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Previous investigations of Saturn’s outer D ring (73,200–74,000 km from Saturn’s center) identified
periodic brightness variations whose radial wavenumber increased linearly over time. This pattern was
attributed to a vertical corrugation, and its temporal variability implied that some event – possibly an
impact with interplanetary debris – caused the ring to become tilted out the planet’s equatorial plane
in 1983. This work examines these patterns in greater detail using a more extensive set of Cassini images
in order to obtain additional insights into the 1983 event. These additional data reveal that the D ring is
not only corrugated, but also contains a time-variable periodic modulation in its optical depth that
probably represents organized eccentric motions of the D-ring’s particles. This second pattern suggests
that whatever event tilted the rings also disturbed the radial or azimuthal velocities of the ring particles.
Furthermore, the relative amplitudes of the two patterns indicate that the vertical motions induced by
the 1983 event were 2.3 ± 0.5 times larger than the corresponding in-plane motions. If these structures
were indeed produced by an impact, material would need to strike the ring at a steep angle (>60� from
the ring plane) to produce such motions. Meanwhile, the corrugation wavelengths in the D ring are about
0.7% shorter than one would predict based on extrapolations from similar structures in the nearby C ring.
This could indicate that the D-ring was tilted/disturbed about 60 days before the C ring. Such a timing
difference could be explained if the material that struck the rings was derived from debris released when
some object broke up near Saturn some months earlier. To reproduce the observed time difference, this
debris would need to have a substantial initial velocity dispersion and then have its orbital properties
perturbed by some phenomenon like solar tides prior to its collision with the rings.
� 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA license

(http://creativecommons.org/licenses/by-nc-sa/3.0/).
1. Introduction

The D ring is the innermost component of Saturn’s ring system,
extending from the inner edge of the C ring towards the planet’s
cloud tops. One of the more intriguing structures in this region is
a set of periodic brightness variations with a wavelength of
�30 km covering the outermost 1500 km of this ring (see Fig. 1).
The intensity of this periodic pattern varies with longitude around
the ring, and it becomes rather indistinct near the ring ansa. Such
azimuthal intensity variations are characteristic of vertical ring
structures, and so Hedman et al. (2007) argued that these periodic
patterns were due to a vertical corrugation in the ring. Similar
corrugations had previously been identified in Galileo images of
Jupiter’s rings (Ockert-Bell et al., 1999; Showalter et al., 2011),
but the more extensive Cassini images (coupled with an earlier
Hubble Space Telescope occultation) revealed that the wavelength
of the D-ring pattern was steadily decreasing over time. The
observed trend in the pattern’s wavelength was consistent with
the evolution of a corrugation under the influence of differential
nodal regression. This finding not only confirmed that the D-ring
pattern included a vertical corrugation, but also suggested that this
structure probably arose from some event in the recent past that
caused the ring to become tilted out of the planet’s equatorial plane.

Later investigations revealed that both Saturn’s C ring (Hedman
et al., 2011) and Jupiter’s main ring (Showalter et al., 2011) con-
tained similarly evolving patterns of vertical corrugations. Further-
more, by extrapolating these trends backwards in time, we could
estimate when Jupiter’s and Saturn’s rings became inclined relative
to their planet’s equatorial plane. The event that tilted Jupiter’s
rings happened in the summer of 1994, when the fragments of
Comet Shoemaker-Levy 9 were crashing into the planet. It is
therefore reasonable to conclude that this cometary debris was
responsible for tilting Jupiter’s rings. The event that tilted Saturn’s
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rings occurred in the early 1980s, but unlike the Shoemaker-Levy 9
collision with Jupiter, this earlier event was not directly observed.
Fortunately, some information about the impact is encoded within
the corrugations themselves. In particular, the extent of the distur-
bance in the rings indicates that the ring encountered a dispersed
debris field rather than a single compact object. Thus Hedman et al.
(2011) inferred that the ring-tilting event at Saturn may have
involved an object that was disrupted by a previous close encoun-
ter with Saturn, just as Shoemaker-Levy 9 broke apart during its
close encounter with Jupiter in 1992.

Here we present a more detailed analysis of the periodic
patterns in Saturn’s D ring that provides additional information
about how the rings were disturbed and how the resulting patterns
evolved over time. This investigation focuses on the D-ring
structures for two reasons. First, there are extensive Cassini
observations available, and suitably high-resolution Cassini images
that capture the relevant periodic patterns span nearly a decade
(By contrast, the corrugations in Saturn’s C ring were only visible
for a brief interval around Saturn’s equinox in 2009). This data
set yields very precise measurements of how the patterns’
wavelengths vary over time, and so we can confirm that these
structures are evolving at rates consistent with current models of
Saturn’s gravitational field.

Second, the D ring appears to contain a second periodic struc-
ture overprinted on the corrugation. The original analysis of the
D-ring patterns by Hedman et al. (2007) revealed that the scatter
of the wavelength measurements around the mean trend with
time was larger than their individual error bars would predict. Fur-
thermore, observations taken further from the ring ansa appeared
to have systematically longer wavelengths, suggesting that another
periodic structure was being revealed in certain viewing geome-
tries. Close inspection of additional Cassini images have confirmed
this supposition. For example, Fig. 1 shows that periodic brightness
variations are visible at the rings’ ansa. A vertical corrugation can-
not generate brightness variations at this location because the ver-
tical slopes are all nearly orthogonal to the observer’s line of sight
(see below). Hence the patterns visible close to the ansa likely
reflect variations in the ring’s surface density rather than its verti-
cal structure. Since there is no obvious change in the pattern’s
wavelength close to the ansa, the wavelength of these opacity vari-
ations must be nearly identical to the wavelength of the vertical
Fig. 1. Image of the periodic structures in the outer D ring (Image name
N1571969357 phase angle 26.7�, ring opening angle 2.4�, radius increases upwards,
and the surrounding C ring is overexposed). Periodic brightness variations are
apparent throughout this portion of the D ring. However, one can also see that the
intensity of the pattern varies with azimuth, reaching a minimum near the ring
ansa. These azimuthal trends indicate that at least a fraction of these brightness
variations are due to vertical structure in the ring. However, periodic patterns are
also visible at the ring ansa, where the signal from vertical structures should vanish.
Thus periodic variations in the ring’s opacity also seem to be present.
corrugations. This suggests that these density variations were
generated by the same event that formed the corrugation, and
detailed analyses of the two patterns’ wavelengths confirm this
hypothesis. Furthermore, the relative amplitudes of these two
patterns, along with some anomalous trends in the corrugations’
wavelength with radius between the D and C rings, yield new
information about how the ring was disturbed in 1983.

We begin this investigation by reviewing the theory of how
corrugations in the ring are expected to evolve over time, and
how similarly time-variable periodic opacity variations could be
produced (Section 2). Section 3 then describes the analytical
procedures used to isolate opacity variations from vertical
structures and to obtain estimates of the relevant patterns’
wavelengths and amplitudes. Section 4 lists the images considered
for this analysis and summarizes the resulting estimates of the
patterns’ properties and evolution over time. Based on these
results, Section 5 demonstrates that the measured wavelengths
and amplitudes are consistent with the expected evolution of
patterns generated by a discrete disturbance like an impact that
occurred sometime in the past. Section 6 describes how the
amplitudes and precise wavelengths of these patterns can provide
new information about the pre-impact trajectory of the debris that
collided with the rings. The results and potential implications of
this analysis are summarized at the end of this paper.

2. Theoretical background

This investigation builds upon the earlier studies of the corruga-
tions (Hedman et al., 2007, 2011) not only by considering addi-
tional data, but also by employing image-processing techniques
that can isolate signals due to vertical structure from those due
to optical depth variations. In order to motivate this effort and jus-
tify some of the choices made in the analytical procedures, we first
review how an inclined sheet can evolve into a vertical corrugation
and the expected observable properties of such a corrugation. In
addition, this section will describe how a disturbance in the
ring-particles’ in-plane motions can produce periodic optical-
depth variations with evolving wavelengths very similar to those
associated with the corrugations.

Imagine that a portion of Saturn’s ring became tilted relative to
Saturn’s equatorial plane at a time ti. The particles in such a tilted
ring all have a finite inclination I and the same longitude of
ascending node X, which we can set equal to zero for the remain-
der of this calculation. However, if the forces exerted on the ring
particles deviate from a purely central inverse-square-law, then
the node positions will regress at a rate _XðrÞ that depends on
the particles’ mean radial distance from Saturn’s spin axis r. Hence
if the ring is observed at a time tf > ti, the node location at a given
r will be ðtf � tiÞ _XðrÞ. So long as the nodal regression is predomi-
nantly due to Saturn’s oblateness parameter J2;

_XðrÞ will have
negative values everywhere and the absolute value of _XðrÞ will
decrease monotonically with increasing r. The longitude of
ascending node will therefore form a leading spiral that becomes
progressively more tightly wound over time. More specifically, the
ring’s vertical position z at a given radius r and longitude h can be
expressed as the following function of the ring’s inclination I and
the node longitude:

z ¼ rI sinðh�XðrÞÞ; ð1Þ

The vertical position of the ring at a given h will therefore oscillate
up and down as a function of radius. In the vicinity of any given
radial position in the ring ro, the node position can be approximated
using the first two terms of the Taylor series:

XðrÞ ¼ XðroÞ þ
@ _X
@r
ðtf � tiÞðr � roÞ: ð2Þ
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Hence

z ¼ Az sin h�XðroÞ � kzðr � roÞ½ �; ð3Þ

where Az ¼ aI is the amplitude of the vertical corrugation and the
parameter

kz ¼
@ _X
@r

�����
�����ðtf � tiÞ: ð4Þ

is the corrugation’s radial wavenumber.
In practice, we do not observe z directly, but instead measure

variations in brightness caused by differing vertical slopes along
the line of sight (see Section 3). For the corrugations and observa-
tions considered here, which have radial wavelengths of order
30 km, the spiral pattern is wrapped so tightly that the relevant
slopes are nearly radial and so are approximately equal to the
following expression:

@z
@r
’ �Azkz cos h�XðroÞ � kzðr � roÞ½ �; ð5Þ

where we have assumed kz and Az are approximately constant over
the scale of one wavelength. For this study, this is a reasonable
approximation since including the relevant corrections has no
impact on the pattern’s wavelength and changes the slope
estimates by much less than 10%.

Just as periodic vertical corrugations can arise from a ring com-
posed of particles on aligned inclined orbits, periodic variations in
the ring’s surface density could arise from a ring composed of par-
ticles on aligned eccentric orbits. Say that at time ti all the particles
in a ring acquired finite eccentricities e with same pericenter lon-
gitude -, which we can again set to zero for the purposes of this
calculation. The finite orbital eccentricities of these ring particles
cause them to move back and forth in radius, so we must take care
to distinguish the ring particles’ radial positions (r) from their orbi-
tal semi-major axes (a). Any force acting on these ring particles
that deviates from a central inverse-square-law will cause particles
with different semi-major axes to undergo different rates of peri-
center precession _-ðaÞ, so that at any later time tf the pericenter
location will also depend on position -ða; tf Þ ¼ ðtf � tiÞ _-ðaÞ. Pro-
vided Saturn’s gravity dominates the precession rates, _-ðaÞ will
be a positive, monotonically-decreasing function of a, and so the
pericenter location will become an increasingly tightly wrapped
trailing spiral as time goes on.

These organized eccentric motions produce variations in the
ring’s surface density. If the particles at any given semi-major axis
follow the same orbit (called a streamline), and if they are evenly
distributed in longitude, then the local surface density r is inversely
proportional to the radial distance between adjacent streamlines:

r ¼ ro

@r=@a
; ð6Þ

where ro is the unperturbed surface density and r is the radial posi-
tion of the streamline:

r ¼ a� ae cosðh�-Þ: ð7Þ

Let us consider a region around a particular semi-major axis ao

where the pericenter’s angular location is given by the approxi-
mate expression:

-ðaÞ ¼ -ðaoÞ þ
@ _-
@a
ðtf � tiÞða� aoÞ: ð8Þ

At this location, the streamline equation becomes

r ¼ a� Ar cos½h�-ðaoÞ þ krða� aoÞ�; ð9Þ

where Ar ¼ ae is the magnitude of the radial excursions and

kr ¼
@ _-
@a

���� ����ðtf � tiÞ: ð10Þ
If we assume these Ar and kr parameters are roughly constant
on radial scales of order k�1

r , then the derivative of r with respect
to a is approximately:

@r
@a
¼ 1þ Arkr sin½h�-ðaoÞ þ krða� aoÞ�: ð11Þ

So long as Arkr � 1, we may combine Eqs. (6) and (11), and
obtain the following approximate expression for the perturbations
in the ring density

r ’ ro 1� Arkr sin½h�-ðaoÞ þ krða� aoÞ�½ �: ð12Þ

Furthermore, we may now approximate the semi-major axes a
and ao with the observed radii r and ro. Hence the fractional density
variations in the ring can be written as:

dr
r
’ �Arkr sin½h�-ðroÞ þ krðr � roÞ�: ð13Þ

The ring therefore exhibits a spiral pattern in its density analo-
gous to the spiral corrugation, and at a given longitude h, the ring’s
density (or, equivalently, its normal optical depth sn) will vary
periodically with an amplitude Arkr and wavenumber kr . As with
the corrugations, if we relaxed our assumptions that Ar and kr

are relatively constant or that Arkr � 1, we would still find a peri-
odic signal with wavelength kr , but with a slightly different ampli-
tude. Since this spiral pattern arises from the ring-particles’
eccentric motions, we will refer to this pattern as an ‘‘eccentric
spiral’’ below.

The evolution of both patterns’ radial wavelengths are governed
by radial gradients in orbit evolution rates, and previous studies of
the corrugations demonstrated that most of this evolution can be
ascribed to J2 and higher-order components of Saturn’s gravita-
tional field. More specifically, Saturn’s large J2 causes orbital nodes
and pericenters to evolve over time at the following rates (Murray
and Dermott, 1999 Eqs. (6.249) and (6.250)):

_- ¼ 3
2

J2n
Rs

r

� �2

ð14Þ

_X ¼ �3
2

J2n
Rs

r

� �2

; ð15Þ

where Rs ¼ 60;330 km is the fiducial planetary radius used in the
calculation of J2 and n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=r3

p
is the zeroth-order estimate of

the local mean motion (G being the gravitational constant and M
being Saturn’s mass). If J2 was the only source of precession, then
to first order the wavelengths of the corrugation and the eccentric
spiral would follow identical trends:

kz ¼
21
4

J2

ffiffiffiffiffiffiffiffi
GM
r5

r
Rs

r

� �2

ðtf � tiÞ; ð16Þ

kr ¼
21
4

J2

ffiffiffiffiffiffiffiffi
GM
r5

r
Rs

r

� �2

ðtf � tiÞ: ð17Þ

If we include higher-order perturbations to _- and _X, then the
above trends are slightly modified and the two winding rates differ
by a few percent, which turns out to be consistent with the obser-
vations (see Section 5). However, the above expressions provide a
good first-order approximation of the trends these patterns should
exhibit. Hence our analytical routines must be able to cope with
patterns whose wavenumbers increase linearly with time and vary
with radius approximately like r�9=2. Also, since the same event
that tilted the ring could have induced eccentric motions, these
routines need to be able to untangle optical-depth variations and
corrugations with nearly identical wavelengths.
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3. Data reduction procedures

The amplitudes and wavelengths of the periodic patterns in the
ring’s optical depth and vertical position are derived from individ-
ual Cassini images using a multi-step process. First, the image data
are converted into maps of the ring’s brightness as a function of
radius and longitude. Second, the azimuthal brightness trends in
these maps are fit to a model that yields separate profiles of the
ring’s normal optical depth and vertical structure. Finally, Fourier
transforms are used to determine the wavelengths and amplitudes
of the relevant periodic patterns in the profiles.
Fig. 2. A re-projected image of the brightness variations in the outer D ring image,
derived from the Cassini Image N1571969357 shown in Fig. 1. This graphic shows
more clearly how the ring’s brightness varies with radius and longitude, and in
particular, the dotted line corresponds to the exact ring ansa (i.e. cos / cot B ¼ 0, see
Section 3.2), where the brightness variations from vertical structures should be
minimal. That radial profile can therefore produce a measure of the true optical
depth variations in the ring, while differences between profiles on either side of this
line provide information about the magnitude of the vertical corrugation.
3.1. From images to brightness maps

This study focuses on images obtained by the Narrow Angle
Camera (NAC) of the Imaging Science Subsystem onboard the Cas-
sini spacecraft (Porco et al., 2004; West et al., 2010). Each image
was calibrated using the standard CISSCAL routines to convert
raw data numbers into I=F, a standard measure of brightness that
is unity for a Lambertian surface illuminated at normal incidence
(see http://pds-rings.seti.org/cassini/iss/calibration.html). Each
image was initially navigated using the appropriate SPICE kernels,
and this navigation was subsequently refined based on the posi-
tions of known stars in the field of view and verified against the
position of the C-ring’s inner edge. Once navigated, the radius
and longitude viewed by each pixel in the image can be deter-
mined. Combined with the known spacecraft position, this infor-
mation allows us to derive parameters like the phase and
emission angles, and how they vary across the rings.

In prior examinations of these periodic structures in Saturn’s
rings (Hedman et al., 2007, 2011), the image data were converted
into profiles of the ring’s brightness versus radius by averaging
over a range of longitudes. This procedure has the benefit of
improving signal-to-noise, but also removes any information about
azimuthal trends in brightness. Such azimuthal trends provide the
information needed to isolate vertical corrugations from opacity
variations, so for this analysis we instead re-project the image data
onto a regular grid of radii and longitudes. Fig. 2 shows an example
of one such re-projected data set (derived from the image shown in
Fig. 1). The range of longitudes covered in these re-projected
‘‘maps’’ is rather limited (only 15� in this case), so they do not pro-
vide clear evidence that the observed structures are spiral patterns
as opposed to purely radial patterns. However, these maps do con-
tain sufficient information to generate radial profiles of both the
ring’s relative normal optical depth and its vertical structure.
3.2. From brightness maps to radial profiles

While the re-projected brightness maps provide a clearer pic-
ture of how the ring’s brightness varies with radius and azimuth,
they are still cumbersome for the purposes of extracting precise
wavelength and amplitude estimates. Hence separate profiles of
the ring’s opacity and vertical position as functions of radius are
derived from each map by fitting the azimuthal brightness trends
at each radius to a model of the ring’s structure. This model
includes various simplifying assumptions and approximations,
but it should be sufficient to recover the desired pattern
parameters.

First, let us assume that the ring has a sufficiently low optical
depth that the observed brightness is proportional to the optical depth
along the line of sight. This is a reasonable assumption for the outer
D-ring, whose normal optical depth is of order 10�3 (Hedman et al.,
2007), and it allows us to write the ring brightness signal Sr as the
following function of the ring optical depth and viewing geometry
(which is valid regardless of whether the rings are viewed from the
lit or unlit side):

Sr ¼
1
4
-0PðaÞ sn

jn̂ � ôj ; ð18Þ

where -0 and PðaÞ are the effective mean single-scattering albedo
and phase function of the D-ring particles, sn is the ring’s optical
depth when viewed at normal incidence, n̂ is the unit vector normal
to the ring surface and ô is the unit vector pointing from the surface
to the observer. Note that the ‘‘normal optical depth’’ sn is the opti-
cal depth observed when the line of sight is perpendicular to the
local surface, regardless of any warps or corrugations. Hence sn is
proportional to the local surface density r discussed in Section 2
above.

Next, assume that within each image, the ring’s vertical position,
normal optical depth, and scattering properties are only functions of
radius. While the structures of interest here are almost certainly
spiral patterns, in practice the spirals are wrapped so tightly that
they can be well approximated as radial structures on the scale
of individual images or ring maps. Assuming the vertical displace-
ment z is only a function of radius allows us to express the surface
normal to the warped ring surface as:

n̂ ¼ ẑ� r̂ðdz=drÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðdz=drÞ2

q ; ð19Þ

where ẑ and r̂ are unit vectors aligned perpendicular to Saturn’s
equatorial plane and with the local radial direction, respectively.
The dot product of n̂ with the unit vector pointing from the rings
to the observer is:

jn̂ � ôj ¼ j sin Bj 1� cot B cos /ðdz=drÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðdz=drÞ2

q
�������

�������; ð20Þ

where B is the spacecraft’s elevation angle above the rings and / is
the azimuthal angle between the line of sight and the local radial
direction (see Fig. 3). The vertical displacements therefore produce
signals that depend upon the observed azimuth / in a predictable

http://pds-rings.seti.org/cassini/iss/calibration.html
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way. Furthermore, if we also assume sn and -0PðaÞ are only func-
tions of radius, then the vertical structure is the sole source of azi-
muthal brightness variations at a given radius.

We then assume, for the sake of simplicity, that the vertical
slopes within the pattern are sufficiently small that we may consider
only their first-order perturbations to the observed brightness data.
This can be justified based on the post facto derived slope profiles,
which indicate dz=dr < 0:1. Furthermore, in all of the maps used in
this analysis, we only fit data where j cot B cos /j < 2, so
cot B cos /ðdz=drÞ is also a small number. This means that we do
not have to worry about situations where the line of sight crosses
through the warped ring multiple times (Gresh et al., 1986). The
signal from the ring can therefore be obtained by simply inserting
the above expression for jn̂ � ôj into Eq. (18), which gives:

Sr ¼
-0PðaÞsn

4j sin Bj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðdz=drÞ2

q
1� cot B cos /ðdz=drÞ

������
������: ð21Þ

Furthermore, since both dz=dr and cot B cos /ðdz=drÞ are small
quantities, we may approximate the above expression as:

Sr ¼
-0PðaÞsn

4j sin Bj 1þ cot B cos /ðdz=drÞ½ �: ð22Þ

Eq. (22) only provides the signal from the ring itself. In practice,
there are also instrument backgrounds, which can vary with both
radius and azimuth in complex ways (West et al., 2010). However,
we deliberately exclude images or parts of images where such com-
plex stray light patterns are prominent, so any residual background
signals should be smooth compared to the patterns considered here.
If we call this background level Sb, then the total signal in a given
image should be:

S ¼ Sb þ
-0PðaÞsn

4j sin Bj

� �
þ-0PðaÞsn

4j sin Bj
dz
dr

� �
cot B cos /: ð23Þ

We may also define the quantity sðrÞ ¼ SðrÞj sin Bj (called ‘‘nor-
mal I/F’’ below) which would be the brightness of the ring viewed
at normal incidence if z and Sb were identically zero. In this sce-
nario, s is a useful quantity because its dependence on viewing
angle is slightly simpler than S:

s ¼ Sbj sin Bj þ 1
4
-0PðaÞsn

� �
þ 1

4
-0PðaÞsn

dz
dr

� �
cot B cos /: ð24Þ

In any individual image, the azimuth angle / between observer’s
projected line of sight and the local radial direction is a monotonic
function of the observed ring longitude. Hence we can translate the
Fig. 3. Diagram showing the relevant observation geometry for this analysis. The
spacecraft is located at the dot and views a location on the ring marked with the
square. The angle B is the spacecraft’s elevation angle above the ring plane, while /
is the azimuthal angle between a radial direction and the observed line of sight.
observed longitudes for a given map into values of the parameter
cot B cos /, (Indeed, the horizontal coordinate of the map in Fig. 2
is given in terms of both longitude and cot B cos /). Since each
row in the map gives the apparent brightness of the rings as a
function of cot B cos / at a given radius, we may fit these data to
the following function:

sðrÞ ¼ p0ðrÞ þ p2ðrÞ cot B cos /: ð25Þ

and obtain estimates of the parameters p0 and p2 at each radius.
From Eq. (24), we can identify these fit parameters with the follow-
ing quantities:

p0 ¼ Sbj sin Bj þ 1
4
-0PðaÞsn ð26Þ

p2 ¼
1
4
-0PðaÞsn

dz
dr

� �
: ð27Þ

Note that if the fractional variations in -0PðaÞsn are small, then
the variations in p2 will be dominated by variations in the vertical
slopes, while the variations in p0 should only be generated by
variations in the product -0PðaÞsn (assuming Sb does not vary
much on the relevant scales).

If we could be certain that Sb ¼ 0, then it would be easy to trans-
form p0 and p2 into estimates of the fractional optical depth varia-
tions and vertical slopes. However, in practice we cannot assume
this to be the case, and so we must estimate Sb and subtract it from
p0. In a few images, a portion of the imaged ring lies in Saturn’s
shadow, and since Sr ¼ 0 in Saturn’s shadow, we can use the resid-
ual signal in these regions to estimate Sb. Unfortunately, in most
images no shadowed ring regions are visible, and so we need
another method of estimating the background. Based on previous
work, we know that the periodic patterns occupy a portion of the
D ring that is close to much fainter regions (Hedman et al.,
2007). At low phase angles, the ring’s brightness drops sharply
interior to 73,200 km, while at high phase angles there are rela-
tively faint regions exterior to 74,000 km. While neither of these
regions is completely empty, each is sufficiently dark to provide
a rough estimate of Sbj sin Bj. Hence we may define the quantity

p1 ¼ p0 �minðp0Þ; ð28Þ

where minðp0Þ is the minimum value of the p0 profile between
73,000 and 74,500 km. While p1 may be a simple and crude estima-
tor of -0PðaÞsn=4, more complex background models (such as a
slope) are not practical because suitable dark regions usually cannot
be found on both sides of the periodic patterns. Fortunately, as
demonstrated below, the background model does not greatly affect
the pattern wavelength estimates.

Figs. 4 and 5 illustrate examples of the profiles p1 and p2 derived
using the above procedures. Both these profiles exhibit clear peri-
odic signals. However, the periodic pattern in p1 is superposed on
top of other ring structures. These background features complicate
efforts to measure the wavelength of the periodic pattern. Fortu-
nately, a cleaner profile of the periodic signal can be obtained by
simply taking the radial derivative of the profile p01 ¼ dp1=dr. As
Figs. 4 and 5 demonstrate, the derivative operation suppresses
the various long-wavelength trends and thus isolates the periodic
pattern. Furthermore, this operation should not change the wave-
length of the pattern, and the pattern’s amplitude in the p01 profile
is just the pattern’s amplitude in the p1 profile multiplied by 2p=kr ,
where kr is the pattern’s wavelength.

The theoretical calculations in Section 2 yield predictions for
the parameters dz=dr and dsn=sn ¼ dr=r. Profiles of these quanti-
ties can be derived from the profiles p1; p

0
1 and p2. The estimator

of vertical slope profile is the ratio of the p2 and p1 profiles:cdz
dr
¼ p2

p1
ð29Þ



Fig. 4. Profiles of optical-depth variations and vertical slopes derived from image
N1571969357 (shown in Fig. 1) by fitting data where j cos / cot Bj < 0:5. The top
panel shows the profile p1, with a constant background subtracted. Periodic
variations in the optical depth are evident here. The second panel shows the profile
of ðp01=p1Þkr=2p ¼ ðdsn=drÞ=krsn , which isolates the short-frequency periodic signals
in this profile. The third panel shows the profile p2, which is proportional to the
product sndz=dr, while the bottom panel shows the profile p2=p1, which should
ideally equal dz=dr. Each panel has the wavelength of the periodic signature
provided (note that for the top panel the wavelength is derived from the radial
derivative of the profile p01), while amplitudes of the dsn=sn and dz=dr variations are
given in the second and fourth panels.

Fig. 5. Profiles of optical depth variations and vertical slopes derived from image
N1743620398 by fitting data where j cos / cot Bj < 1:5. The top panel shows the
profile p1, with a constant background subtracted. Periodic variations in the
optical depth are evident here. The second panel shows the profile of
ðp01=p1Þkr=2p ¼ ðdsn=drÞ=krsn , which isolates the short-frequency periodic signals
in this profile. The third panel shows the profile p2, which is proportional to the
product sndz=dr, while the bottom panel shows the profile p2=p1, which should
ideally equal dz=dr. Each panel has the wavelength of the periodic signature
provided (note that for the top panel the wavelength is derived from the radial
derivative of the profile p01), while amplitudes of dsn=sn and dz=dr are given in the
second and fourth panels.
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The estimator of the fractional optical-depth variations is a bit
more complicated. The profile p01 provides the cleanest measure
of the periodic patterns in the ring’s brightness, and if we assume
that neither the particle albedo nor the particle phase function var-
ies on the scale of 30 km, we may take p01 as an estimator of
-oPðaÞs0n=4. To obtain the fractional brightness variations, we must
divide this profile by a measure of the average brightness. We esti-
mate the average brightness using a smoothed version of the p1

profile. Thus we may define the estimatorcs0n
sn
¼ p01

�p1
ð30Þ

where �p1 is a version of the p1 profile that has been smoothed over
120 km. Note that unlike the vertical slopes and the fractional
brightness variations computed in Section 2 (which are both unit-
less), p01=�p1 has units of km�1. Thus to facilitate comparisons, we
will consider the quantity:

kr

2p
cs0n
sn
¼ p01

kr �p1
; ð31Þ

where kr is the wavelength and kr is the wavenumber of the optical-
depth variations derived from a Fourier analysis of the profile. The
above quantity is unitless and should have the same amplitude
and wavelength as dr=r.

However, even though p01=�p1 and p2=p1 are sensible estimators
of the rings’ vertical slopes and optical depth variations, they both
involve ratios of signals, and both these ratios are sensitive to the
assumed background level. By contrast, the profiles p01 and p2

have the advantage that they are independent observable
quantities derived from the images (note that p01 ¼ p00 so long as
the background level varies slowly). Wavelength estimates
derived from p01 and p2 therefore might be more robust than
those derived from p01= �p1 and p2=p1. In order to control for this
possibility and ensure we obtain the most reliable wavelength
estimates possible, we will consider both sets of profiles and
compare the results. Therefore, our analysis yields five profiles
from each image:

� p1, which is an estimate of the ring’s brightness when viewed
from normal incidence (top panel in Figs. 4 and 5).
� p01, the radial derivative of p1 which provides a cleaner measure

of the relevant variations in the ring’s opacity.
� p01=�p1, which provides a quantitative estimate of the fractional

density variations (second panel in Figs. 4 and 5).
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� p2, which provides a clean periodic signal that is predominantly
due to the vertical corrugation (third panel in Figs. 4 and 5).
� p2=p1, which provides a quantitative estimate of the ring’s

vertical slopes (bottom panel in Figs. 4 and 5).

The Fourier techniques described in the following section are
applied to the last four profiles.
3.3. From profiles to wavelength and amplitude estimates

The amplitude and wavelength of the periodic patterns in the
various profiles are obtained using Fourier techniques very similar
to those previously used by Hedman et al. (2011). As in that work,
an important consideration for this step in the analysis is that
patterns generated by differential nodal regression or differential
apsidal precession have wavelengths that vary systematically and
continuously with distance from the planet (see Section 2 above).
In particular, we expect these wavelengths to scale roughly as
r9=2 (indeed this was true for the corrugations in the C ring, see
Hedman et al. 2011). As can be seen in Figs. 4 and 5, periodic pat-
terns are evident over an 800-km-wide region between 73,200 km
and 74,000 km. If these patterns’ wavelengths vary like r9=2, then
the pattern’s wavelength will vary by 5% across this region. Shifts
of this magnitude are just barely detectable in individual profiles,
but cannot be ignored if we wish to obtain precise wavelength
estimates. To deal with this phenomenon, we transform the
observed ring radii r into the re-scaled distance parameter d:

d ¼ r
2
7

ro

r

� �9=2
; ð32Þ

where ro=73,600 km. In this coordinate system, the ‘‘rescaled
wavelength’’ of a periodic structure becomes:

K ¼ k
ro

r

� �9=2
; ð33Þ

where k ¼ 2p=k is the true radial wavelength (note that the factor of
2=7 in the definition of d ensures that K ¼ k when r ¼ ro). For
patterns generated by differential nodal regression or apsidal
precession, k should scale approximately as r9=2 , so K should be
approximately constant.1 This transformation therefore allows us
to take the Fourier spectrum of the entire region between
73,200 km and 74,000 km and obtain precise wavelength estimates.
It also makes these wavelength estimates insensitive to variations in
the amplitude of the pattern across the region, which can influence
what part of the wave contributes most to the peak in the Fourier
transform. Since K ¼ k when r ¼ ro ¼ 73;600 km, the wavelengths
obtained by this procedure can be regarded as estimates of the
pattern’s wavelength at 73,600 km, which falls near the middle of
the region where the pattern in evident.

For each profile, we compute an over-resolved Fourier spectrum
of the rescaled data by evaluating the Fourier transform for a
tightly spaced array of K values (dK=K ¼ 0:001). These spectra
contain a strong peak at the wavelength of the desired periodic sig-
nal. Fitting this peak to a Gaussian yields estimates of the pattern’s
wavelength and amplitude. Only data where the amplitude of the
Fourier transform is at least half the peak value and within 10% of
the peak wavelength are included in the fit. This fit yields the
following parameters:
1 This rescaled wavelength will not be exactly constant because the higher-order
harmonics in the gravitational field perturb the relevant precession rates. However,
the variations in K due to these perturbations are less than 0.3% across the region of
interest, and neglecting these corrections changes the final estimates of the pattern
wavelengths by less than 0.1%. Hence we chose not to complicate our analysis to
remove these small residual trends.
� The location of the peak in the Fourier spectrum, which is an
estimate of K.
� The amplitude A of the pattern, derived from the peak ampli-

tude of the Fourier spectrum. For the profiles p01=�p1 and
p2=p1;A provides an estimate of the product Arkr and Azkz,
respectively (see Section 2).
� The Gaussian width of the peak in the Fourier spectrum WK,

which is a useful tool for determining the quality of the wave-
length data.

Note that the width parameter WK is not necessarily an
estimate of the uncertainty in the K because the peak location
can be determined to a small fraction of its width if the signal-
to-noise is high, which is often the case for the profiles considered
here. Indeed, for many of the profiles the resolution of the profile is
the ultimate factor limiting our ability to determine K. The
uncertainty in K due to the finite resolution of the profiles can
be estimated with the parameter EK ¼

ffiffiffi
2
p

Kdr= (800 km), where
dr is the radial resolution of the relevant profile. Note we do not
attempt to estimate uncertainties on the amplitudes of the
patterns because these are likely to be dominated by systematic
phenomena that are difficult to quantify a priori.
4. Observations and results

The above data reduction procedures require images that both
have high enough resolution to detect patterns with wavelengths
around 30 km and sufficient longitude coverage to isolate the
signals due to optical depth and vertical slope variations. We
therefore performed a comprehensive search for clear-filter images
of the appropriate region with resolutions better than 10 km/pixel
and sufficient signal-to-noise to detect the patterns. We excluded
most of these images either because the pattern was not well
resolved or because only a narrow range of cos / cot B were visible,
so we could not reliably isolate the vertical structures from optical-
depth patterns. Images were also excluded if any of the profiles
yielded a peak in the Fourier transform with a Gaussian width
larger than 1 km, as this indicated that the periodic signal was
not cleanly observed in the profile. While some of these excluded
images could potentially provide viable amplitude or wavelength
measurements with more elaborate analytical techniques, we felt
that such complications were not worthwhile at this point.

In the end, 199 images were deemed suitable for this particular
analysis. Tables A.1–A.3 in Appendix A list these images, along with
the relevant observation geometry parameters and the amplitude
and wavelength information extracted using the above algorithms.
The vast majority of these images are part of a few observation
sequences where the relevant part of the D-ring was imaged
repeatedly over a relatively short period of time. These sequences
provide replicate measurements of the patterns at a particular time
and thus allow us to evaluate the robustness of our data reduction
procedures and verify our estimates of the wavelength uncertain-
ties. For each sequence of images, the tables provide the mean of
the wavelength and amplitude estimates, the scatter in those mea-
surements, and the predicted scatter based on the resolution of the
relevant sequence (corresponding to the EK parameter discussed
above). For the observing sequences on UTC Days 2007-045,
2007-064, 2010-185, 2012-180, 2012-292, 2012-315 and 2013-
187, the observed scatter is comparable to or lower than the pre-
dicted scatter, indicating that our estimates of the uncertainty
based on the image resolution are reasonable. For the short
sequences on UTC Days 2005-248 and 2005-363, each of which
consists of two images of different parts of the D ring, we find
the difference between the two wavelength estimates derived from
the p2=p1 profile is about twice the expected scatter. However,
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even in these cases the other three profiles yield wavelength esti-
mates that are consistent to within their error bars. This suggests
issues with the background levels may be contaminating the
p2=p1 profile for these observations. Even so, overall it appears that
the estimates of the wavelength errors are sensible.

These long observation sequences have the potential to skew
analyses and fits to these data because the formal statistical errors
derived from many repeated measurements are very low, but do
not account for any common systematic errors such as those due
to navigation uncertainties or background levels. Hence for the
remainder of this analysis we will not consider the 199 measure-
ments individually, but instead reduce the data from each of the
observation sequences in Tables A.1–A.3 to a single estimate of
the relevant pattern wavelengths and amplitudes. The estimate
for each parameter is the (unweighted) average value of the esti-
mates from all the relevant images, and the error is the larger of
the scatter in the measurements and the average EK parameter
for the observations. In the end, for each parameter we obtain nine
data points from various observing sequences and another twelve
data points derived from individual images (listed at the start of
Tables A.1–A.3). Table 1 gives the relevant pattern parameters
and observation times for these 21 observation epochs. This
includes wavelength estimates derived from all four profiles
(p1; p2; p01=�p1 and p2=p1), but only amplitude estimates from the
p01=�p1 and p2=p1 profiles, since the latter are the only ones that
can be directly related to the vertical and radial displacements Ar

and Az.
Table 1 also includes a measurement of the corrugation wave-

length derived from a 1995 Hubble Space Telescope occultation
described previously in Hedman et al. (2007). Normally, an
occultation only provides a radial cut through the ring, and thus
cannot provide separate estimates of the corrugation and optical
depth structure. However, it turns out that this occultation
occurred far from the ring ansa, where cos / cot B ’ 5:5. Thus the
periodic signature from the corrugation is far larger the optical
depth variation, and so we can assume this profile provides a fairly
clean estimate of Kz. However, because of the low ring opening
angle, the wavelength measurement depends sensitively on the
assumed occultation geometry. Recently, R. French has performed
a comprehensive reconstruction of all the available occultation
data (French et al., 2010), which had the result of increasing the
measured wavelength of the pattern from 58.4 ± 0.6 km to
59.9 ± 0.7 km. We will consider both values here and assume the
difference between the two wavelength estimates provides a
conservative measure of the potential systematic errors in this
early observation.

Fig. 6 plots the estimates of the pattern wavenumbers
Kz ¼ 2p=Kz and Kr ¼ 2p=Kr versus time (note that Kz and Kr are
estimates of the real wavenumbers kz and kr at 73,600 km). Both
Kz and Kr are clearly increasing with time at nearly constant rates,
as predicted in Section 2. Furthermore, the rms residuals of these
data from the appropriate linear trends are less than 0.003 km�1,
which is much smaller than the scatter found in our previous
analysis of these patterns (see Fig. 23 of Hedman et al., 2007). This
indicates that the excess scatter in our earlier investigation of the
corrugations was indeed due to interference between the patterns,
and that the new calculations are yielding consistent wavelength
estimates.

A closer look at the fit parameters, listed in Table 2, reveals
some interesting differences in the data derived from the various
profiles. This table provides estimates of the winding rates of the
patterns dKr=dt and dKz=dt, the ‘‘disturbance epoch’’ ti when Kz

or Kr would be zero, and the estimated wavelength value at
equinox (JD 2455054), which is not only near the mid-point of
the Cassini observations, but also the epoch of the C-ring measure-
ments (Hedman et al., 2011). It also includes the v2 for each linear
fit. For the corrugation patterns, these include fits for the Cassini
data alone, as well as fits including both estimates of the pattern
wavelength in the 1995 HST occultation data. The two estimates
of the eccentric spiral patterns (derived from profiles p01 and
p01=�p1, respectively) yield consistent estimates for the winding rate,
disturbance epoch and wavelength at equinox, and have compara-
ble v2 to a linear fit. By contrast, the two estimates of the vertical
corrugation’s wavelength (from p2 and p2=p1) yield estimates of
the winding rate and disturbance epoch that differ by more than
their individual error bars would predict. The linear fit to the wave-
length estimates derived from the p2=p1 profiles shows a much
worse v2 than the same fit to the wavelength estimates derived
from p2, and the fit parameters change more depending on
whether or not the 1995 occultation data are included. These
findings suggests that the wavelength estimates derived from
p2=p1 are not as good as the ones derived from p2 alone. This is a
bit surprising, since the p2 profile is proportional to the product
of sn and dz=dr, so one might have expected there to be systematic
biases in the p2 wavelength estimates due to contamination from
the eccentric spiral pattern. Instead, it appears that uncertainties
involved in the background subtraction are producing larger shifts
in the wavelength estimates. However, it is worth noting that
both methods yield very consistent estimates of the corrugation
wavelength at equinox.

Compared with the wavelengths, the amplitudes of the patterns
show a much larger dispersion, which is not surprising, since the
apparent amplitude of the pattern is much more sensitive to small
errors in the background subtraction procedures. At present, we
have not identified any sensible trends in the amplitudes with
time or any physically interesting quantity. Hence we regard the
numbers in Table 1 as only very rough indicators of the ring-
particles’ epicyclic motions, and will not attempt to conduct a
precise analysis of these values.

Many systematic errors that could influence our estimates of
the patterns’ amplitudes and wavelengths, like incomplete back-
ground subtraction, should affect both patterns roughly equally.
We therefore might expect the ratios kz=kr and Az=Ar to be more
robustly determined than the individual parameters. Table 3
provides the average ratios of the wavenumbers and amplitudes
of the two patterns. For the wavenumber ratio kz=kr ¼ Kz=Kr we
computed weighted average of the 21 Cassini measurements of
kz=kr that can be derived from Table 1, as well as the v2 parameter
for a model where kz=kr is constant. The v2 values are well below
the degrees of freedom, which indicates that the wavenumber ratio
is consistent among the various observations. For the amplitude
ratio Az=Ar , we do not have robust uncertainty estimated on the
individual estimates, so we instead compute the simple average
and the rms scatter in the 21 Cassini estimates. Note that while
Az and Ar can only be separately estimated from the p01=�p1 and
p2=p1 profiles, the ratio Az=Ar can be derived from the ratio of
amplitudes of the patterns in the p2 and p1 profiles. Both methods
yield essentially the same result, with a mean amplitude ratio
around 2.3, with a scatter of around 0.5, which is far less than
the scatter in the individual estimates of Az or Ar in Table 1. This
ratio therefore does indeed appear to be better determined than
the individual pattern amplitudes.
5. Verifying the nature of the periodic patterns

The winding rates and wavelength ratios in Tables 2 and 3 pro-
vide strong evidence that these patterns are indeed corrugations
and eccentric spiral patterns winding up under the influence of
the planet’s gravity field, as laid out in Section 2 above. At a very
basic level, the observed data clearly show that the wavenumbers
of both patterns are increasing linearly with time (see Fig. 6), as



Table 1
Summary of wavelength and amplitude estimates.

UTC
time

Phase
angle (�)

B (�) Radial
resolution
(km)

Ar

(km)
Az

(km)
Kr from
dp1=dr (km)
value ± error
(Width)

Kr from

dp1=drð�p1Þ�1 (km)
value ± error
(Width)

Kz from
p2 (km)
value ± error
(Width)

Kz from
p2=p1 (km)
value ± error
(Width)

1995-325T21:04:19 – �2.6 4.7 – – – – 58.40 ± 0.61 (1.60)a –
1995-325T21:04:19 – �2.6 4.7 – – – – 59.92 ± 0.64 (1.67)b –
2005-120T13:14:45 38.5 �19.5 4.5 0.28 0.60 32.11 ± 0.25 (0.53) 32.11 ± 0.25 (0.55) 33.09 ± 0.26 (0.56) 33.08 ± 0.26 (0.57)
2005-140T17:15:52 1.1 �20.7 1.6 0.30 0.77 32.25 ± 0.09 (0.54) 32.23 ± 0.09 (0.56) 32.93 ± 0.09 (0.53) 32.93 ± 0.09 (0.52)
2005-159T03:14:15 18.1 �16.8 1.1 0.86 2.31 32.04 ± 0.06 (0.49) 32.03 ± 0.06 (0.54) 32.98 ± 0.06 (0.58) 32.79 ± 0.06 (0.65)
2005-248T03:24:27 12.5 �15.8 1.2 0.47 1.04 31.69 ± 0.07 (0.49) 31.69 ± 0.07 (0.52) 32.67 ± 0.07 (0.58) 32.60 ± 0.13 (0.60)
2006-363T07:38:29 131.9 �16.7 3.1 0.73 1.33 29.80 ± 0.16 (0.51) 29.84 ± 0.16 (0.41) 30.72 ± 0.19 (0.56) 30.79 ± 0.40 (0.46)
2007-036T21:09:23 67.4 30.5 4.3 0.21 0.44 29.72 ± 0.23 (0.46) 29.73 ± 0.23 (0.45) 30.78 ± 0.23 (0.47) 31.06 ± 0.24 (0.45)
2007-045T17:28:39 161.9 25.9 4.4 0.23 0.84 29.68 ± 0.23 (0.61) 29.67 ± 0.23 (0.39) 30.20 ± 0.24 (0.63) 30.19 ± 0.24 (0.48)
2007-064T15:41:40 160.2 6.8 2.9 0.36 0.63 29.54 ± 0.15 (0.58) 29.57 ± 0.15 (0.41) 30.57 ± 0.16 (0.60) 30.50 ± 0.16 (0.48)
2007-298T01:33:48 26.7 �2.4 2.0 0.28 0.62 28.91 ± 0.10 (0.42) 28.90 ± 0.10 (0.45) 29.75 ± 0.10 (0.45) 29.72 ± 0.10 (0.48)
2009-206T09:31:16 160.3 �7.0 2.8 0.35 0.60 26.92 ± 0.14 (0.43) 26.93 ± 0.14 (0.38) 27.73 ± 0.14 (0.53) 27.75 ± 0.14 (0.40)
2009-239T18:48:50 11.7 7.1 1.2 0.41 0.74 26.97 ± 0.06 (0.41) 26.97 ± 0.06 (0.42) 27.74 ± 0.06 (0.40) 27.74 ± 0.06 (0.40)
2009-263T20:03:51 7.9 8.5 1.4 0.51 1.40 26.96 ± 0.06 (0.40) 26.96 ± 0.06 (0.41) 27.52 ± 0.07 (0.43) 27.50 ± 0.07 (0.45)
2010-010T17:05:09 157.8 �21.3 1.4 0.42 1.16 26.61 ± 0.06 (0.46) 26.70 ± 0.06 (0.39) 27.27 ± 0.07 (0.47) 27.45 ± 0.07 (0.38)
2010-185T07:23:24 143.7 �18.7 2.3 0.37 1.12 26.08 ± 0.11 (0.44) 26.11 ± 0.11 (0.33) 26.86 ± 0.11 (0.41) 26.85 ± 0.11 (0.36)
2012-180T05:10:49 150.1 �17.6 2.0 0.47 1.06 24.27 ± 0.10 (0.38) 24.34 ± 0.15 (0.30) 25.00 ± 0.09 (0.38) 25.00 ± 0.09 (0.34)
2012-182T11:10:09 24.2 3.3 3.0 0.53 1.34 24.33 ± 0.13 (0.30) 24.34 ± 0.13 (0.32) 25.04 ± 0.14 (0.32) 25.06 ± 0.14 (0.33)
2012-249T20:06:16 36.8 �3.5 4.2 0.12 0.37 24.11 ± 0.18 (0.30) 24.10 ± 0.18 (0.30) 24.86 ± 0.19 (0.31) 24.83 ± 0.19 (0.31)
2012-292T02:21:57 130.6 18.0 1.5 0.63 1.75 23.96 ± 0.06 (0.33) 23.96 ± 0.06 (0.26) 24.54 ± 0.07 (0.47) 24.41 ± 0.08 (0.32)
2012-315T23:28:37 136.4 14.5 1.5 0.42 1.12 23.79 ± 0.07 (0.34) 23.89 ± 0.07 (0.25) 24.44 ± 0.07 (0.39) 24.50 ± 0.07 (0.33)
2013-092T18:05:09 144.3 5.5 1.5 0.40 0.61 23.69 ± 0.06 (0.33) 23.73 ± 0.06 (0.30) 24.38 ± 0.07 (0.34) 24.41 ± 0.07 (0.30)
2013-187T20:18:39 136.7 14.7 1.9 0.48 1.20 23.44 ± 0.08 (0.51) 23.48 ± 0.08 (0.25) 24.09 ± 0.08 (0.38) 24.17 ± 0.09 (0.29)

a Using original geometry for HST occultation, from Hedman et al. (2007).
b Using new geometry for HST occultation provided by R. G. French (private communication, 2013).
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predicted. Furthermore, quantitative comparisons of the observed
winding rates and wavelength ratios to theoretical predictions pro-
vide very stringent tests on our model for these patterns.

First of all, we may note that the two patterns follow similar,
but not identical trends. This basic observation is consistent with
the expected evolution of corrugations and eccentric spirals. The
first-order calculation outlined in Section 2 indicates that the
winding rate for an eccentric spiral should be approximately equal
to the winding rate of the vertical corrugation, as observed. If we
refine these calculations to include higher-order corrections to
the relevant precession rates, we can even explain the observed
differences between the two rates. Typically, the axisymmetric
part of a planet’s gravitational potential is expressed in terms of
the following series:

V ¼ �GM
r

1�
X1
i¼2

Ji
Rs

r

� �i

Piðsin HÞ
" #

; ð34Þ

where H is latitude, R = 60,300 km is the assumed planetary radius,
Pi are Legendre polynomials of degree i and Ji are a series of
numerical coefficients (Murray and Dermott, 1999). Note that for
a fluid planet only even i should have non-negligible coefficients,
so typically the planet’s gravity can be described by the coefficients
J2; J4; J6 . . .. If we keep all terms out to fourth order in Rs=r, then the
apsidal precession and nodal regression rates are (Murray and
Dermott, 1999, Eqs. (6.249) and (6.250)):
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where n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=r3

p
is the zeroth-order estimate of the ring

particle’s mean motion. Using these more complex expressions in
Eqs. (4) and (10), we obtain the winding rates:
dkr
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Thus, at this level of approximation, the normalized difference
in the two winding rates should be:

_kr � _kz

_kr þ _kz

¼ 33
28

J2
Rs

r

� �2

: ð39Þ

According to Jacobson et al. (2006), J2 ¼ 0:01629071 so we
can estimate that at r = 73,600 km, this normalized difference
will be 0.0129. Including even higher-order corrections (using
J4 ¼ �0:00092583; J6 ¼ 0:00008614, and J8 ¼ �10�6, consistent
with Jacobson et al., 2006), yields a more accurate estimate of this
difference of 0.0142, such that the ratio of the two winding rates is
_kz=

_kr ¼ 0:9720. All the rate ratios listed in Table 2 are consistent
with this value, strongly supporting our hypothesis that the optical
depth variations are due to an eccentric spiral.

We can also compare the individual winding rate estimates
with theoretical predictions, but this requires more careful treat-
ment of the higher-order components of Saturn’s gravitational
field. For D-ring features the ratio Rs=r is not much different from
one, which means observable parameters like winding rates are
sensitive to a linear combination of many Ji. This issue is discussed
in detail in Hedman et al. (2014), which examined the precession
of an eccentric ringlet in the inner D ring known as D68. Just as
in that work, we will first examine the observed winding rates
using the standard language of gravitational harmonics, but then
use a simplified model to clarify whether the observed values are
consistent with other measurements of Saturn’s gravity field.

In general, given a suitable observable parameter P, one can
compute the linear (fractional) sensitivity of this parameter to a
small change in any of the gravity harmonics Ji:



Fig. 6. Plot showing the measured pattern wavenumbers versus time and the
residuals from the best-fitting linear trends. The top panel shows the wavenumber
of the patterns versus time. Two different estimates of the opacity variations’
wavenumber Kr are shown in red and orange, while two estimates of the
corrugation wavenumbers Kz are show in green and cyan. (The different estimates
of the same parameters come from analyses of different profiles, as indicated in the
lower panels.) All four data sets follow clear linear trends (indicated by lines of
corresponding colors). The bottom four panels show the residuals from the best-
fitting trends. Note that in the bottom panels there are two values for the 1995 data
point. These correspond to the two different estimates of the pattern wavelength,
with the value from the older geometrical solution being the upper value. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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Si ¼
1
P
@P
@Ji

: ð40Þ

Fig. 7 plots the sensitivity coefficients Si for the winding rates of
a corrugation situated at 73,600 km in the D ring and 82,000 km in
the C ring (The winding rates of the corresponding eccentric spiral
patterns have nearly the same sensitivity coefficients, and so are
Table 2
Temporal trends in the wavelength patterns.

Analysis kr at
Equinox
(km)

dkr=dt

(10�5 km�1/day)

Disturbance
Epoch (JD)

v2=D

All dp1=dr and p2 profiles 26.95 ± 0.02 2.444 ± 0.015 2445513.4 ± 55.0 20.72
(including HST occultation,
old geometry)

(including HST occultation,
new geometry)

All dp1=drð�p1Þ�1 and p2=p1

profiles

26.98 ± 0.02 2.424 ± 0.015 2445447.1 ± 56.4 19.16

(including HST occultation,
old geometry)

(including HST occultation,
new geometry)
not included here). For the sake of comparison, we also plot the
sensitivity curves for the precession rates of two eccentric ringlets
previously calculated by Hedman et al. (2014): the Titan ringlet in
the inner C ring (77,862 km) and D68 in the inner D ring
(67,627 km). Note that both the D-ring corrugation winding rate
and D68’s precession rate are sensitive to a broad range of Ji, with
Si reaching a maximum around J12. This coincidence is a bit
surprising since D68 is closer to the planet than the corrugation,
so Rs=r is closer to unity for D68 than it is for the corrugation.
However, the winding rate depends upon the gradient of the
precession rate, which makes it more sensitive to higher-order
harmonics and partially compensates for the difference in the
two features’ locations.

These sensitivity coefficients allow observed ring parameters to
be transformed into constraints on the gravitational harmonics. In
particular, any one of the observed corrugation winding rates at
73,600 km in Table 2 (which we will here designate as _kz;obs) yields
the following constraint on Ji:

_kz;obs � _kz;mod

_kz;mod

¼
X
ðJi � Ji;modÞSz

i ; ð41Þ

where _kz;mod ¼ 2:3840� 10�5 km�1/day, while Ji;mod and Sz
i are listed

in Table 4. Similarly, any of the eccentric spiral pattern winding
rates at 73,600 km _kr;obs yields the constraint

_kr;obs � _kr;mod

_kr;mod

¼
X
ðJi � Ji;modÞSr

i ; ð42Þ

where _kr;mod ¼ 2:4528� 10�5 km�1/day and the coefficients Sr
i are

listed in Table 4.
While these constraints can be incorporated into various fitting

routines, it is not immediately obvious whether these constraints
are consistent with each other or with other observations. To
address these shortcomings, we may use the highly simplified
model of Saturn’s gravity field developed in Hedman et al.
(2014). For this model J2 and J4 are assumed to be known
(Jacobson et al., 2006), and the higher-order harmonics are
assumed to be produced by two phenomena: the planet’s
rotation-induced oblateness and its equatorial jet. The former is
modeled using the harmonics of a MacLaurin spheroid (Hubbard,
2012, 2013), while the latter is approximated as a massive wire
wrapped around the planet’s equator. This model of the planet
has effectively two free parameters, which are here taken to be
the planet’s J6 and the mass of the wire.

Fig. 8 shows the expected winding rates for the corrugation and
the eccentric spiral as a function of the parameters in this
simplified gravity field model, along with the constraints derived
from the forced eccentricity of the Titan ringlet and the precession
rate of D68 (Nicholson et al., 2014; Hedman et al., 2014). Note in
particular that contours of constant winding rate are nearly
OF kz at
Equinox
(km)

dkz=dt

(10�5 km�1/day)

Disturbance
Epoch (JD)

v2=DOF dkz=dt
dkr=dt

/19 27.69 ± 0.02 2.389 ± 0.014 2445555.2 ± 54.3 23.74/19 0.9777 ± 0.0082
27.69 ± 0.02 2.387 ± 0.012 2445547.0 ± 46.8 23.83/20 0.9768 ± 0.0077

27.69 ± 0.02 2.402 ± 0.012 2445604.4 ± 46.2 26.92/20 0.9829 ± 0.0077

/19 27.69 ± 0.02 2.348 ± 0.015 2445389.1 ± 61.8 43.43/19 0.9685 ± 0.0087

27.69 ± 0.02 2.358 ± 0.013 2445431.2 ± 51.1 44.97/20 0.9728 ± 0.0080

27.69 ± 0.02 2.375 ± 0.013 2445498.5 ± 50.5 54.03/20 0.9797 ± 0.0080



Table 3
Wavelength and amplitude ratios of the periodic patterns.

Analysis kz=kr v2=DOF Az=Ar

All dp1=dr and p2

profiles
0.9733 ± 0.0009 12.63/20 2.21 ± 0.46

All dp1=drð�p1Þ�1 and
p2=p1 profiles

0.9747 ± 0.0010 15.34/20 2.41 ± 0.54

Fig. 7. Plots showing the fractional linear sensitivity of various orbital evolution
parameters in the C and D rings to Saturn’s gravitational harmonics as a function of
the degree number. In all plots filled symbols correspond to positive Si and empty
symbols are negative Si . The top panel shows the sensitivity coefficients for a
particle’s orbital precession rate at two different distances from Saturn’s center,
corresponding to the D68 and Titan ringlets. The middle panel shows the sensitivity
of the corrugation winding rate at two different locations (the sensitivity of the
eccentric spiral winding rate follows nearly the same trends). The bottom panel
shows the sensitivity of the winding rate ratio between the two locations illustrated
in the middle panel.

Table 4
The parameters used in Eqs. (41) and (42).

i Sz
i Sr

i Ji;mod i Sz
i Sr

i Ji;mod

2 +50 +52 16290:71� 10�6 22 +185 +187 0

4 �135 �138 �935:85� 10�6 24 �154 �155 0

6 +218 +222 86:14� 10�6 26 +126 +127 0

8 �280 �284 �10� 10�6 28 �101 �102 0

10 +313 +317 0 30 +80 +81 0
12 �322 �326 0 32 �63 �64 0
14 +310 +314 0 34 +49 +50 0
16 �286 �289 0 36 �38 �38 0
18 +254 +257 0 38 +29 + 29 0
20 �220 �222 0 40 �22 �22 0

Fig. 8. Expected spiral pattern winding rates in a simplified model of Saturn’s
gravity field. The two panels show the winding rates (in units of 10�5 km�1/day) of
the corrugation (top) and the eccentric spiral (bottom) as functions of the assumed
J6 and wire mass. Overplotted on these contours are the constraints on these
parameters obtained from the forced eccentricity of the Titan ringlet and the
precession rate of D68 reported in Nicholson et al. (2014) and Hedman et al. (2014),
respectively. Note the contours of constant winding rates are nearly parallel to the
constraint from D68.
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parallel to the band corresponding to the observed precession rate
of D68. This is consistent with both these phenomena having
similarly shaped sensitivity curves in Fig. 7.

Given the observed precession rate of D68, we would expect a
corrugation winding rate of ð2:390	 0:003Þ � 10�5 km�1/day and
an eccentric spiral winding rate of ð2:450	 0:003Þ � 10�5 km�1/
day. These numbers are perfectly consistent with the observed
winding rates for the analysis that used the profiles p01 and p2

(see Table 2). As mentioned above, these profiles will probably
provide the most robust wavelength estimates, since they are less
sensitive to background levels. The winding rates derived from the
p01=�p1 and p2=p1 profiles, by contrast, typically fall below this
prediction, which suggests that these ratio profiles provide a less
accurate estimate of the corrugation wavelengths, consistent with
our previous suppositions based on the v2 of the relevant fits (see
Section 4). Thus we may conclude that both of the winding rates
derived here are consistent with any reasonable theoretical
predictions that can reproduce the precession rate of D68. This
result gives us even more confidence that these periodic brightness
variations do indeed represent corrugations and eccentric spirals
evolving under the influence of Saturn’s gravitational field.

6. Investigating the ring-disturbing event

The above analysis of the wavelength trends provides strong
evidence that the periodic patterns observed in the D ring consist
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of a vertical corrugation and an eccentric spiral winding up due to
differential nodal regression and apsidal precession, respectively.
Now we may turn our attention to the origins of these patterns.
Both the eccentric spirals and the vertical corrugations described
in Section 2 arise from some event that produces organized epicy-
clic motions of ring particles. More specifically, Hedman et al.
(2007, 2011) suggested that a swarm of meteoritic debris struck
the rings, perturbing the orbits of the ring particles. The
wavelength and amplitude estimates derived above allow us to
explore this scenario in more detail than previously possible. In
particular, we have three pieces of information that can provide
useful information about how the rings were disturbed:

� The relative wavelengths of the corrugation and eccentric spiral
patterns, which indicate that the two patterns formed at similar
times, and thus likely had a common origin.
� The relative amplitudes of the two patterns, which depend upon

the approach angle of the impacting debris.
� The relative wavelengths of the corrugation in the D and C rings,

which contain additional information about the pre-impact
trajectory of the debris.

We will consider each of these topics in turn below, followed by
a brief discussion of how the above constraints could potentially
help us ascertain the origin of the ring-disturbing material.

6.1. The eccentric spiral and corrugation have a common origin

Table 2 provides estimates of the ‘‘disturbance epoch’’ for the
corrugation and eccentric spiral. This epoch corresponds to the
time when the wavelength of the pattern is infinite, and so all
the particles in the rings have aligned pericenters or nodes. The
derived disturbance epochs for the two patterns have overlapping
error bars, so the data are consistent with both patterns arising
from the same event.

We can obtain this same result by considering the wavenumber
ratios kz=kr derived from individual observations. If both patterns
arose from the same event, then not only would the winding rates
of the two patterns be a predictable ratio (see Section 5), but the
wavenumbers of the two patterns should also have the same ratio
in any individual image. Table 3 shows that, regardless of the
profiles considered, the observations yield an average kz=kr of
between 0.973 and 0.975, very close to the predicted value of
0.972. The scatter among the various estimates of kz=kr is also con-
sistent with their estimates’ error-bars (note the v2=DOF values in
Table 3). Again, this suggests that the eccentric motions of the ring
particles were generated by the same event that tilted the ring.

Simultaneous excitation of ring particles’ eccentricities and
inclinations is easy enough to explain if these excitations were
caused by a collision with interplanetary debris. So long as the
debris struck the rings at an angle, the impacts would produce both
vertical and radial epicyclic motions for the ring particles. By
contrast, it is not obvious that other potential ring-tilting events,
such as a shift in Saturn’s gravity field, would necessarily produce
simultaneous radial and vertical perturbations.

6.2. Amplitude ratios and impacting debris angles

Table 1 lists the values of the pattern amplitudes Az and Ar

derived from the various observations. The scatter of these mea-
surements is quite large, which is not unreasonable given that
these parameters are very sensitive to the assumed background
level. Still, we find that Ar is generally between 200 and 500 m,
while Az is between 600 and 1200 m. Any background-dependent
factors should cancel out in the ratio Az=Ar , and indeed we find that
this ratio has a much better-defined value of 2.3 ± 0.5 (see Table 3),
regardless of which profiles we consider. This implies that the
typical inclinations of the ring particles are 2–3 times larger than
their present eccentricities. The epicyclic motions of the particles
in these patterns are about an order of magnitude less than the
patterns’ wavelengths, so collisions among the ring particles
should not be able to efficiently dissipate these organized eccen-
tricities and inclinations. Indeed, fitting a linear trend to the
Az=Ar measurements requires any steady temporal variation in this
ratio to be less than 0.1/year. Thus we may reasonably assume that
the initial disturbance induced an average inclination in the ring
particles that was 2–3 times larger than the induced eccentricities.

If we assume that the initial eccentricities and inclinations were
produced by collisions with meteoritic debris, we can translate the
Az=Ar ratio into a constraint on the trajectory of the incoming
debris. Consider a ring particle initially on a circular orbit with a
semi-major axis a, and corresponding mean motion n. This particle
is struck by a meteoroid that imparts some of its momentum to the
ring particles, and so there is a small change in the ring particle’s
velocity dv. Let the radial, azimuthal and vertical components of
dv be dv r ; dvk and dvz, respectively. If dvz is nonzero, the ring
particle has a finite orbital inclination. Specifically, the inclination
induced by the collision is:

I ¼ jdvzj
an

: ð43Þ

If dv r is nonzero, then the ring particle moves radially, and thus
has a finite eccentricity. Also if dvk is nonzero, then the ring particle
is not moving at the proper speed around the planet to maintain a
circular orbit, which also requires the particle be on an eccentric
orbit. In general, the resulting eccentricity is:

e ¼ 1
an

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dv2

r þ 4dv2
k

q
: ð44Þ

Thus the ratio of the induced inclination to the induced eccen-
tricity is:

I
e
¼ jdvzjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dv2
r þ 4dv2

k

p : ð45Þ

Of course, the orientation of the dv vector for any particular
collision will depend upon parameters like the impact parameter
between the ring particle and the meteoroid. However, if we con-
sider many collisions, the ensemble average dv should be directly
proportional to the average debris velocity vd (the constant of pro-
portionality depends on the mass distribution of the debris).
Hence, so long as collisions among the ring particles efficiently dis-
sipate the velocity dispersion among the ring particles, but do not
alter the ring-particles’ mean orbital elements at each a, the
amplitude ratio Az=Ar should approximately equal the ratio of the
average I=e of the ring particles’ orbits, which in turn can be
expressed as the following function of the debris’ impact velocity:

Az

Ar
¼ hIihei ¼

jvd;zjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

d;r þ 4v2
d;k

q ; ð46Þ

where vd;r ;vd;k and vd;z are the radial, azimuthal and vertical com-
ponents of the incident debris velocity where they intersect the ring
plane (note that vd;k is the azimuthal velocity of the debris relative
the average ring particle). Our estimate of the amplitude ratio
Az=Ar ¼ 2:3	 0:5 therefore implies that the debris struck the rings
at a fairly steep angle. Indeed, depending on how the in-plane
motion was partitioned between vd;r and vd;k, the debris would need
to hit the rings at an elevation angle between 60� and 80� to
produce the observed Az=Ar .



Fig. 9. A plot showing the corrugation’s wavelength estimates at equinox (JD
2455054) across Saturn’s C and D rings. The top panel shows the wavenumber
estimates from Hedman et al. (2011) versus radius, along with the D-ring
wavenumber derived in this paper (in green). The curve shows the predicted trend
assuming that all these rings tilted at the same time and that the planet’s gravity
field is perfectly described by the Jacobson et al. (2006) model. Note the D-ring data
point falls slightly above this trend. The bottom panel shows the observed
wavenumbers divided by the predicted winding rate assuming the Jacobson et al.
(2006) gravity model, which corresponds to the predicted epoch of ring inclination.
The shaded region depicts the estimate of the inclined sheet epoch based on the C-
ring observations (with only statistical uncertainties). Here the D-ring estimate falls
well below the C-ring predictions, suggesting that either the gravity model is
incorrect, or the two parts of the rings were tilted at different times. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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6.3. Wavelength trends and the impacting debris trajectory

Additional information about the impact event can be obtained
from the trends in the corrugations’ wavelength with radius across
the C and D rings. Table 2 includes estimates of the corrugation
wavelength on JD 2455054 at 73,600 km derived from our simple
linear fits. Regardless of whether we use the p2 or the p2=p1 profile,
we find that this wavelength is 27:69	 0:03 km. This number can
be compared with the precise estimates of the corrugation wave-
lengths in the C ring at the same epoch (Hedman et al., 2011).
The top panel of Fig. 9 shows the relevant wavenumbers, along
with the predicted trend assuming these corrugations formed at
the same time and evolved in a manner consistent with the
Jacobson et al. (2006) model of Saturn’s gravitational field. The
D-ring data point falls slightly above this expected trend, and
indeed the measured wavelength is 0.7% shorter than this
model would predict. This difference, while small, is statistically
significant. The dispersion of the C ring data about this trend yields
a v2 of 6 for eight degrees of freedom, so the C-ring wavenumbers
are consistent the Jacobson et al. (2006) gravity model being
correct and the entire C-ring being tilted at the same time.
However, if we include the D-ring observation the v2=DOF
increases to 23.6/9, which has a probability to exceed of less than
0.5%. This discrepancy between the D-ring and the C-ring data
could be explained in one of three ways:

� There is a systematic error in some wavelength estimates.
� The Jacobson et al. (2006) model does not perfectly describe

Saturn’s gravitational field.
� Different parts of the ring became tilted at different times.

We will explore each of these possibilities below, and argue that
the third option appears to be most likely. Furthermore, we will
show that if different parts of the rings tilted at different times,
then that information provides further information about the
trajectory of the impacting debris.

6.3.1. Systematic errors
Thus far, we have been unable to find a systematic error that

could increase the estimates of the D-ring corrugation wavelengths
by the 0.7% required to make the data fully consistent with the
Jacobson et al. (2006) gravity field model. Increasing the D-ring
wavelength by this amount would require a D-ring corrugation
wavelength at equinox (day 2009-239) of 27.9 km, which is
inconsistent with the direct measurements of the corrugation
wavelengths obtained around the time of equinox on days 206
and 237 of 2009 (see Table 1). Furthermore, if our D-ring wave-
length estimates are systematically low by 0.7%, then the corruga-
tion winding rate would be underestimated by 0.7%, so the actual
winding rate would be at most 2.384�10�5 km�1/day, which
would be inconsistent with the D68 precession rate estimate
(see Fig. 8). Thus there seems to be no way that we can shift the
D-ring corrugation wavelength estimate that would be fully
consistent with current models of Saturn’s gravity field.

We are also unaware of any suitable systematic error in the
Hedman et al. (2011) estimates of the C-ring corrugation wave-
lengths. Hedman et al. (2011) demonstrated that the ring’s local
surface gravity did influence the corrugations’ winding rates, but
for the wavelength estimates used here this is unlikely to alter
the wavelengths by more than 0.1%. Thus, unless the C-ring’s sur-
face mass density has been grossly underestimated, it seems unli-
kely that the unmodeled gravitational perturbations from nearby
ring material could significantly influence the relevant winding
rates. Also, the C-ring estimates were computed using the same
basic algorithms and yield a data set that is consistent with the
standard gravity field model, so it is difficult to imagine how any
computational error could shift the C-ring data 0.7% relative to
the D-ring measurement.

6.3.2. Anomalies in Saturn’s gravity field
If the discrepancy does not reflect a systematic error, then the

next logical option is that the standard gravity field does not
accurately predict how much the winding rate varies with radius
between the D and C rings. In order to explore this possibility
quantitatively, let us reduce the trend shown in Fig. 9 to a
single parameter: the corrugation wavenumber ratio between
73,600 km and 82,000 km at equinox. While the wavenumber at
73,600 km can be easily computed from the D-ring corrugation
wavelengths of 27:69	 0:03 km given in Table 2, to obtain a corre-
spondingly precise wavenumber estimate at 82,000 km we must
combine all the wavenumber estimates for the region between
80,000 and 85,000 km provided by Hedman et al. (2011). To reduce
these data to a single effective wavenumber, we first transform the



Fig. 10. Plot showing the implied constraints on Saturn’s gravitational field
provided by the ratio of the corrugation wavenumbers at 73,600 km and
82,000 km, compared with the constraints obtained from the forced eccentricity
of the Titan ringlet and the precession rate of D68 reported in Nicholson et al.
(2014) and Hedman et al. (2014), respectively. Note that there is no region that falls
within the one-sigma acceptance bands of all three observations, and the winding
rate ratio requires the wire mass to be around 10�5 Saturn’s mass.

2 This timing difference is comparable to the uncertainty in the disturbance epoch
given in Table 2, but in this scenario differences in the timing of the ring-tilting events
across the ring can be measured more accurately than the absolute age of the
disturbance epoch because the former is based on a comparison of wavelengths
directly observed by Cassini and thus does not require extrapolating beyond the
available observations.
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individual wavenumber estimates to scaled wavenumbers by
multiplying by ðr=82;000 kmÞ�4:5, and fitting these numbers to a
line. This calculation yields a precise estimate of the corrugation
wavelength at 82,000 km: 46:63	 0:05 km, which means the
wavenumber ratio ðk73:6

z =k82
z Þobs ¼ 1:684	 0:003. If we assume that

both sets of corrugations formed at the same time, this estimate of
ðk73:6

z =k82
z Þobs is also a measure of ð _k73:6

z = _k82
z Þobs, which is 1.673 for the

Jacobson et al. (2006) gravity model. The predicted and observed
numbers differ by about 0.7%, or about three sigma, so this number
properly reproduces the deviations seen in Fig. 9.

Like the individual corrugation winding rates, the ratio of corru-
gation winding rates is sensitive to a broad range of gravitational
harmonics. The bottom panel of Fig. 7 shows the nominal sensitiv-
ity of the ratio ð _k73:6

z = _k82
z Þobs to harmonics of various degrees. Com-

pared with D68’s precession rate and the corrugation winding rate,
this ratio is even more sensitive to the higher-order components of
Saturn’s gravitational field. Again, the large number of harmonics
that could influence the observable parameters makes the problem
under-determined and complicates efforts to evaluate whether the
various constraints on the planet’s gravitational field are consis-
tent. By contrast, the simplified model of the gravity field discussed
above, which has only two free parameters, can more clearly
represent the relationships between the various measurements.

Fig. 10 illustrates the region of parameter space consistent with
these estimates of the corrugation wavenumber ratios for the
simplified gravity field model. Note that the strip consistent with
the observed wavenumber ratio is nearly horizontal in this param-
eter space, which is reasonable given that this ratio is even more
sensitive to higher-order harmonics than D68’s precession rate
(see Fig. 7). Note that the constraint from the Titan ringlet is based
on the new analysis by Nicholson et al. (2014), which is tighter
than the Nicholson and Porco (1988) constraint used in Hedman
et al. (2014).

No set of gravitational field parameters is consistent with all
three constraints at the one-sigma level, implying that there is
some tension among these different observations. Worse, the
winding-rate-ratio solutions all require a rather large wire mass
of � 10�5 Saturn’s mass. Such a wire mass corresponds to
jJ2ij � 10�6 for all 2i > 12, which is an order of magnitude higher
than physically realistic internal models that include gravity-field
contributions from Saturn’s winds (Kaspi, 2013). Combined,
the tension with the other gravity field constraints and the
implausibility of the implied solutions suggest that the discrepancy
between the D and C ring corrugation wavelength cannot be attrib-
uted to Saturn’s gravitational field.

We have explored other, more complex gravity field models in
order to ascertain if these could resolve the discrepancies between
the various constraints shown in Fig. 10. For example, we consid-
ered the possibility that the gravity of the massive B ring could
be influencing the corrugation winding rates in the C ring. This
ring’s gravitational field would indeed reduce the winding rate in
the C ring relative to the D ring, but again the mass required seems
unreasonably high. To shift the wavelength around 82,000 km by
0.7%, the mass of the B ring would need to be � 10�5 the mass of
the planet or � 1021 kg, or over an order of magnitude more
massive than Mimas. While recent work has suggested that the
B-ring could be denser and more massive than previously thought
(Robbins et al., 2010; Hedman et al., 2013), no one has yet
suggested such an extreme mass for the ring. We also considered
the possibility that non-gravitational forces acting on the small
particles in the D ring could cause the D-ring pattern to wind faster
than the Jacobson et al. (2006) model would predict. However, this
explanation for the wavelength ratio discrepancy is problematic
because the measured value of the winding rate is actually
consistent with the theoretical predictions. Indeed, just as it would
be difficult to attribute the high wavelength ratio to a systematic
error in the D-ring wavelength estimate, it seems unlikely that
the wavelength ratio can be due to an accelerated D-ring winding
rate. We therefore tentatively conclude that the discrepancy
between the D and C ring corrugation wavelengths is unlikely to
be due to any phenomenon that influences the winding rates of
the two patterns.
6.3.3. Tilting the C and D rings at different times
Finally, we consider the possibility that the wavelength ratio is

different from the predicted value because the two patterns
formed at different times. The bottom panel of Fig. 9 shows when
each part of the ring would need to have been tilted in order for the
corrugation to have its measured wavelength at epoch, assuming
the Jacobson et al. (2006) model of Saturn’s gravity field is correct.
This plot reveals that the discrepancy in the wavelengths measured
in the two rings could be explained if the D-ring became tilted
approximately 60 days before the middle C-ring.2 If the ring was
tilted by collisions with meteoritic debris, this would mean that
debris fell on different parts of the ring over the course of several
months. This is not as unreasonable as it might seem because
previous calculations of particle trajectories for the debris released
during the break up of Shoemaker-Levy 9 in 1992 indicate that fine
material could have rained down on the planet for around two
months in 1994 (Sekanina et al., 1994).

Inspired by the Shoemaker-Levy 9 example, we will consider
scenarios where an object approached Saturn on an initially
unbound orbit. This object broke up as it passed close by the planet
and some of the debris from this disruption event then became
trapped on highly elliptical orbits. This debris will then impact
the rings when it comes back through the inner Saturn system
one orbit period later (see Fig. 11). While this sequence of events
is consistent with our favored model for how the corrugations
were formed (Hedman et al., 2011), such a scenario does not
automatically generate the required correlation between the
impact locations and impact times.



Fig. 11. Diagram summarizing the geometry of the impact scenarios considered here. An object is assumed to approach Saturn on an unbound orbit (maroon line), and is
disrupted when it passes through Saturn’s upper atmosphere. The captured debris is now on a highly elliptical orbit (red/orange line) and impacts the rings one orbit period
later. The lower panel shows a close up of the region around Saturn, which illustrates the relevant orbital parameters. qd and xd are the pericenter distance and longitude of
the particle’s orbit after its disruption. If the particle’s orbit did not change between it disruption and impact with the rings, it would return along the red dotted line and
impact at the ring radius rd . However, if other forces (e.g. solar tides) perturb the particles’ orbit, then when it returns it will be following the orbit trajectory defined by qx and
xx , and impact the ring at a different distance rx . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The major challenge with such scenarios is that the processes
that yield a broad range of impact times are not the same as those
that generate substantial differences in the impact radii. A disrup-
tion event can produce debris with a range of trajectories and orbi-
tal elements. This debris can therefore naturally acquire a range of
semi-major axes and orbit periods that will cause the debris to
strike the rings over a range of times. However, since all the debris
arises from the same event, if no other forces act on the particles
they will all have orbits that return to the same point near the pla-
net, severely limiting the range of ring radii that the debris can
reach. Thus we require something else to act on the captured deb-
ris between their formation and their collision with the rings that
will allow a broad swath of ring radii to be struck. The most likely
candidates for this perturbing force are solar tides or solar radia-
tion pressure. Showalter et al. (2011) showed that these forces
could have a significant effect on the trajectories of debris from
Shoemaker-Levy 9, allowing some of the smaller particles to strike
Jupiter’s rings instead of the planet itself. However, it is important
to note that perturbation forces from both solar radiation pressure
and solar gravity are nearly fixed in inertial space. Such conserva-
tive forces cannot efficiently change a debris-particle’s semi-major
axes and thus cannot change when the debris hits the rings. There-
fore, we will need to consider both the dispersion of orbital ele-
ments generated by the object’s disruption and the subsequent
evolution of their orbital elements under the influence of solar per-
turbations if we want to produce the observed spreads in both the
impact times and positions.

A full numerical analysis of possible incoming trajectories for
the debris, capture scenarios, and orbital evolution processes is
beyond the scope of this paper. Instead we will perform some sim-
ple analytical calculations that will not only illustrate the necessity
of both processes mentioned above, but also demonstrate that
together these forces can potentially furnish the observed trends
in the impact times and radii. These calculations should not be
regarded as an attempt to prove one particular sequence of events
must have delivered material into the rings. Instead, they simply
show that there is at least one possible sequence of events that
could be consistent with the observations.

Let us first consider the object’s fragmentation, which could in
principle occur due to tidal disruption, a collision with ring mate-
rial, or excessive ram pressure in Saturn’s atmosphere. For these
calculations we will assume that the object breaks up in Saturn’s
upper atmosphere. This particular scenario not only has fewer free
parameters than the others (e.g. the disruption event needs to
occur roughly 60,000 km from the planet’s center), it also could
be consistent with the measurements (see below). The break-up
event produces a cloud of debris with an average semi-major axis
a. By Kepler’s third law, the orbit period of the debris particles T
satisfies:

T2 ¼ 4p2

GM
a3; ð47Þ

where G is the universal gravitational constant, M is Saturn’s mass
and GM = 37,931,208 km3/s2 (Jacobson et al., 2006). If two debris
particles have semi-major axes that differ by da� a, then they will
impact the rings at times that differ by:

dT ¼ 3pðGMÞ�1=2a1=2da: ð48Þ
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(We assume that the orbit period is sufficiently long that the
difference in true anomalies of the impacting debris makes a neg-
ligible contribution to the impact times.) The observed dT between
the D and C rings is �60 days, so to be self-consistent the debris’
orbital periods must be significantly longer than 60 days, which
means a must be larger than 3,000,000 km or 50 Saturn radii.

If we assume the debris formed in a single disruption, then the
orbit of every bit of debris must pass through the point in space
where the break-up occurred. If we assume the object was dis-
rupted by ram pressure in Saturn’s upper atmosphere, then that
point will be one Saturn radius (�60,000 km) from Saturn’s center.
Furthermore, since the atmospheric column density increases
rapidly with depth, any debris that survives the encounter with
the planet must have only skimmed by the planet’s atmosphere.
Hence we may infer that the disruption point corresponds to the
orbital pericenter for all the particles. Let us define the debris’
average orbital pericenter immediately after the disruption event
as qd ¼ að1� edÞ, where ed is the debris’ average orbital eccentricity
after the disruption event (see Fig. 11).

The strongest forces applied the various debris particles as they
pass through the atmosphere act parallel to the particles’ direction
of motion, so we may reasonably assume that all the debris orbits
in roughly the same plane. This means that if no forces subse-
quently perturb the orbital trajectories of the debris, then it will
encounter the rings at the same true anomaly f d. In other words,
if we use the ring plane as the debris orbits’ reference plane, all
the debris will have the same argument of pericenter xd (see
Fig. 11).

The radial location where the debris would intercept the ring if
it remained on the same orbit after its disruption is given by the
standard orbit equation

rd ¼
að1� e2

dÞ
1þ ed cos f d

¼ qdð1þ edÞ
1þ ed cos xd

: ð49Þ

While all the debris particles have the same qd and xd, their eccen-
tricities may differ. If two debris particles have initial orbital eccen-
tricities that differ by ded, then the impact radii (again assuming no
other perturbations to the orbit) will be separated by:

drd ¼
qdded

1þ ed cos xd
1� ð1þ edÞ cos xd

1þ ed cos xd

� �
ð50Þ

or, using Eq. (49) to eliminate xd:

drd ¼
rd

edð1þ edÞ
rd � qd

qd

� �
ded ð51Þ

and if we assume e ’ 1, then this can be approximated as:

drd ¼
1
2

rd
rd � qd

qd

� �
ded: ð52Þ

Since all the particles must retain the same pericenter distance
qd ¼ að1� edÞ, two particles whose orbital semi-major axis differ
by da must have eccentricities that are initially separated by:

ded ¼
ð1� edÞ

a
da ¼ qdda

a2 ð53Þ

so we may re-cast this difference in collision locations in terms of
da:

drd ¼
rdðrd � qdÞ

2a2 da: ð54Þ

Combining Eqs. (54) and (48), we can eliminate da and obtain
dT=drd as a function of a:

dT
drd
¼ 6pffiffiffiffiffiffiffiffi

GM
p a5=2

rdðrd � qdÞ
: ð55Þ
If we assume the spread of impact radii is entirely due to the
spread of orbital elements associated with the disruption event,
then we can estimate the semi-major axis the debris needed to
have to produce the observed corrugation wavelength trends.
Solving Eq. (55) for a, we find

a ¼
ffiffiffiffiffiffiffiffi
GM
p

6p
rdðrd � qdÞ

dT
drd

" #2=5

ð56Þ

In this case, we assume rd is the actual impact location rx, so
rd ’ 80,000 km, while qd ’ 60;000 km. Furthermore, if we assume
that the observed spread in impact locations drx is the same as
the spread of impact locations produced by the disruption event
alone drd, then we can say dT=drd ¼ dT=drx. Fitting a linear trend
to the observed data in the bottom panel of Fig. 9, we find that
dT=drx ¼ 670	 150 s/km. Inserting all these numbers into
Eq. (56), we obtain a ¼ 415;000	 38; 000 km or 6:9	 0:6Rs, which
corresponds to an orbit period of around 3 days.

The short orbit period required to produce the observed
dT=drx ¼ dT=drd in this model is clearly inconsistent with the
observed dT ’ 60 days, and nicely illustrates why the disruption
event is unlikely to be the only process involved in dispersing
debris across the rings. The fundamental problem is that
drd / r2

dda=a2, so a small semi-major axis to produce a big enough
separation in the impact radii. This is insensitive to the exact
nature and location of the breakup because the ring impact must
occur near pericenter. Indeed, we have explored variants of this
basic scenario where the inclination and ascending node of the
debris’ orbits are allowed to vary, but we were unable to substan-
tially alter this basic result.

Thus we are forced to consider the orbital evolution of the
debris particles as they orbit the planet on their eccentric orbits
between disruption and ring impact. As mentioned above, the
Sun is the most likely source of orbital perturbations, and for the
sake of simplicity we will assume the particles feel a force from
the Sun that is fixed in inertial space. Such a force will not change
the debris particles’ semi-major axes, but can alter their eccentric-
ities and arguments of pericenter. Since particles on larger
semi-major axes (i.e. with longer orbital periods) are exposed to
these forces for more time, these changes in orbital parameters
induced by the solar forces will naturally be correlated with the
spread in semi-major axes da generated by the disruption event.

We may compute the changes in eccentricity and longitude of
ascending node using the standard perturbation equations
(Burns, 1976, 1977). For the orbital eccentricity, the relevant
perturbation equation is:

de
dt
¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p Fr

FG
sin f þ Fk

FG
cos f þ eþ cos f

1þ e cos f

� �� 	
; ð57Þ

where Fr and Fk are the radial and azimuthal components of the
perturbing force, n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=a3

p
; FG ¼ GMm=a2 is the average force

of Saturn’s gravity exerted on the particle, and f is the particle’s
orbital true anomaly. The perturbation equation for the argument
of pericenter x is:

dx
dt
þ cos I

dX
dt
¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

e
� Fr

FG
cos f þ Fk

FG
sin f

2þ e cos f
1þ e cos f

� 	
; ð58Þ

where I is the orbital inclination and X is the longitude of ascending
node. For the sake of simplicity, let us assume that the inertial force
does not cause X to evolve over time, so this equation can be re-
written as:

dx
dt
¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

e
� Fr

FG
cos f þ Fk

FG
sin f

2þ e cos f
1þ e cos f

� 	
: ð59Þ
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If this force is in a fixed inertial direction, then we may specify:
Fr ¼ FI cosðf � f 0Þ and Fk ¼ �FI sinðf � f 0Þ, and so we may re-write
these expressions as:

de
dt
¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p FI

FG
sinðf 0Þ � sinðf � f 0Þ

eþ cos f
1þ e cos f

� �� 	
; ð60Þ

dx
dt
¼ �n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

e

� FI

FG
cosðf � f 0Þ cos f þ sinðf � f 0Þ sin f

2þ e cos f
1þ e cos f

� 	
: ð61Þ

Next, since the rings are so close to the planet, we may reason-
ably assume that the debris will impact the rings almost exactly
one orbit period after the disruption event. Hence we may inte-
grate the above expressions over one complete orbit period to esti-
mate the difference between the orbital elements at impact (ex;-x)
and disruption (ed;-d) assuming that any changes in e are small:

ex � ed ¼
Z T

0

de
dt

dt ¼
Z 2p

0

de
dt

df
_f
; ð62Þ

xx �xd ¼
Z T

0

dx
dt

dt ¼
Z 2p

0

dx
dt

df
_f
: ð63Þ

Next we note that r2 _f ¼ na2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

and
r ¼ að1� e2Þ=ð1þ e cos f Þ, so we can re-write these as:

ex � ed ¼
Z 2p

0

de
dt
ð1� e2Þ2

n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p df

ð1þ e cos f Þ2
ð64Þ

xx �xd ¼
Z 2p

0

dx
dt
ð1� e2Þ2

n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p df

ð1þ e cos f Þ2
ð65Þ

Inserting the above expressions for de=dt and dx=dt then
yields:

ex � ed ¼ð1� e2Þ2 FI

FG

�
Z 2p

0
sinðf 0Þ � sinðf � f 0Þ

eþ cos f
1þ e cos f

� �� 	
df

ð1þ e cos f Þ2
;

ð66Þ

xx �xd ¼�
ð1� e2Þ2

e
FI

FG

�
Z 2p

0
cosðf � f 0Þ cos f þ sinðf � f 0Þ sin f

2þ e cos f
1þ e cos f

� 	
� df

ð1þ e cos f Þ2
: ð67Þ

We may now note symmetry requires any term that varies like sin f
to vanish, so

ex�ed¼ð1�e2Þ2 FI

FG
sin f 0

Z 2p

0
1þ cos f ðeþcos f Þ

1þecos f

� �� 	
df

ð1þecos f Þ2
;

ð68Þ

xx �xd ¼ �
ð1� e2Þ2

e
FI

FG
cos f 0

Z 2p

0

1þ sin2 f þ e cos f

ð1þ e cos f Þ3

" #
df : ð69Þ

Evaluating the relevant integrals yields:

ex � ed ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p FI

FG
3p sin f 0; ð70Þ

xx �xd ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

e
FI

FG
3p cos f 0: ð71Þ

Thus far, we have not been explicit about whether the eccen-
tricity on the right hand side of the above expressions is ex or ed.
So long as the changes in e are small, we can approximate e as
ed, in which case the orbital eccentricities and arguments of
pericenter at ring impact can be written as:

ex ¼ ed þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

d

q FI

FG
3p sin f 0; ð72Þ

xx ¼ xd �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

d

q
ed

FI

FG
3p cos f 0: ð73Þ

Furthermore, if we consider two particles which emerge from
the disruption event with orbital eccentricities that differ by ded,
we expect the final eccentricities and pericenters to differ by:

dex ¼ 1� edffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

d

q FI

FG
3p sin f 0

0B@
1CAded; ð74Þ

dxx ¼
1

e2
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

d

q FI

FG
3p cos f 0ded: ð75Þ

Note that for the sake of simplicity, we have assumed that the iner-
tial perturbation force FI=FG is the same for all the debris particles.
This is equivalent to assuming that solar gravity (rather than solar
radiation pressure) is the dominant perturbation. Such an approxi-
mation is likely to be valid for debris particles more than a few
microns wide.

For the sake of clarity, we can now cast these expressions in
terms of qd; a and da, using the identities ded ¼ qdda=a2 and
ð1� edÞ ¼ qd=a. We can also assume that qd=a� 1, so that we
can expand each term above and keep only those that are low-
est-order in qd=a.

ex ¼ 1� qd

a
þ

ffiffiffiffiffiffiffiffi
2qd

a

r
FI

FG
3p sin f 0; ð76Þ

xx ¼ xd �
ffiffiffiffiffiffiffiffi
2qd

a

r
FI

FG
3p cos f 0; ð77Þ

dex ¼ 1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2qd=a

p FI

FG
3p sin f 0

 !
qd

a
da
a
; ð78Þ

dxx ¼
1
2

ffiffiffiffiffiffiffiffi
2qd

a

r
FI

FG
3p cos f 0

da
a
: ð79Þ

With these expressions, we can now derive expressions for the
impact location rx and the separation in the impact locations drx for
two objects with semi-major axes that differ by da. From the stan-
dard orbit equation, the mean impact radius is:

rx ¼
að1� e2

x Þ
1þ ex cos xx

; ð80Þ

However, in practice it is easier to express this observable in terms
of the final average pericenter distance of the debris (see Fig. 11)

qx ¼ að1� exÞ ¼ qd � a

ffiffiffiffiffiffiffiffi
2qd

a

r
FI

FG
3p sin f 0: ð81Þ

Accordingly, two particles with initial semi-major axes that dif-
fer by da will have final pericenter distances that are separated by:

dqx ¼ �
1
2

ffiffiffiffiffiffiffiffi
2qd

a

r
FI

FG
3p sin f 0da: ð82Þ

Combining these two equations, we find:

dqx ¼
1
2
ðqx � qdÞ

da
a
: ð83Þ

Similarly, we can use the above expression for qx to re-write dex

as:

dex ¼
ðqx þ qdÞ

2a
da
a
: ð84Þ
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Also, we can combine Eqs. (77) and (79) to get the following
expression for dxx:

dxx ¼ �
ðxx �xdÞ

2
da
a
: ð85Þ

In terms of qx; ex and xx, the mean impact radius is

rx ¼
qxð1þ exÞ

1þ ex cos xx
ð86Þ

and the separation in the impact locations drx for two objects with
semi-major axes that differ by da is:

drx ¼
rx

qx
dqx þ

rx

1þ ex
� r2

x cos xx

qxð1þ exÞ

� �
dex þ

r2
x sinxx

qxð1þ exÞ
dxx: ð87Þ

Assuming ex ’ 1 and using the above expressions for dqx; dex

and dxx, we get:

drx ¼ rx
qx � qd

2qx
� 1

2
� rx cosxx

2qx

� �
ðqx þ qdÞ

2a
þ rx sinxx

2qx
ðxd �xxÞ

� 	
da
a
:

ð88Þ

We can now use Eq. (86) to eliminate xx from the above
expression:

drx ¼ rx
qx � qd

2qx
� 1

2
� 2qx � rx

2qx

� �
ðqx þ qdÞ

2a

�
þ1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx � qx

qx

r
xd 	 sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4qxðrx � qxÞ

r2
x

s !#
da
a
: ð89Þ

where the choice of sign on the last term depends on whether the
impact occurs before or after pericenter. The second term in the
above expression contains ðqx þ qdÞ=a, while the other terms instead
involve ðqx � qdÞ=qx and ðrx � qxÞ=qx. Since qx lies somewhere
between rx and qd, and since a
 rx and a
 qd, we can neglect this
term, and so we may approximate Eq. (89) as:

drx ¼ rx
qx � qd

2qx
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx � qx

qx

r
xd 	 sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4qxðrx � qxÞ

r2
x

s !" #
da
a
:

ð90Þ

Finally, we note that neither of the remaining terms in the
square brackets is of order unity, since qx � qd and rx � qd are both
less than qx. Hence, we re-express drx as:

drx ¼
rxðqx � qdÞ

2qxðrx � qdÞ
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

x ðrx � qxÞ
qxðrx � qdÞ

2

s
xd 	 sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4qxðrx � qxÞ

r2
x

s !" #

ðrx � qdÞ
da
a
: ð91Þ

The quantity in the square brackets, which we will here denote
gðrx; qx; qd;xdÞ, can easily be of order unity. Indeed, if we assume
xd ¼ 0 and that the impact occurs prior to pericenter passage, then
g runs between 1.2 and 0.6 as qx runs between qd ¼ 60;000 km and
rx ¼ 80;000 km. Of course, this range will shift depending on the
assumed value of xd and the sign of xx. However, g only
approaches zero when xd �xx ’ �20�, so there is a reasonable
range of parameter space where g will be of order unity and drx will
be of order a=rd larger than drd.

Combining Eq. (91) with Eq. (48), and eliminating da, the impact
time versus impact radius becomes:

dT
drx
¼ 3pffiffiffiffiffiffiffiffi

GM
p a3=2

gðrx � qdÞ
: ð92Þ

Solving this for a yields:

a ¼
ffiffiffiffiffiffiffiffi
GM
p

3p
gðrx � qdÞ

dT
drx

 !2=3

: ð93Þ
Assuming rx � qd ’ 20;000 km and dT=drx ’ 670 s/km, we find
that the average semi-major axis of the debris is 70g2=3Rs. The
average orbit period of the debris is therefore 100g days. Recall
that the time between the D and C ring impacts is of order 60 days.
Hence, so long as g exceeds one, we have a marginally consistent
model. Of course, if g ’ 1, then our assumption that dT=T and
da=a are small quantities is not really valid. While the above
calculations could in principle be refined to account for larger orbit
variations, such complex calculations are beyond the scope of
this paper. We also do not expect the relevant corrections to
qualitatively change our results.

To further evaluate whether this model is reasonable, we can
examine whether the required values of da and FI=FG are sensible.
First consider the force ratio. From Eqs. (81) and (77) we have:

FI

FG
sin f 0 ¼

�1
3p
ðqx � qdÞ

a

ffiffiffiffiffiffiffiffi
a

2qd

r
; ð94Þ

FI

FG
cos f 0 ¼

�1
3p
ðxx �xdÞ

ffiffiffiffiffiffiffiffi
2qd

a

r
: ð95Þ

Thus the force ratio is:

FI

FG
¼ 1

3p
ðqx � qdÞ

2

2aqd
þ 2qd

a
ðxd �xxÞ2

" #1=2

: ð96Þ

and again using the orbit equation to eliminate xx:

FI

FG
¼ 1

3p
ðqx � qdÞ

2

2aqd
þ 2qd

a
xd 	 sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4qxðrx � qxÞ

r2
x

s !224 351=2

: ð97Þ

Finally, we pull out a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrx � qdÞ=a

p
to get:

FI

FG
¼ 1

3p
ðqx � qdÞ

2

2qdðrx � qdÞ
þ 2qd

ðrx � qdÞ
xd 	 sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4qxðrx � qxÞ

r2
x

s !224 351=2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx � qd

a

r
: ð98Þ

The term in square brackets is another quantity of order unity that
we will designate f2. Again, assuming xd ¼ 0, we find f ranges
between 2.6 and 0.6 as qx runs from qd ¼ 60;000 km to
rx ¼ 80; 000 km. Assuming ðrx � qdÞ ¼ 20;000 km and a ¼ 70g2=3Rs,
we find FI=FG ¼ 0:007fg�1=3. Note that the prefactors partially
cancel each other out, so FI=FG runs between .017 and 0.005 if
xd ¼ 0.

Now, if FI is due to solar gravity, we would expect FI=FG ¼
ðM�=MSÞða=aSÞ2, where M�=M ’ 3500 is the ratio of the Sun’s mass
to Saturn’s mass, and aS ¼ 1:5� 109 km is Saturn’s semi-major
axis. Assuming a ¼ 70g2=3Rs, we estimate FI=FG ’ 0:03g4=3, which
is of the same order as the required perturbing force. Hence it
appears that the Sun’s gravity can perturb the debris particles’
orbits by the required amount.

Finally, we must consider the spread of semi-major axes da pro-
duced in the original disruption event. This variance in semi-major
axes is directly related to the spread in velocities of the debris
emerging from the disruption event. If we stipulate that the object
arrives on a nearly parabolic orbit, then it will be moving relative
to the planet at a speed v0 ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM=qd

p
� 35 km/s when it is

disrupted. Since the speed of the debris is given by the vis� viva
equation:

v2 ¼ 2GM
r
� GM

a
; ð99Þ

we may relate the spread in the speed of the debris particles dv to
the spread in their orbital semi-major axes da:

dv ¼ GM
v0a2 da ’

ffiffiffiffiffiffiffiffi
GM
2

r
q1=2

d

a2 da; ð100Þ
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which we re-write in terms of the spread in impact times using
Eq. (48):

dv ¼ 1ffiffiffi
2
p

3p
GM

q1=2
d

a5=2 dT: ð101Þ

Assuming qd ¼ 1Rs and a ¼ 70g2=3Rs and dT ’ 60 days, we find
dv ’ 100g�5=3 m/s.

Such a large velocity dispersion is extremely unlikely to arise
from tidal disruption. However, it could occur if the object broke
up while passing through Saturn’s upper atmosphere. Debris
passing through Saturn’s upper atmosphere is decelerated by
ram pressure (Pollack et al., 1979; Hills and Goda, 1993; Hedman
et al., 2011). So long as the debris enters and leaves Saturn’s
atmosphere at close to the escape speed, the changes in debris
velocity within the atmosphere are relatively small perturbations,
and the fractional change in velocity of a given piece of debris as it
passes through the atmosphere can be approximated as:

Dv=v ¼ 3maNa

4qdsd
; ð102Þ

where ma ’ 2AMU is the average molecular mass, Na is the total
column density along the particle’s path, qd ’ 1000 kg/m3 is the
mass density of the particle and sd is its size (radius). In this limit,
the difference in the final speeds between two debris particles dv
will be given by:

dv=v ¼ 3ma

4qd
dðNa=sdÞ: ð103Þ

A difference in orbit speeds of 100 m/s between two bits of debris
(which corresponds to a dv=v ’ 0.25%) therefore requires either
the size or the total column density encountered by the two parti-
cles to differ by only a factor of 0.25%. Given the debris will consist
of particles with a wide range of sizes spread over a finite region of
space, this should not be a difficult condition to meet. Note also that
the velocity dispersion in this scenario is mostly along the direction
of motion, consistent with the above calculations.

It is also possible that sufficiently large velocity dispersions
could have been created if the object collided with a ring particle.
Certainly, such an impact could provide enough kinetic energy to
provide the required velocity dispersion. Unfortunately, the frag-
mentation and collision dynamics of such extreme hypervelocity
collisions between ice-rich objects are still not well characterized
at the relevant velocities, so it is not as easy to evaluate the
viability of this scenario.

In conclusion, the required correlation between the impact
times and impact locations can be achieved with plausible initial
velocity dispersions and solar perturbations. The observational
data therefore could be consistent with a scenario where an object
broke up in Saturn’s atmosphere, produced a cloud of debris on a
highly eccentric orbit around the planet. This debris was then
perturbed by solar tides so that it crashed into a broad swath of
the rings one orbit period later. While alternative scenarios do
exist and should be explored, this analysis indicates that there is
at least one scenario that can accommodate all the observations.
The simple calculations done above also suggest that the time
between disruption and impact could be just a few months, but
we caution that more sophisticated numerical integrations are
needed to robustly determine the range of possible orbit periods.

6.4. Speculations on the source of the ring-disturbing material

Our previous examination of the C-ring patterns (Hedman et al.,
2011) indicated that between 1011 and 1013 kg of material needed
to rain down on the rings in 1983 to produce the observed
corrugation amplitudes. This mass is comparable to that of a
few-kilometer-wide comet, and since such small bodies are very
difficult to detect in the outer Solar System, it is extremely unlikely
that this object would have been identified prior to its collision
with the Saturn system. While the above analysis does not change
our estimate of the impacting debris mass, it does provide new
insights into the trajectory of the debris before it struck the rings.
Specifically, the amplitude measurements indicate that the ring
was struck by debris that approached the rings from close to
face-on, while the wavelength data suggest that the material strik-
ing the ring may have encountered Saturn some months before the
rings were disturbed in the summer (D ring) or fall (C ring) of 1983.
We may therefore ask whether these requirements are likely to be
met by debris derived from known small-body populations in the
outer Solar System.

In lieu of a detailed numerical simulation, we investigated
whether the ring-disturbing material could be part of a debris
stream following the orbit of a larger object, analogous to the
meteor streams found in the inner Solar System. Using orbital ele-
ments from the Minor Planet Catalog (www.minorplanetcenter.
net/iau/MPCORB/MPCORB.dat), we searched for objects with orbits
that came within 0.5 AU of Saturn in 1982 or 1983, and where
debris following that orbit would approach Saturn’s rings at an
elevation angle greater than 50� (neglecting gravitational
focusing effects). Two objects satisfied all these criteria:
Centaur 32532 Thereus (2001 PT13) and Centaur 328884 (2010
LJ109). If we wanted to tie the ring-disturbing event to one of
these objects, Thereus would be the better option because Saturn
passed closer to Thereus’ orbit than it did to 201 LJ109’s orbit.
(0.13 AU versus 0.21 AU). Furthermore, Saturn seems to have
passed closest to 2010 LJ109’s orbit in the fall of 1983, while it
passed Thereus’ orbit in late spring. Debris near Thereus’ orbit
would be more likely to reach Saturn’s rings at the appropriate
time than would debris following the other object’s orbit.
Nevertheless, the existence of both these objects demonstrates
that the impacting debris could potentially be derived from objects
on Centaur-like orbits.

Of course Thereus and perhaps 2010 LJ109 are the only known
objects whose orbits have the right shape and orientation to
deliver material into the rings at the appropriate time and at the
correct angle. Future surveys and numerical simulations could
reveal other objects that could produce the required ring-tilting
debris. Even so, these quick calculations do indicate that potential
connections between Saturn and Thereus and/or 2010 LJ109 merit
further scrutiny. For example, spectra of Thereus show variable
water–ice band-strengths that have been interpreted as evidence
for a recent impact (Licandro and Pinilla-Alonso, 2005), and it
could be worth examining whether such an impact could produce
the required ring-impacting debris.

7. Summary

The above analysis of the periodic patterns in the outer D ring
provides a much more refined picture of what happened to
Saturn’s rings in 1983 and how the structures produced at that
time evolved over the last 30+ years. This analysis has yielded
the following results.

� The outer D ring possesses a vertical corrugation and an
eccentric spiral, and the wavelengths of both these patterns
are decreasing with time at rates that are consistent with
current models of Saturn’s gravity field.

� The amplitude of the vertical corrugation is 2.3 ± 0.5 times
the amplitude of the eccentric spiral, which implies that
the ring-disturbing event perturbed the ring particles’ verti-
cal motions more than their radial motions.

http://www.minorplanetcenter.net/iau/MPCORB/MPCORB.dat
http://www.minorplanetcenter.net/iau/MPCORB/MPCORB.dat


Table A.1
Detailed list of images used in this analysis.

Image name UTC time Phase
angle (�)

B (�) cos /= tan B
values fit

Radial
Resolution
(km)

Ar (km) Az (km) Kr from dp1=dr
(km) Value ±
Error (Width)

Kr from dp1=drð�p1Þ�1 (km)
Value ± Error (Width)

Kz from p2(km)
Value ± Error (Width)

Kz from p2=p1 (km)
Value ± Error (Width)

N1493559711 2005-120T13:14:45 38.5� �19.5 [�0.40,0.40] 4.5 0.28 0.60 32.11 ± 0.25 (0.53) 32.11 ± 0.25 (0.55) 33.09 ± 0.26 (0.56) 33.08 ± 0.26 (0.57)
N1495302191 2005-140T17:15:52 1.1 �20.7 [0.16,0.36] 1.6 0.30 0.77 32.25 ± 0.09 (0.54) 32.23 ± 0.09 (0.56) 32.93 ± 0.09 (0.53) 32.93 ± 0.09 (0.52)
N1496893302 2005-159T03:14:15 18.1 �16.8 [�0.15,0.15] 1.1 0.86 2.31 32.04 ± 0.06 (0.49) 32.03 ± 0.06 (0.54) 32.98 ± 0.06 (0.58) 32.79 ± 0.06 (0.65)
N1549402947 2007-036T21:09:23 67.4 30.5 [�0.10,0.20] 4.3 0.21 0.44 29.72 ± 0.23 (0.46) 29.73 ± 0.23 (0.45) 30.78 ± 0.23 (0.47) 31.06 ± 0.24 (0.45)
N1571969357 2007-298T01:33:48 26.7 �2.4 [�0.50,0.50] 2.0 0.28 0.62 28.91 ± 0.10 (0.42) 28.90 ± 0.10 (0.45) 29.75 ± 0.10 (0.45) 29.72 ± 0.10 (0.48)
N1627207994 2009-206T09:31:16 160.3 �7.0 [�1.00, 1.00] 2.8 0.35 0.60 26.92 ± 0.14 (0.43) 26.93 ± 0.14 (0.38) 27.73 ± 0.14 (0.53) 27.75 ± 0.14 (0.40)
N1630092669 2009-239T18:48:50 11.7 7.1 [�1.00, 1.00] 1.2 0.41 0.74 26.97 ± 0.06 (0.41) 26.97 ± 0.06 (0.42) 27.74 ± 0.06 (0.40) 27.74 ± 0.06 (0.40)
N1632170784 2009-263T20:03:51 7.9 8.5 [�0.80,0.50] 1.4 0.51 1.40 26.96 ± 0.06 (0.40) 26.96 ± 0.06 (0.41) 27.52 ± 0.07 (0.43) 27.50 ± 0.07 (0.45)
N1641836932 2010-010T17:05:09 157.8 �21.3 [�0.10,0.10] 1.4 0.42 1.16 26.61 ± 0.06 (0.46) 26.70 ± 0.06 (0.39) 27.27 ± 0.07 (0.47) 27.45 ± 0.07 (0.38)
N1719748946 2012-182T11:10:09 24.2 3.3 [�0.50,0.50] 3.0 0.53 1.34 24.33 ± 0.13 (0.30) 24.34 ± 0.13 (0.32) 25.04 ± 0.14 (0.32) 25.06 ± 0.14 (0.33)
N1725569950 2012-249T20:06:16 36.8 �3.5 [�0.50,0.50] 4.2 0.12 0.37 24.11 ± 0.18 (0.30) 24.10 ± 0.18 (0.30) 24.86 ± 0.19 (0.31) 24.83 ± 0.19 (0.31)
N1743620398 2013-092T18:05:09 144.3 5.5 [�1.50, 1.50] 1.5 0.40 0.61 23.69 ± 0.06 (0.33) 23.73 ± 0.06 (0.30) 24.38 ± 0.07 (0.34) 24.41 ± 0.07 (0.30)
N1504584655 2005-248T03:42:39 11.8 �15.8 [�0.30,-0.00] 1.2 0.64 1.53 31.65 ± 0.06 (0.49) 31.66 ± 0.06 (0.55) 32.68 ± 0.07 (0.58) 32.50 ± 0.07 (0.65)
N1504582470 2005-248T03:06:14 13.2 �15.9 [�0.30,-0.00] 1.2 0.29 0.55 31.73 ± 0.07 (0.49) 31.72 ± 0.07 (0.50) 32.66 ± 0.07 (0.57) 32.69 ± 0.07 (0.56)

Average values 0.47 1.04 31.69 31.69 32.67 32.60
Observed standard deviations 0.24 0.69 0.06 0.04 0.01 0.13
Expected standard deviations 0.07 0.07 0.07 0.07

N1546070861 2006-363T07:34:55 131.9 �16.7 [�0.80,-0.00] 3.0 0.70 1.24 29.78 ± 0.16 (0.51) 29.81 ± 0.16 (0.40) 30.58 ± 0.17 (0.54) 30.51 ± 0.17 (0.49)
N1546071289 2006-363T07:42:03 131.9 �16.6 [�0.00,0.80] 3.1 0.76 1.42 29.82 ± 0.16 (0.50) 29.86 ± 0.16 (0.42) 30.85 ± 0.17 (0.57) 31.07 ± 0.17 (0.42)

Average values 0.73 1.33 29.80 29.84 30.72 30.79
Observed standard deviations 0.04 0.13 0.03 0.04 0.19 0.40
Expected standard deviations 0.16 0.16 0.17 0.17

N1550157993 2007-045T14:53:17 161.7 27.3 [�0.20,0.20] 4.4 0.22 0.82 29.68 ± 0.24 (0.60) 29.68 ± 0.24 (0.40) 30.54 ± 0.24 (0.59) 30.34 ± 0.24 (0.49)
N1550158309 2007-045T14:58:33 161.7 27.2 [�0.20,0.20] 4.4 0.24 1.01 29.67 ± 0.24 (0.60) 29.68 ± 0.24 (0.40) 30.18 ± 0.24 (0.63) 30.16 ± 0.24 (0.47)
N1550158625 2007-045T15:03:49 161.7 27.2 [�0.20,0.20] 4.4 0.23 0.81 29.67 ± 0.24 (0.60) 29.68 ± 0.24 (0.39) 30.17 ± 0.24 (0.64) 30.06 ± 0.24 (0.54)
N1550158941 2007-045T15:09:05 161.7 27.1 [�0.20,0.20] 4.4 0.24 0.82 29.67 ± 0.23 (0.60) 29.68 ± 0.23 (0.39) 30.26 ± 0.24 (0.63) 30.18 ± 0.24 (0.51)
N1550159257 2007-045T15:14:21 161.8 27.1 [�0.20,0.20] 4.4 0.22 0.84 29.68 ± 0.23 (0.60) 29.68 ± 0.23 (0.39) 30.30 ± 0.24 (0.65) 30.26 ± 0.24 (0.46)
N1550159573 2007-045T15:19:37 161.8 27.0 [�0.20,0.20] 4.4 0.22 0.96 29.68 ± 0.23 (0.60) 29.68 ± 0.23 (0.39) 30.28 ± 0.24 (0.63) 30.22 ± 0.24 (0.45)
N1550159889 2007-045T15:24:53 161.8 27.0 [�0.20,0.20] 4.4 0.24 0.94 29.67 ± 0.23 (0.60) 29.67 ± 0.23 (0.39) 30.28 ± 0.24 (0.66) 30.24 ± 0.24 (0.47)
N1550160205 2007-045T15:30:09 161.8 26.9 [�0.20,0.20] 4.4 0.22 0.75 29.67 ± 0.23 (0.60) 29.67 ± 0.23 (0.39) 30.29 ± 0.24 (0.67) 30.25 ± 0.24 (0.51)
N1550160521 2007-045T15:35:25 161.8 26.9 [�0.20,0.20] 4.4 0.21 0.85 29.68 ± 0.23 (0.60) 29.68 ± 0.23 (0.39) 30.19 ± 0.24 (0.64) 30.17 ± 0.24 (0.47)
N1550160837 2007-045T15:40:41 161.8 26.8 [�0.20,0.20] 4.4 0.25 1.30 29.67 ± 0.23 (0.60) 29.67 ± 0.23 (0.39) 30.18 ± 0.24 (0.64) 30.14 ± 0.24 (0.45)
N1550161153 2007-045T15:45:57 161.8 26.8 [�0.20,0.20] 4.4 0.26 0.98 29.69 ± 0.23 (0.60) 29.69 ± 0.23 (0.40) 30.25 ± 0.24 (0.63) 30.20 ± 0.24 (0.46)
N1550161469 2007-045T15:51:13 161.8 26.7 [�0.20,0.20] 4.4 0.24 0.74 29.70 ± 0.23 (0.61) 29.69 ± 0.23 (0.40) 30.28 ± 0.24 (0.64) 30.22 ± 0.24 (0.61)
N1550161785 2007-045T15:56:29 161.8 26.7 [�0.20,0.20] 4.4 0.23 0.69 29.71 ± 0.23 (0.60) 29.68 ± 0.23 (0.40) 30.28 ± 0.24 (0.66) 30.30 ± 0.24 (0.59)
N1550162101 2007-045T16:01:45 161.8 26.7 [�0.20,0.20] 4.4 0.22 0.85 29.71 ± 0.23 (0.62) 29.68 ± 0.23 (0.41) 30.26 ± 0.24 (0.60) 30.19 ± 0.24 (0.44)
N1550162417 2007-045T16:07:01 161.8 26.6 [�0.20,0.20] 4.4 0.23 0.81 29.71 ± 0.23 (0.61) 29.69 ± 0.23 (0.39) 30.25 ± 0.24 (0.65) 30.20 ± 0.24 (0.47)
N1550162733 2007-045T16:12:17 161.8 26.6 [�0.20,0.20] 4.4 0.21 0.78 29.71 ± 0.23 (0.61) 29.69 ± 0.23 (0.39) 30.15 ± 0.24 (0.60) 30.11 ± 0.24 (0.49)
N1550163049 2007-045T16:17:33 161.9 26.5 [�0.20,0.20] 4.4 0.24 0.82 29.71 ± 0.23 (0.62) 29.69 ± 0.23 (0.39) 30.21 ± 0.24 (0.63) 30.14 ± 0.24 (0.54)
N1550163365 2007-045T16:22:49 161.9 26.5 [�0.20,0.20] 4.4 0.24 0.85 29.72 ± 0.23 (0.62) 29.70 ± 0.23 (0.40) 30.25 ± 0.24 (0.64) 30.20 ± 0.24 (0.50)
N1550163681 2007-045T16:28:05 161.9 26.4 [�0.20,0.20] 4.4 0.22 0.86 29.72 ± 0.23 (0.62) 29.70 ± 0.23 (0.39) 30.18 ± 0.24 (0.63) 30.16 ± 0.24 (0.48)
N1550163997 2007-045T16:33:21 161.9 26.4 [�0.20,0.20] 4.4 0.16 0.79 29.71 ± 0.23 (0.61) 29.70 ± 0.23 (0.39) 29.97 ± 0.24 (0.57) 30.02 ± 0.24 (0.47)
N1550164313 2007-045T16:38:37 161.9 26.3 [�0.20,0.20] 4.4 0.22 0.84 29.71 ± 0.23 (0.63) 29.68 ± 0.23 (0.39) 30.23 ± 0.24 (0.63) 30.22 ± 0.24 (0.47)
N1550164629 2007-045T16:43:53 161.9 26.3 [�0.20,0.20] 4.4 0.23 0.89 29.70 ± 0.23 (0.64) 29.68 ± 0.23 (0.39) 30.21 ± 0.24 (0.63) 30.22 ± 0.24 (0.48)
N1550164945 2007-045T16:49:09 161.9 26.2 [�0.20,0.20] 4.4 0.23 0.80 29.70 ± 0.23 (0.64) 29.68 ± 0.23 (0.39) 30.28 ± 0.24 (0.67) 30.25 ± 0.24 (0.48)
N1550165261 2007-045T16:54:25 161.9 26.2 [�0.20,0.20] 4.4 0.24 0.87 29.69 ± 0.23 (0.64) 29.68 ± 0.23 (0.39) 30.22 ± 0.24 (0.65) 30.18 ± 0.24 (0.48)
N1550165577 2007-045T16:59:41 161.9 26.1 [�0.20,0.20] 4.4 0.23 0.86 29.71 ± 0.23 (0.63) 29.68 ± 0.23 (0.39) 30.23 ± 0.24 (0.66) 30.18 ± 0.24 (0.47)
N1550165893 2007-045T17:04:57 161.9 26.1 [�0.20,0.20] 4.4 0.24 0.92 29.71 ± 0.23 (0.64) 29.69 ± 0.23 (0.39) 30.20 ± 0.24 (0.64) 30.17 ± 0.24 (0.47)
N1550166209 2007-045T17:10:13 161.9 26.1 [�0.20,0.20] 4.4 0.24 0.86 29.71 ± 0.23 (0.64) 29.68 ± 0.23 (0.39) 30.26 ± 0.24 (0.65) 30.24 ± 0.24 (0.47)
N1550166525 2007-045T17:15:29 161.9 26.0 [�0.20,0.20] 4.4 0.24 0.93 29.71 ± 0.23 (0.64) 29.69 ± 0.23 (0.39) 30.23 ± 0.24 (0.63) 30.21 ± 0.24 (0.46)
N1550166841 2007-045T17:20:45 161.9 26.0 [�0.20,0.20] 4.4 0.26 1.02 29.70 ± 0.23 (0.64) 29.68 ± 0.23 (0.39) 30.17 ± 0.24 (0.62) 30.16 ± 0.24 (0.46)
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N1550167157 2007-045T17:26:01 161.9 25.9 [�0.20,0.20] 4.4 0.24 0.97 29.70 ± 0.23 (0.63) 29.68 ± 0.23 (0.39) 30.15 ± 0.24 (0.62) 30.15 ± 0.24 (0.46)
N1550167473 2007-045T17:31:17 161.9 25.9 [�0.20,0.20] 4.4 0.24 0.91 29.69 ± 0.23 (0.63) 29.68 ± 0.23 (0.39) 30.16 ± 0.24 (0.63) 30.19 ± 0.24 (0.47)
N1550167789 2007-045T17:36:33 161.9 25.8 [�0.20,0.20] 4.4 0.20 0.78 29.69 ± 0.23 (0.62) 29.68 ± 0.23 (0.39) 30.08 ± 0.24 (0.59) 30.11 ± 0.24 (0.47)
N1550168105 2007-045T17:41:49 161.9 25.8 [�0.20,0.20] 4.4 0.25 0.79 29.68 ± 0.23 (0.63) 29.68 ± 0.23 (0.39) 30.19 ± 0.24 (0.63) 30.22 ± 0.24 (0.52)
N1550168421 2007-045T17:47:05 161.9 25.7 [�0.20,0.20] 4.4 0.25 0.87 29.67 ± 0.23 (0.62) 29.66 ± 0.23 (0.39) 30.12 ± 0.24 (0.62) 30.17 ± 0.24 (0.50)
N1550168737 2007-045T17:52:21 162.0 25.7 [�0.20,0.20] 4.4 0.18 0.66 29.68 ± 0.23 (0.62) 29.66 ± 0.23 (0.39) 30.16 ± 0.24 (0.62) 30.18 ± 0.24 (0.48)
N1550169053 2007-045T17:57:37 162.0 25.6 [�0.20,0.20] 4.4 0.24 0.87 29.67 ± 0.23 (0.63) 29.66 ± 0.23 (0.39) 30.22 ± 0.24 (0.63) 30.21 ± 0.24 (0.47)
N1550169369 2007-045T18:02:53 162.0 25.6 [�0.20,0.20] 4.4 0.19 0.76 29.67 ± 0.23 (0.62) 29.66 ± 0.23 (0.38) 30.14 ± 0.24 (0.61) 30.17 ± 0.24 (0.48)
N1550169685 2007-045T18:08:09 162.0 25.5 [�0.20,0.20] 4.4 0.25 0.93 29.66 ± 0.23 (0.63) 29.66 ± 0.23 (0.39) 30.12 ± 0.24 (0.64) 30.17 ± 0.24 (0.49)
N1550170001 2007-045T18:13:25 162.0 25.5 [�0.20,0.20] 4.4 0.22 0.75 29.67 ± 0.23 (0.63) 29.65 ± 0.23 (0.39) 30.23 ± 0.24 (0.69) 30.28 ± 0.24 (0.51)
N1550170317 2007-045T18:18:41 162.0 25.4 [�0.20,0.20] 4.4 0.18 0.63 29.67 ± 0.23 (0.64) 29.64 ± 0.23 (0.39) 30.14 ± 0.24 (0.64) 30.14 ± 0.24 (0.51)
N1550170633 2007-045T18:23:57 162.0 25.4 [�0.20,0.20] 4.4 0.21 0.75 29.67 ± 0.23 (0.64) 29.65 ± 0.23 (0.39) 30.20 ± 0.24 (0.62) 30.22 ± 0.24 (0.48)
N1550170949 2007-045T18:29:13 162.0 25.3 [�0.20,0.20] 4.4 0.24 0.88 29.66 ± 0.23 (0.63) 29.64 ± 0.23 (0.39) 30.18 ± 0.24 (0.63) 30.21 ± 0.24 (0.48)
N1550171265 2007-045T18:34:29 162.0 25.3 [�0.20,0.20] 4.4 0.21 0.84 29.66 ± 0.23 (0.63) 29.65 ± 0.23 (0.39) 30.12 ± 0.24 (0.61) 30.14 ± 0.24 (0.47)
N1550171581 2007-045T18:39:45 162.0 25.3 [�0.20,0.20] 4.4 0.23 0.86 29.65 ± 0.23 (0.63) 29.64 ± 0.23 (0.39) 30.17 ± 0.24 (0.63) 30.21 ± 0.24 (0.47)
N1550171897 2007-045T18:45:01 162.0 25.2 [�0.20,0.20] 4.4 0.19 0.64 29.65 ± 0.23 (0.62) 29.62 ± 0.23 (0.38) 30.23 ± 0.24 (0.66) 30.22 ± 0.24 (0.48)
N1550172213 2007-045T18:50:17 162.0 25.2 [�0.20,0.20] 4.4 0.23 0.83 29.64 ± 0.23 (0.62) 29.63 ± 0.23 (0.39) 30.12 ± 0.24 (0.63) 30.14 ± 0.24 (0.48)
N1550172529 2007-045T18:55:33 162.0 25.1 [�0.20,0.20] 4.4 0.25 0.85 29.63 ± 0.23 (0.61) 29.63 ± 0.23 (0.39) 30.15 ± 0.24 (0.63) 30.20 ± 0.24 (0.49)
N1550172845 2007-045T19:00:49 162.0 25.1 [�0.20,0.20] 4.4 0.16 0.77 29.64 ± 0.23 (0.59) 29.64 ± 0.23 (0.38) 29.81 ± 0.23 (0.54) 29.95 ± 0.23 (0.47)
N1550173161 2007-045T19:06:05 162.0 25.0 [�0.20,0.20] 4.4 0.25 0.90 29.64 ± 0.23 (0.60) 29.65 ± 0.23 (0.39) 30.17 ± 0.24 (0.62) 30.22 ± 0.24 (0.48)
N1550173477 2007-045T19:11:21 162.0 25.0 [�0.20,0.20] 4.4 0.24 0.86 29.65 ± 0.23 (0.60) 29.65 ± 0.23 (0.39) 30.20 ± 0.24 (0.62) 30.23 ± 0.24 (0.49)
N1550173793 2007-045T19:16:37 162.0 24.9 [�0.20,0.20] 4.4 0.24 0.83 29.65 ± 0.23 (0.60) 29.64 ± 0.23 (0.39) 30.16 ± 0.24 (0.63) 30.20 ± 0.24 (0.50)
N1550174109 2007-045T19:21:53 162.0 24.9 [�0.20,0.20] 4.4 0.24 0.76 29.65 ± 0.23 (0.59) 29.64 ± 0.23 (0.39) 30.15 ± 0.24 (0.64) 30.18 ± 0.24 (0.50)
N1550174425 2007-045T19:27:09 162.0 24.8 [�0.20,0.20] 4.4 0.21 0.74 29.65 ± 0.23 (0.59) 29.64 ± 0.23 (0.39) 30.16 ± 0.24 (0.62) 30.18 ± 0.24 (0.48)
N1550174741 2007-045T19:32:25 162.0 24.8 [�0.20,0.20] 4.4 0.21 0.77 29.65 ± 0.23 (0.58) 29.65 ± 0.23 (0.38) 30.16 ± 0.23 (0.60) 30.17 ± 0.23 (0.47)
N1550175057 2007-045T19:37:41 162.0 24.7 [�0.20,0.20] 4.4 0.24 0.83 29.64 ± 0.23 (0.58) 29.64 ± 0.23 (0.39) 30.16 ± 0.23 (0.62) 30.17 ± 0.23 (0.49)
N1550175373 2007-045T19:42:57 162.0 24.7 [�0.20,0.20] 4.4 0.24 0.91 29.66 ± 0.23 (0.56) 29.67 ± 0.23 (0.39) 30.25 ± 0.24 (0.56) 30.33 ± 0.24 (0.47)
N1550175689 2007-045T19:48:13 162.0 24.6 [�0.20,0.20] 4.4 0.24 0.82 29.64 ± 0.23 (0.58) 29.65 ± 0.23 (0.39) 30.18 ± 0.24 (0.63) 30.21 ± 0.24 (0.49)
N1550176005 2007-045T19:53:29 162.0 24.6 [�0.20,0.20] 4.4 0.23 0.82 29.64 ± 0.23 (0.58) 29.65 ± 0.23 (0.39) 30.23 ± 0.24 (0.64) 30.23 ± 0.24 (0.47)
N1550176321 2007-045T19:58:45 162.0 24.5 [�0.20,0.20] 4.4 0.24 0.95 29.64 ± 0.23 (0.58) 29.65 ± 0.23 (0.39) 30.20 ± 0.24 (0.64) 30.22 ± 0.24 (0.47)
N1550176627 2007-045T20:03:51 162.0 24.5 [�0.20,0.20] 4.4 0.16 0.55 29.66 ± 0.23 (0.58) 29.64 ± 0.23 (0.40) 30.57 ± 0.24 (0.59) 30.43 ± 0.24 (0.47)

Average values 0.23 0.84 29.68 29.67 30.20 30.19
Observed standard deviations 0.02 0.11 0.03 0.02 0.10 0.07
Expected standard deviations 0.23 0.23 0.24 0.24
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Table A.2
Detailed list of images used in this analysis.

Image name UTC time Phase
angle (�)

B (�) cos /= tan B
values fit

Radial
Resolution
(km)

Ar

(km)
Az

(km)
Kr from dp1=dr (km)
Value ± Error (Width)

Kr from dp1=drð�p1Þ�1 (km)
Value ± Error (Width)

Kz from p2 (km)
Value ± Error (Width)

Kz from p2=p1 (km)
Value ± Error (Width)

N1551798977 2007-064T14:42:52 161.3 8.0 [�1.00, 1.00] 2.9 0.40 0.74 29.54 ± 0.15 (0.57) 29.59 ± 0.15 (0.38) 30.55 ± 0.16 (0.60) 30.47 ± 0.16 (0.46)
N1551799369 2007-064T14:49:24 161.2 7.9 [�1.00, 1.00] 2.9 0.37 0.70 29.56 ± 0.15 (0.58) 29.59 ± 0.15 (0.39) 30.55 ± 0.16 (0.60) 30.48 ± 0.16 (0.46)
N1551799761 2007-064T14:55:56 161.1 7.7 [�1.00, 1.00] 2.9 0.39 0.72 29.56 ± 0.15 (0.58) 29.60 ± 0.15 (0.39) 30.57 ± 0.16 (0.59) 30.50 ± 0.16 (0.47)
N1551800153 2007-064T15:02:28 161.0 7.6 [�1.00, 1.00] 2.9 0.38 0.70 29.53 ± 0.15 (0.58) 29.58 ± 0.15 (0.39) 30.55 ± 0.16 (0.60) 30.48 ± 0.16 (0.47)
N1551800545 2007-064T15:09:00 160.9 7.5 [�1.00, 1.00] 2.9 0.36 0.66 29.54 ± 0.15 (0.58) 29.58 ± 0.15 (0.40) 30.58 ± 0.16 (0.60) 30.49 ± 0.16 (0.47)
N1551800937 2007-064T15:15:32 160.7 7.4 [�1.00, 1.00] 2.9 0.36 0.64 29.53 ± 0.15 (0.58) 29.57 ± 0.15 (0.40) 30.58 ± 0.16 (0.60) 30.50 ± 0.16 (0.48)
N1551801329 2007-064T15:22:04 160.6 7.2 [�1.00, 1.00] 2.9 0.38 0.66 29.54 ± 0.15 (0.59) 29.57 ± 0.15 (0.40) 30.58 ± 0.16 (0.60) 30.51 ± 0.16 (0.48)
N1551801721 2007-064T15:28:36 160.5 7.1 [�1.00, 1.00] 2.9 0.35 0.61 29.54 ± 0.15 (0.59) 29.57 ± 0.15 (0.40) 30.57 ± 0.16 (0.60) 30.50 ± 0.16 (0.48)
N1551802113 2007-064T15:35:08 160.4 7.0 [�1.00, 1.00] 2.9 0.35 0.61 29.51 ± 0.15 (0.58) 29.56 ± 0.15 (0.40) 30.55 ± 0.16 (0.60) 30.48 ± 0.16 (0.49)
N1551802505 2007-064T15:41:40 160.3 6.8 [�1.00, 1.00] 2.9 0.37 0.63 29.52 ± 0.15 (0.58) 29.57 ± 0.15 (0.41) 30.57 ± 0.16 (0.60) 30.49 ± 0.16 (0.48)
N1551802897 2007-064T15:48:12 160.1 6.7 [�1.00, 1.00] 2.9 0.39 0.63 29.55 ± 0.15 (0.58) 29.59 ± 0.15 (0.42) 30.61 ± 0.16 (0.60) 30.54 ± 0.16 (0.48)
N1551803289 2007-064T15:54:44 160.0 6.6 [�1.00, 1.00] 2.9 0.37 0.63 29.51 ± 0.15 (0.58) 29.55 ± 0.15 (0.41) 30.55 ± 0.16 (0.60) 30.47 ± 0.16 (0.49)
N1551803681 2007-064T16:01:16 159.9 6.4 [�1.00, 1.00] 2.9 0.36 0.62 29.53 ± 0.15 (0.58) 29.56 ± 0.15 (0.41) 30.55 ± 0.16 (0.60) 30.48 ± 0.16 (0.49)
N1551804073 2007-064T16:07:48 159.8 6.3 [�1.00, 1.00] 2.9 0.36 0.60 29.56 ± 0.15 (0.58) 29.58 ± 0.15 (0.42) 30.60 ± 0.16 (0.60) 30.52 ± 0.16 (0.48)
N1551804465 2007-064T16:14:20 159.6 6.2 [�1.00, 1.00] 2.9 0.36 0.60 29.55 ± 0.15 (0.58) 29.57 ± 0.15 (0.42) 30.58 ± 0.16 (0.60) 30.50 ± 0.16 (0.49)
N1551804857 2007-064T16:20:52 159.5 6.0 [�1.00, 1.00] 2.9 0.35 0.58 29.53 ± 0.15 (0.58) 29.55 ± 0.15 (0.42) 30.58 ± 0.16 (0.60) 30.50 ± 0.16 (0.49)
N1551805249 2007-064T16:27:24 159.4 5.9 [�1.00, 1.00] 2.9 0.35 0.59 29.54 ± 0.15 (0.58) 29.55 ± 0.15 (0.42) 30.58 ± 0.16 (0.61) 30.51 ± 0.16 (0.49)
N1551805641 2007-064T16:33:56 159.3 5.8 [�1.00, 1.00] 2.9 0.33 0.56 29.53 ± 0.15 (0.57) 29.55 ± 0.15 (0.41) 30.57 ± 0.16 (0.60) 30.49 ± 0.16 (0.50)
N1551806025 2007-064T16:40:22 159.1 5.6 [�1.00, 1.00] 2.9 0.31 0.51 29.56 ± 0.15 (0.59) 29.57 ± 0.15 (0.43) 30.60 ± 0.16 (0.61) 30.52 ± 0.16 (0.50)

Average values 0.36 0.63 29.54 29.57 30.57 30.50
Observed standard deviations 0.02 0.06 0.01 0.01 0.02 0.02
Expected standard deviations 0.15 0.15 0.16 0.16

N1656912493 2010-185T04:42:31 140.4 �18.4 [�0.20,0.20] 2.5 0.34 1.15 26.02 ± 0.12 (0.41) 26.08 ± 0.12 (0.32) 26.85 ± 0.12 (0.40) 26.86 ± 0.12 (0.35)
N1656912887 2010-185T04:49:05 140.5 �18.4 [�0.20,0.20] 2.5 0.30 0.98 26.02 ± 0.12 (0.41) 26.10 ± 0.12 (0.32) 26.85 ± 0.12 (0.41) 26.86 ± 0.12 (0.35)
N1656913281 2010-185T04:55:39 140.6 �18.4 [�0.20,0.20] 2.5 0.35 1.12 26.02 ± 0.11 (0.41) 26.08 ± 0.12 (0.32) 26.86 ± 0.12 (0.41) 26.85 ± 0.12 (0.35)
N1656913675 2010-185T05:02:13 140.8 �18.5 [�0.20,0.20] 2.5 0.33 1.10 26.02 ± 0.11 (0.42) 26.07 ± 0.11 (0.32) 26.91 ± 0.12 (0.40) 26.87 ± 0.12 (0.35)
N1656914069 2010-185T05:08:47 140.9 �18.5 [�0.20,0.20] 2.5 0.35 1.15 26.03 ± 0.11 (0.42) 26.07 ± 0.11 (0.32) 26.92 ± 0.12 (0.40) 26.84 ± 0.12 (0.36)
N1656914463 2010-185T05:15:21 141.0 �18.5 [�0.20,0.20] 2.5 0.33 1.15 26.03 ± 0.11 (0.41) 26.08 ± 0.11 (0.32) 26.84 ± 0.12 (0.40) 26.82 ± 0.12 (0.35)
N1656914857 2010-185T05:21:55 141.2 �18.5 [�0.20,0.20] 2.5 0.36 1.14 26.02 ± 0.11 (0.41) 26.08 ± 0.11 (0.32) 26.74 ± 0.12 (0.43) 26.84 ± 0.12 (0.35)
N1656915251 2010-185T05:28:29 141.3 �18.5 [�0.20,0.20] 2.4 0.37 1.15 26.04 ± 0.11 (0.41) 26.09 ± 0.11 (0.33) 26.85 ± 0.12 (0.40) 26.84 ± 0.12 (0.35)
N1656915645 2010-185T05:35:03 141.4 �18.5 [�0.20,0.20] 2.4 0.37 1.20 26.06 ± 0.11 (0.41) 26.09 ± 0.11 (0.33) 26.85 ± 0.12 (0.40) 26.83 ± 0.12 (0.35)
N1656916039 2010-185T05:41:37 141.5 �18.5 [�0.20,0.20] 2.4 0.33 1.07 26.07 ± 0.11 (0.41) 26.11 ± 0.11 (0.33) 26.86 ± 0.12 (0.41) 26.82 ± 0.12 (0.36)
N1656916433 2010-185T05:48:11 141.7 �18.5 [�0.20,0.20] 2.4 0.37 1.09 26.07 ± 0.11 (0.42) 26.09 ± 0.11 (0.33) 26.85 ± 0.12 (0.41) 26.83 ± 0.12 (0.36)
N1656916827 2010-185T05:54:45 141.8 �18.5 [�0.20,0.20] 2.4 0.39 1.21 26.08 ± 0.11 (0.42) 26.10 ± 0.11 (0.32) 26.84 ± 0.12 (0.41) 26.84 ± 0.12 (0.35)
N1656917221 2010-185T06:01:19 141.9 �18.5 [�0.20,0.20] 2.4 0.34 1.06 26.10 ± 0.11 (0.42) 26.12 ± 0.11 (0.33) 26.88 ± 0.11 (0.40) 26.86 ± 0.11 (0.35)
N1656917615 2010-185T06:07:53 142.1 �18.6 [�0.20,0.20] 2.4 0.39 1.20 26.12 ± 0.11 (0.42) 26.13 ± 0.11 (0.33) 26.86 ± 0.11 (0.41) 26.85 ± 0.11 (0.36)
N1656918009 2010-185T06:14:27 142.2 �18.6 [�0.20,0.20] 2.4 0.38 1.19 26.15 ± 0.11 (0.43) 26.15 ± 0.11 (0.33) 26.90 ± 0.11 (0.41) 26.81 ± 0.11 (0.36)
N1656918403 2010-185T06:21:01 142.3 �18.6 [�0.20,0.20] 2.4 0.38 1.19 26.13 ± 0.11 (0.43) 26.12 ± 0.11 (0.33) 26.84 ± 0.11 (0.41) 26.84 ± 0.11 (0.35)
N1656918797 2010-185T06:27:35 142.5 �18.6 [�0.20,0.20] 2.4 0.37 1.17 26.13 ± 0.11 (0.43) 26.13 ± 0.11 (0.33) 26.79 ± 0.11 (0.42) 26.86 ± 0.11 (0.34)
N1656919191 2010-185T06:34:09 142.6 �18.6 [�0.20,0.20] 2.4 0.38 1.17 26.15 ± 0.11 (0.43) 26.15 ± 0.11 (0.33) 26.84 ± 0.11 (0.42) 26.85 ± 0.11 (0.36)
N1656919585 2010-185T06:40:43 142.7 �18.6 [�0.20,0.20] 2.4 0.38 1.22 26.16 ± 0.11 (0.44) 26.16 ± 0.11 (0.33) 26.85 ± 0.11 (0.41) 26.86 ± 0.11 (0.36)
N1656919979 2010-185T06:47:17 142.9 �18.6 [�0.20,0.20] 2.4 0.37 1.12 26.17 ± 0.11 (0.45) 26.17 ± 0.11 (0.35) 26.87 ± 0.11 (0.42) 26.86 ± 0.11 (0.35)
N1656920373 2010-185T06:53:51 143.0 �18.6 [�0.20,0.20] 2.3 0.36 1.06 26.18 ± 0.11 (0.46) 26.18 ± 0.11 (0.34) 26.90 ± 0.11 (0.41) 26.83 ± 0.11 (0.37)
N1656920767 2010-185T07:00:25 143.1 �18.6 [�0.20,0.20] 2.3 0.40 1.17 26.17 ± 0.11 (0.46) 26.17 ± 0.11 (0.34) 26.82 ± 0.11 (0.41) 26.83 ± 0.11 (0.35)
N1656921161 2010-185T07:06:59 143.3 �18.6 [�0.20,0.20] 2.3 0.40 1.12 26.18 ± 0.11 (0.46) 26.16 ± 0.11 (0.34) 26.90 ± 0.11 (0.41) 26.84 ± 0.11 (0.37)
N1656921555 2010-185T07:13:33 143.4 �18.7 [�0.20,0.20] 2.3 0.38 1.10 26.17 ± 0.11 (0.46) 26.16 ± 0.11 (0.33) 26.92 ± 0.11 (0.40) 26.85 ± 0.11 (0.37)
N1656921949 2010-185T07:20:07 143.6 �18.7 [�0.20,0.20] 2.3 0.40 1.17 26.16 ± 0.11 (0.45) 26.16 ± 0.11 (0.33) 26.80 ± 0.11 (0.42) 26.87 ± 0.11 (0.35)
N1656922343 2010-185T07:26:41 143.7 �18.7 [�0.20,0.20] 2.3 0.40 1.15 26.17 ± 0.11 (0.45) 26.17 ± 0.11 (0.33) 26.80 ± 0.11 (0.42) 26.87 ± 0.11 (0.35)
N1656922737 2010-185T07:33:15 143.8 �18.7 [�0.20,0.20] 2.3 0.40 1.11 26.15 ± 0.11 (0.46) 26.15 ± 0.11 (0.34) 26.88 ± 0.11 (0.40) 26.84 ± 0.11 (0.36)
N1656923131 2010-185T07:39:49 144.0 �18.7 [�0.20,0.20] 2.3 0.39 1.15 26.14 ± 0.11 (0.46) 26.14 ± 0.11 (0.33) 26.84 ± 0.11 (0.41) 26.87 ± 0.11 (0.35)
N1656923525 2010-185T07:46:23 144.1 �18.7 [�0.20,0.20] 2.3 0.40 1.18 26.14 ± 0.11 (0.46) 26.14 ± 0.11 (0.34) 26.80 ± 0.11 (0.41) 26.87 ± 0.11 (0.35)
N1656923919 2010-185T07:52:57 144.3 �18.7 [�0.20,0.20] 2.3 0.32 1.03 26.14 ± 0.11 (0.46) 26.15 ± 0.11 (0.33) 26.87 ± 0.11 (0.40) 26.87 ± 0.11 (0.36)
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N1656924313 2010-185T07:59:31 144.4 �18.7 [�0.20,0.20] 2.3 0.39 1.15 26.12 ± 0.10 (0.46) 26.13 ± 0.10 (0.33) 26.91 ± 0.11 (0.41) 26.86 ± 0.11 (0.37)
N1656924707 2010-185T08:06:05 144.6 �18.7 [�0.20,0.20] 2.3 0.39 1.18 26.10 ± 0.10 (0.45) 26.12 ± 0.10 (0.33) 26.74 ± 0.11 (0.44) 26.85 ± 0.11 (0.34)
N1656925101 2010-185T08:12:39 144.7 �18.7 [�0.20,0.20] 2.2 0.34 0.97 26.09 ± 0.10 (0.44) 26.11 ± 0.10 (0.32) 26.91 ± 0.11 (0.40) 26.91 ± 0.11 (0.35)
N1656925495 2010-185T08:19:13 144.9 �18.7 [�0.20,0.20] 2.2 0.40 1.14 26.08 ± 0.10 (0.45) 26.10 ± 0.10 (0.32) 26.90 ± 0.11 (0.41) 26.86 ± 0.11 (0.37)
N1656925889 2010-185T08:25:47 145.0 �18.8 [�0.20,0.20] 2.2 0.38 1.10 26.06 ± 0.10 (0.44) 26.09 ± 0.10 (0.32) 26.84 ± 0.11 (0.42) 26.87 ± 0.11 (0.35)
N1656926283 2010-185T08:32:21 145.2 �18.8 [�0.20,0.20] 2.2 0.40 1.17 26.05 ± 0.10 (0.43) 26.09 ± 0.10 (0.32) 26.74 ± 0.11 (0.44) 26.84 ± 0.11 (0.34)
N1656926677 2010-185T08:38:55 145.3 �18.8 [�0.20,0.20] 2.2 0.38 1.13 26.06 ± 0.10 (0.44) 26.09 ± 0.10 (0.32) 26.87 ± 0.11 (0.42) 26.85 ± 0.11 (0.36)
N1656927071 2010-185T08:45:29 145.5 �18.8 [�0.20,0.20] 2.2 0.30 0.80 26.05 ± 0.10 (0.44) 26.09 ± 0.10 (0.31) 26.98 ± 0.11 (0.41) 26.68 ± 0.10 (0.40)
N1656927465 2010-185T08:52:03 145.7 �18.8 [�0.20,0.20] 2.2 0.38 1.14 26.04 ± 0.10 (0.45) 26.08 ± 0.10 (0.32) 26.88 ± 0.10 (0.41) 26.87 ± 0.10 (0.36)
N1656927859 2010-185T08:58:37 145.8 �18.8 [�0.20,0.20] 2.2 0.32 1.02 26.05 ± 0.10 (0.45) 26.10 ± 0.10 (0.32) 26.91 ± 0.10 (0.42) 26.84 ± 0.10 (0.38)
N1656928253 2010-185T09:05:11 146.0 �18.8 [�0.20,0.20] 2.2 0.37 1.20 26.03 ± 0.10 (0.45) 26.08 ± 0.10 (0.33) 26.90 ± 0.10 (0.41) 26.87 ± 0.10 (0.36)
N1656928647 2010-185T09:11:45 146.1 �18.8 [�0.20,0.20] 2.2 0.35 1.14 26.03 ± 0.10 (0.45) 26.08 ± 0.10 (0.33) 26.83 ± 0.10 (0.42) 26.84 ± 0.10 (0.35)
N1656929041 2010-185T09:18:19 146.3 �18.8 [�0.20,0.20] 2.2 0.34 1.01 26.02 ± 0.10 (0.45) 26.08 ± 0.10 (0.33) 26.85 ± 0.10 (0.42) 26.83 ± 0.10 (0.36)
N1656929435 2010-185T09:24:53 146.4 �18.8 [�0.20,0.20] 2.2 0.39 1.15 26.01 ± 0.10 (0.44) 26.06 ± 0.10 (0.33) 26.87 ± 0.10 (0.41) 26.85 ± 0.10 (0.36)
N1656929829 2010-185T09:31:27 146.6 �18.8 [�0.20,0.20] 2.1 0.38 1.14 26.01 ± 0.10 (0.44) 26.06 ± 0.10 (0.32) 26.89 ± 0.10 (0.42) 26.85 ± 0.10 (0.36)
N1656930223 2010-185T09:38:01 146.8 �18.9 [�0.20,0.20] 2.1 0.38 1.10 26.01 ± 0.10 (0.43) 26.05 ± 0.10 (0.32) 26.85 ± 0.10 (0.42) 26.84 ± 0.10 (0.36)
N1656930617 2010-185T09:44:35 146.9 �18.9 [�0.20,0.20] 2.1 0.38 1.15 26.00 ± 0.10 (0.42) 26.06 ± 0.10 (0.32) 26.69 ± 0.10 (0.46) 26.81 ± 0.10 (0.34)
N1656931011 2010-185T09:51:09 147.1 �18.9 [�0.20,0.20] 2.1 0.37 1.13 26.00 ± 0.10 (0.43) 26.06 ± 0.10 (0.32) 26.89 ± 0.10 (0.41) 26.85 ± 0.10 (0.35)
N1656931405 2010-185T09:57:43 147.3 �18.9 [�0.20,0.20] 2.1 0.37 1.19 26.03 ± 0.10 (0.44) 26.12 ± 0.10 (0.33) 26.93 ± 0.10 (0.41) 26.85 ± 0.10 (0.36)
N1656931799 2010-185T10:04:17 147.4 �18.9 [�0.20,0.20] 2.1 0.36 1.15 26.00 ± 0.10 (0.43) 26.07 ± 0.10 (0.32) 26.81 ± 0.10 (0.42) 26.84 ± 0.10 (0.34)

Average values 0.37 1.12 26.08 26.11 26.86 26.85
Observed standard deviations 0.03 0.07 0.06 0.04 0.05 0.03
Expected standard deviations 0.11 0.11 0.11 0.11

Table A.3
Detailed list of images used in this analysis.

Image name UTC time Phase
angle (�)

B (�) cos /= tan B
values fit

Radial
Resolution
(km)

Ar

(km)
Az

(km)
Kr from dp1=dr (km)
Value ± Error (Width)

Kr from dp1=drð�p1Þ�1 (km)
Value ± Error (Width)

Kz from p2 (km)
Value ± Error (Width)

Kz from p2=p1 (km)
Value ± Error (Width)

N1719548905 2012-180T03:36:09 155.0 �18.4 [�0.20,0.20] 2.1 0.43 0.86 24.19 ± 0.09 (0.37) 24.16 ± 0.09 (0.27) 24.92 ± 0.09 (0.38) 24.95 ± 0.09 (0.35)
N1719550225 2012-180T03:58:09 143.9 �18.1 [0.10,0.50] 2.1 0.51 1.12 24.24 ± 0.09 (0.39) 24.40 ± 0.09 (0.32) 25.08 ± 0.10 (0.38) 25.05 ± 0.10 (0.34)
N1719564625 2012-180T07:58:09 151.5 �16.4 [�0.20,0.20] 1.8 0.48 1.19 24.37 ± 0.08 (0.37) 24.45 ± 0.08 (0.31) 24.99 ± 0.08 (0.38) 25.00 ± 0.08 (0.33)

Average values 0.47 1.06 24.27 24.34 25.00 25.00
Observed standard deviations 0.04 0.17 0.10 0.15 0.08 0.05
Expected standard deviations 0.09 0.09 0.09 0.09
N1729213871 2012-292T00:17:53 139.0 12.7 [�0.20,0.40] 1.6 0.58 1.14 24.01 ± 0.07 (0.36) 23.97 ± 0.07 (0.26) 24.50 ± 0.07 (0.41) 24.62 ± 0.07 (0.36)
N1729220822 2012-292T02:13:44 131.2 17.6 [�0.20,0.20] 1.5 0.62 1.62 23.96 ± 0.06 (0.34) 23.95 ± 0.06 (0.26) 24.60 ± 0.07 (0.41) 24.44 ± 0.07 (0.32)
N1729221097 2012-292T02:18:19 130.9 17.8 [�0.20,0.20] 1.5 0.63 1.81 23.96 ± 0.06 (0.33) 23.95 ± 0.06 (0.26) 24.54 ± 0.07 (0.45) 24.39 ± 0.07 (0.32)
N1729221372 2012-292T02:22:54 130.6 18.0 [�0.20,0.20] 1.5 0.64 1.75 23.96 ± 0.06 (0.33) 23.96 ± 0.06 (0.26) 24.59 ± 0.07 (0.44) 24.41 ± 0.07 (0.33)
N1729221647 2012-292T02:27:29 130.2 18.2 [�0.20,0.20] 1.5 0.62 1.68 23.96 ± 0.06 (0.33) 23.96 ± 0.06 (0.26) 24.60 ± 0.07 (0.42) 24.39 ± 0.06 (0.31)
N1729221922 2012-292T02:32:04 129.9 18.4 [�0.15,0.20] 1.5 0.62 1.68 23.96 ± 0.06 (0.32) 23.96 ± 0.06 (0.26) 24.42 ± 0.06 (0.45) 24.32 ± 0.06 (0.31)
N1729222197 2012-292T02:36:39 129.6 18.6 [�0.15,0.15] 1.5 0.64 1.72 23.96 ± 0.06 (0.32) 23.97 ± 0.06 (0.25) 24.58 ± 0.07 (0.48) 24.38 ± 0.06 (0.33)
N1729222472 2012-292T02:41:14 129.3 18.8 [�0.15,0.15] 1.5 0.64 2.06 23.97 ± 0.06 (0.33) 23.97 ± 0.06 (0.26) 24.61 ± 0.07 (0.36) 24.45 ± 0.06 (0.30)
N1729222747 2012-292T02:45:49 128.9 19.0 [�0.15,0.15] 1.5 0.68 2.05 23.96 ± 0.06 (0.32) 23.96 ± 0.06 (0.26) 24.50 ± 0.06 (0.47) 24.35 ± 0.06 (0.30)
N1729223022 2012-292T02:50:24 128.6 19.2 [�0.15,0.15] 1.5 0.57 1.48 23.94 ± 0.06 (0.34) 23.96 ± 0.06 (0.26) 24.56 ± 0.07 (0.88) 24.40 ± 0.06 (0.30)
N1729223297 2012-292T02:54:59 128.3 19.4 [�0.15,0.15] 1.5 0.64 2.22 23.97 ± 0.06 (0.33) 23.97 ± 0.06 (0.26) 24.49 ± 0.06 (0.42) 24.36 ± 0.06 (0.31)

Average values 0.63 1.75 23.96 23.96 24.54 24.41
Observed standard deviations 0.03 0.30 0.02 0.01 0.06 0.08
Expected standard deviations 0.06 0.06 0.07 0.07

(continued on next page)
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Table A.3 (continued)

Image name UTC time Phase
angle (�)

B (�) cos /= tan B
values fit

Radial
Resolution
(km)

Ar

(km)
Az

(km)
Kr from dp1=dr (km)
Value ± Error (Width)

Kr from dp1=drð�p1Þ�1 (km)
Value ± Error (Width)

Kz from p2 (km)
Value ± Error (Width)

Kz from p2=p1 (km)
Value ± Error (Width)

N1731280660 2012-315T22:24:09 140.6 11.8 [�0.40, 0.40] 1.6 0.45 1.10 23.84 ± 0.07 (0.33) 23.90 ± 0.07 (0.24) 24.45 ± 0.07 (0.35) 24.53 ± 0.07 (0.32)
N1731280997 2012-315T22:29:46 140.3 12.0 [�0.40, 0.40] 1.6 0.44 1.15 23.84 ± 0.07 (0.33) 23.90 ± 0.07 (0.24) 24.52 ± 0.07 (0.35) 24.56 ± 0.07 (0.31)
N1731281334 2012-315T22:35:23 139.9 12.3 [�0.40, 0.30] 1.6 0.45 1.15 23.82 ± 0.07 (0.33) 23.88 ± 0.07 (0.24) 24.43 ± 0.07 (0.36) 24.51 ± 0.07 (0.32)
N1731281671 2012-315T22:41:00 139.6 12.5 [�0.20, 0.30] 1.6 0.45 1.15 23.81 ± 0.07 (0.34) 23.88 ± 0.07 (0.24) 24.47 ± 0.07 (0.37) 24.56 ± 0.07 (0.32)
N1731282008 2012-315T22:46:37 139.2 12.7 [�0.40, 0.30] 1.6 0.42 1.10 23.80 ± 0.07 (0.34) 23.89 ± 0.07 (0.24) 24.44 ± 0.07 (0.38) 24.54 ± 0.07 (0.32)
N1731282345 2012-315T22:52:14 138.8 13.0 [�0.40, 0.30] 1.6 0.40 1.16 23.77 ± 0.07 (0.33) 23.85 ± 0.07 (0.25) 24.47 ± 0.07 (0.35) 24.52 ± 0.07 (0.32)
N1731282682 2012-315T22:57:51 138.5 13.2 [�0.30, 0.30] 1.6 0.44 1.24 23.79 ± 0.07 (0.34) 23.90 ± 0.07 (0.24) 24.35 ± 0.07 (0.39) 24.44 ± 0.07 (0.33)
N1731283019 2012-315T23:03:28 138.1 13.5 [�0.30, 0.30] 1.6 0.43 1.23 23.78 ± 0.07 (0.34) 23.89 ± 0.07 (0.24) 24.43 ± 0.07 (0.38) 24.50 ± 0.07 (0.32)
N1731283356 2012-315T23:09:05 137.7 13.7 [�0.30, 0.30] 1.6 0.41 1.08 23.77 ± 0.07 (0.34) 23.87 ± 0.07 (0.24) 24.31 ± 0.07 (0.41) 24.43 ± 0.07 (0.34)
N1731283693 2012-315T23:14:42 137.4 13.9 [�0.30, 0.30] 1.6 0.40 1.08 23.77 ± 0.07 (0.34) 23.87 ± 0.07 (0.25) 24.47 ± 0.07 (0.38) 24.52 ± 0.07 (0.33)
N1731284030 2012-315T23:20:19 137.0 14.2 [�0.30, 0.30] 1.6 0.38 1.02 23.76 ± 0.07 (0.35) 23.87 ± 0.07 (0.25) 24.42 ± 0.07 (0.41) 24.48 ± 0.07 (0.35)
N1731284367 2012-315T23:25:56 136.6 14.4 [�0.20, 0.20] 1.5 0.47 1.40 23.77 ± 0.07 (0.34) 23.90 ± 0.07 (0.25) 24.53 ± 0.07 (0.39) 24.53 ± 0.07 (0.31)
N1731285041 2012-315T23:37:10 135.9 14.9 [�0.20, 0.20] 1.5 0.49 1.29 23.76 ± 0.06 (0.35) 23.90 ± 0.07 (0.25) 24.41 ± 0.07 (0.40) 24.47 ± 0.07 (0.32)
N1731285378 2012-315T23:42:47 135.5 15.1 [�0.20, 0.20] 1.5 0.45 1.16 23.76 ± 0.06 (0.36) 23.90 ± 0.07 (0.25) 24.46 ± 0.07 (0.41) 24.52 ± 0.07 (0.32)
N1731285715 2012-315T23:48:24 135.1 15.4 [�0.20, 0.20] 1.5 0.43 1.25 23.77 ± 0.06 (0.36) 23.91 ± 0.07 (0.25) 24.41 ± 0.07 (0.39) 24.45 ± 0.07 (0.33)
N1731286052 2012-315T23:54:01 134.7 15.6 [�0.20, 0.20] 1.5 0.43 1.10 23.78 ± 0.06 (0.35) 23.90 ± 0.06 (0.26) 24.53 ± 0.07 (0.39) 24.56 ± 0.07 (0.32)
N1731286389 2012-315T23:59:38 134.3 15.8 [�0.20, 0.20] 1.5 0.40 1.06 23.77 ± 0.06 (0.36) 23.90 ± 0.06 (0.26) 24.37 ± 0.07 (0.43) 24.47 ± 0.07 (0.36)
N1731286726 2012-316T00:05:15 133.9 16.1 [�0.20, 0.20] 1.5 0.38 1.06 23.75 ± 0.06 (0.36) 23.87 ± 0.06 (0.27) 24.44 ± 0.07 (0.41) 24.51 ± 0.07 (0.35)
N1731287063 2012-316T00:10:52 133.6 16.3 [�0.20, 0.20] 1.5 0.38 0.94 23.78 ± 0.06 (0.35) 23.88 ± 0.06 (0.27) 24.42 ± 0.07 (0.43) 24.50 ± 0.07 (0.36)
N1731287400 2012-316T00:16:29 133.2 16.6 [�0.15,0.20] 1.5 0.45 1.07 23.83 ± 0.06 (0.33) 23.94 ± 0.06 (0.26) 24.43 ± 0.07 (0.35) 24.47 ± 0.07 (0.35)
N1731287737 2012-316T00:22:06 132.8 16.8 [�0.15,0.20] 1.5 0.40 1.11 23.78 ± 0.06 (0.35) 23.88 ± 0.06 (0.27) 24.34 ± 0.07 (0.43) 24.45 ± 0.07 (0.32)
N1731288074 2012-316T00:27:43 132.4 17.0 [�0.15,0.20] 1.5 0.38 0.94 23.79 ± 0.06 (0.35) 23.88 ± 0.06 (0.28) 24.49 ± 0.07 (0.43) 24.59 ± 0.07 (0.35)
N1731288411 2012-316T00:33:20 132.0 17.3 [�0.20, 0.15] 1.5 0.37 1.03 23.79 ± 0.06 (0.34) 23.87 ± 0.06 (0.29) 24.43 ± 0.07 (0.34) 24.46 ± 0.07 (0.30)

Average values 0.42 1.12 23.79 23.89 24.44 24.50
Observed standard deviations 0.03 0.11 0.03 0.02 0.06 0.04
Expected standard deviations 0.07 0.07 0.07 0.07

N1751831892 2013-187T19:02:30 140.5 11.5 [�0.50, 0.60] 1.9 0.45 1.20 23.60 ± 0.08 (1.97) 23.48 ± 0.08 (0.26) 24.12 ± 0.08 (0.35) 24.24 ± 0.08 (0.27)
N1751832439 2013-187T19:11:37 140.1 11.9 [�0.50, 0.60] 1.9 0.47 1.20 23.39 ± 0.08 (0.30) 23.48 ± 0.08 (0.26) 24.10 ± 0.08 (0.37) 24.23 ± 0.08 (0.27)
N1751832986 2013-187T19:20:44 139.6 12.3 [�0.40, 0.60] 1.9 0.46 1.21 23.62 ± 0.08 (2.03) 23.49 ± 0.08 (0.26) 24.09 ± 0.08 (0.40) 24.25 ± 0.08 (0.25)
N1751833533 2013-187T19:29:51 139.2 12.6 [�0.40, 0.60] 1.9 0.49 1.27 23.41 ± 0.08 (0.30) 23.51 ± 0.08 (0.26) 24.11 ± 0.08 (0.36) 24.26 ± 0.08 (0.26)
N1751834080 2013-187T19:38:58 138.7 13.0 [�0.40, 0.50] 1.9 0.50 1.34 23.42 ± 0.08 (0.29) 23.52 ± 0.08 (0.26) 24.09 ± 0.08 (0.40) 24.27 ± 0.08 (0.26)
N1751834627 2013-187T19:48:05 138.3 13.4 [�0.40, 0.50] 1.9 0.53 1.48 23.45 ± 0.08 (0.29) 23.52 ± 0.08 (0.26) 24.11 ± 0.08 (0.38) 24.28 ± 0.08 (0.26)
N1751835174 2013-187T19:57:12 137.8 13.8 [�0.40, 0.50] 1.9 0.52 1.45 23.45 ± 0.08 (0.29) 23.52 ± 0.08 (0.25) 24.09 ± 0.08 (0.40) 24.28 ± 0.08 (0.26)
N1751835721 2013-187T20:06:19 137.3 14.2 [�0.30, 0.40] 1.9 0.50 1.12 23.45 ± 0.08 (0.30) 23.49 ± 0.08 (0.25) 24.11 ± 0.08 (0.34) 24.12 ± 0.08 (0.29)
N1751836268 2013-187T20:15:26 136.9 14.5 [�0.30, 0.40] 1.9 0.48 1.08 23.44 ± 0.08 (0.31) 23.48 ± 0.08 (0.25) 24.11 ± 0.08 (0.36) 24.16 ± 0.08 (0.29)
N1751836815 2013-187T20:24:33 136.4 14.9 [�0.30, 0.30] 1.9 0.50 1.14 23.45 ± 0.08 (0.31) 23.49 ± 0.08 (0.25) 24.08 ± 0.08 (0.37) 24.13 ± 0.08 (0.29)
N1751837362 2013-187T20:33:40 136.0 15.3 [�0.30, 0.30] 1.9 0.49 1.21 23.44 ± 0.08 (0.32) 23.47 ± 0.08 (0.25) 24.08 ± 0.08 (0.36) 24.16 ± 0.08 (0.29)
N1751838456 2013-187T20:51:54 135.1 16.1 [�0.30, 0.30] 1.9 0.48 1.12 23.44 ± 0.08 (0.32) 23.48 ± 0.08 (0.24) 24.08 ± 0.08 (0.41) 24.14 ± 0.08 (0.30)
N1751839003 2013-187T21:01:01 134.6 16.5 [�0.20, 0.30] 1.9 0.49 1.13 23.43 ± 0.08 (0.32) 23.48 ± 0.08 (0.24) 24.12 ± 0.08 (0.36) 24.13 ± 0.08 (0.31)
N1751839550 2013-187T21:10:08 134.1 16.8 [�0.20, 0.30] 1.9 0.47 1.05 23.41 ± 0.08 (0.33) 23.45 ± 0.08 (0.25) 24.10 ± 0.08 (0.40) 24.12 ± 0.08 (0.31)
N1751840097 2013-187T21:19:15 133.7 17.2 [�0.20, 0.30] 1.9 0.45 1.10 23.40 ± 0.08 (0.33) 23.45 ± 0.08 (0.25) 24.05 ± 0.08 (0.42) 24.03 ± 0.08 (0.32)
N1751840644 2013-187T21:28:22 133.2 17.6 [�0.20, 0.20] 1.9 0.48 1.06 23.39 ± 0.08 (0.33) 23.44 ± 0.08 (0.24) 24.03 ± 0.08 (0.41) 24.04 ± 0.08 (0.35)
N1751841191 2013-187T21:37:29 132.7 18.0 [�0.20, 0.20] 1.9 0.46 1.17 23.37 ± 0.08 (0.34) 23.42 ± 0.08 (0.25) 24.06 ± 0.08 (0.37) 24.05 ± 0.08 (0.31)

Average values 0.48 1.20 23.44 23.48 24.09 24.17
Observed standard deviations 0.02 0.13 0.07 0.03 0.02 0.09
Expected standard deviations 0.08 0.08 0.08 0.08
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� The D-ring was disturbed roughly 60 days before the middle
C ring, probably in the middle of July 1983.

Nothing in these new data contradicts the idea that these patterns
were generated by a diffuse debris cloud striking the rings. Indeed,
within this context, the above observations provide new informa-
tion about the event:

� The amplitude ratio of the vertical corrugation and the
eccentric spiral indicates that the rings were struck at a high
angle (at least 60� from the ringplane).

� The differences in the corrugation wavelengths between the
C and D rings could be consistent with debris formed by the
disruption of an object in Saturn’s atmosphere (or, perhaps,
the rings) some months prior to the ring-disturbing event.

� The Centaurs Thereus and 2010 LJ104 have orbits that passed
close to Saturn in 1983 and were inclined such that debris
moving along their orbits would strike the rings at a suitably
high angle.
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Appendix A. Detailed list of images used in this analysis

See Tables A.1–A.3.
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