix of BolA is one turn

shorter than the corresponding helix of OsmC (Fig. 2). Com-

pass-based comparisons [15] of the sequence profile of BolA

with the profiles of the other members of the class II KH fold

indicate that also at the sequence level BolA is most similar

to the OsmC family that also includes the thiol-dependent

reductase Ohr (Table 1). OsmC is a hyperperoxide reductase

that can detoxify hydroperoxides by reducing them into alco-

hols [16]. The active site of OsmC has two conserved cysteines,

which have been proposed to carry the reducing equivalents for

OsmCs reductive activity [16]. These cysteines are however not

conserved in BolA. If BolA functions as a reductase, as the
in family (Grx). Data were obtained with STRING [18]. Among 145
ntical. The only exception is Encephalotozoon cuniculi. Wigglesworthia
used in STRING, it does however contain a homolog of bolA, which in



594 M.A. Huynen et al. / FEBS Letters 579 (2005) 591–596
homology with OsmC indicates, it has to obtain its reducing

equivalents from another source.

3.2. Gene order conservation and gene co-occurrence indicate an

interaction of BolA with a mono-thiol glutaredoxin

Potential interaction partners for BolA, which could provide

these reducing equivalents, can be found by comparative gen-

ome analysis. For bolA, we have analyzed a number of so-

called ‘‘genomic context’’ [17] types (gene fusion, gene-order

conservation, and the co-occurrence of genes among se-

quenced genomes) using the genomic context server STRING

[18]. Two types of genomic context indicate an interaction be-

tween BolA and a mono-thiol glutaredoxin/PICOT-homology

domain [8]: Their conserved occurrence as neighbors in Bacte-

rial genomes (Fig. 1) and the co-occurrence of their genes

across virtually all sequenced genomes (Fig. 3). Either type

of genomic context has been successfully used to predict func-

tional interactions in the past [19] and their combined presence

leads to an estimated likelihood of interaction of BolA with a

mono-thiol glutaredoxin of 97% [18]. In general, genomic con-

text data do not indicate what type of interaction (metabolic,

physical or regulatory) two proteins have, although when, as

in this case, the association is very strong, the interaction does

tend to be a physical one [17].
3.3. An evolutionary conserved physical interaction of BolA with

Grx3

We examined genomics databases of physical interaction

experiments to establish whether BolA has indeed a physical

interaction with a mono-thiol glutaredoxin. In S. cerevisiae,

both in the yeast-2-hybrid experiments [20] as well in the

FLAG tag experiments [21], an interaction of Grx3 (a S. cere-

visiae homolog of the bacterial mono-thiol glutaredoxins) with

YGL220w (a S. cerevisiae BolA homolog) has been detected.

The detection of such an interaction with two independent

methods increases the likelihood that they are indeed biologi-

cally relevant [22]. Furthermore, this interaction has also been

observed in another species. In a yeast-2-hybrid assay on Dro-

sophila melanogaster, CG16804 and CG6523, the orthologs of

YGL220w and Grx3, respectively, have also been shown to

interact with each other [23]. Such evolutionary conservation

of a yeast-2-hybrid interaction increases the likelihood of bio-

logical relevance to 100% [24,25]. A physical interaction of

BolA with a mono-thiol glutaredoxin thus appears to be more

than likely.
Fig. 4. Predicted interactions of the BolA family. The various types of
data that support the interactions are indicated. The proteins on the
left can be linked to the cell wall or cell division: MurA is involved in
cell wall synthesis, IspA is involved in cell division, and PPIase D is a
periplasmic chaperone. The proteins on the right are more generally
involved in (oxidative) stress response: Ttg1, Ttg2 and Ttg3 form an
ABC transporter involved in resistance to Toluene, GST is Glutathi-
one-S-transferase, and Grx is mono-thiol glutaredoxin. The results
were obtained with STRING [18]. In the figure, the results for BolA/
COG0271 and for its paralog YrbA/COG5007 are combined because
the COG subclassification of the BolA family does not match the
phylogenetic tree (data not shown) and therefore appears unreliable.
3.4. The mono-thiol glutaredoxin/PICOT-HD family

Glutaredoxins are redox enzymes that use glutathione to

catalyze disulfide reductions [26]. Consistent with their interac-

tion with BolA is that glutaredoxins are, like BolA, involved in

oxidative stress response [26]. Within the glutaredoxins, the

mono-thiol glutaredoxins or PICOT-HD [8] form a separate

group that lack one of the two conserved cysteines of the dith-

iol glutaredoxins, and that are frequently fused with thioredox-

ins in eukaryotes [8]. Their exact function has not been

elucidated. It has been suggested that they are involved in

the deglutathionylation of protein-GS mixed sulfides [27,28].

For this process dithiol glutaredoxins only require their N-ter-

minal cysteine thiol [29], which is the one cysteine that is con-

served in mono-thiol glutaredoxins. Indeed the best

characterized member of this family, the mitochondrial protein
Grx5 from yeast, is able to deglutathionylate proteins [27], and

is involved in defense against oxidative stress [30].

3.5. Interpreting the interaction between BolA and Grx3

Given the strong link between BolA and Grx3, they likely

function as a complex and are both involved in the same pro-

cess. BolA could, e.g., use the reducing equivalents from Grx3

to reduce and/or deglutathionylate some substrate. In that

case, the reducing equivalents from Grx3 would ‘‘replace’’

the ones that are carried by the conserved cysteines from

OsmC and that are absent from BolA. An alternative is that

one of the proteins is a target for the other and the interaction

is ‘‘transient’’. In that case, BolA could play a role in the deglu-

tathionylation of Grx3 itself. Here, it should be noted that glu-

tathione is able to deglutathionylate Grx5, albeit at a 20-fold

lower rate than for the reduction of dithiolic glutaredoxin from

E. coli [27].

3.6. The link with cell division

Genomic context data do also indicate other interaction

partners of BolA (Fig. 4). Given BolA�s phenotypic links to

cell division, most interesting are conservation of gene order

with the gene for intracellular septation protein A (ISPA)

[31] and with the gene for MurA that catalyzes the first step

of peptidoglycan synthesis. Neither of these proteins can how-

ever be detected in eukaryotes. A link to the cell wall that does

carry to the eukaryotes is with a Parvulin-like peptidyl–prolyl

isomerase D (PPIase D) whose gene has a conserved gene or-

der with bolA in prokaryotes, and is co-expressed with it in S.

cerevisiae [18]. PPIase D is, in E. coli, a periplasmic chaperone

that is required for folding of outer membrane proteins [32].

Finally, there is conservation of gene order with an ABC-

transporter system that is involved in tolerance to toluene

[33], and that has been predicted to be an efflux system [33],

and there is gene co-occurrence with Glutathione-S-transfer-
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ase, that functions in defense against oxidative stress. The links

with MurA, IspA and PPIase D, although significant in them-

selves and consistent with the phenotypic data on bolA, are not

as strongly supported by any type of data, nor are they sup-

ported by so many types of data as the link between BolA

and the mono-thiol glutaredoxins. They suggest that the tar-

gets of the BolA-glutaredoxin pair are proteins or other organ-

ic compounds that are either part of the membrane or cell wall

or that are involved in its generation.
4. Discussion

Protein function predictions have been made based on simi-

larity at the level of the sequence or 3D structure (reviewed in

[34]), or on combinations of homology with either functional

genomics data, e.g. [23] or genomic context data [17]. Here we

combine 3D structure data with both genomic context data

and functional genomics data. The increasing pace at which

all these types of data are becoming available for hypothetical

proteins calls for a further integration of genomic context dat-

abases like STRING [18] with homology databases like DALI

[35] to facilitate the making of specific hypotheses about protein

function. The challenge will thereby include functional informa-

tion that assists in observing a potential link between ‘‘BolA is

homologous to a peroxide reductase’’ and ‘‘BolA interacts with

a mono-thiol glutaredoxin’’. Such a level of integration would

be of tremendous value for reaping the benefits of genomics

for the understanding of the cell at the molecular level.
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