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Abstract
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classification result of Quirin [Math. Z. 122 (1971) 267] and Wang [Comm. Algebra 20 (1
889], we first produce a precise list of primitive permutation groups with a suborbit of leng
In particular, we show that there exist no examples of such groups with the point stabiliser of ord
2436, clarifying an uncertain question (since 1970s). Then we analyse the orbital graphs of pr
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1. Introduction

Let G be a finite transitive permutation group on a setΩ . An orbit ∆ of G on Ω × Ω

is called anorbital of G, while for α ∈ Ω , the set∆(α) = {β ∈ Ω | (α,β) ∈ ∆} is an orbit
of the stabiliserGα , called asuborbitof G at α. Then anorbital graphof G is a digraph
with vertex setΩ such that the arc set is an orbital ofG. (We remark that orbital graph
are directed graphs and sometimes calledorbital digraphs, althoughgraphsstudied in this
paper are undirected graphs.)

The well-known Sims conjecture, proved in [3], says that for a primitive permuta
groupG, the order|Gα| is bounded above in terms of the length|∆(α)| of a suborbit∆(α).
It is then a natural problem to determineGα for a primitive permutation groupG in terms
of a suborbit length. The principle purpose of this paper is to investigate this proble
those with a small suborbit.

The problem of determining the stabiliserGα for a primitive permutation groupG
which has a small suborbit∆(α) was actually the original motivation for the Sim
conjecture (see [18]). It is easily shown that if|∆(α)| = 1 or 2, thenG is cyclic or
dihedral of prime degree, see [15, Theorem 5]. Sims [18] determinedGα for the case where
|∆(α)| = 3, that is,Gα

∼= Z3, S3, D12, S4, or S4 × Z2. For the case where|∆(α)| = 4, the
candidates forGα are essentially given in [16,22]. It was widely believed that there e
primitive permutation groups with a suborbit of length 4 and point stabiliser of order 2436:
for example, it was claimed by Quirin [16, p. 273] that “Sims and Thompson (in w
as yet not published) have established an upper bound of 2436 on the order of vertex
stabiliserGα , and Thompson has shown that this bound is sharp.” The upper bound436

was published in [6], but no proof was published for the sharpness. The claim of Q
was also accepted in [22, p. 897]. However, it is shown in the followingcorollary that the
upper bound 2436 is not reachable, and a precise list forGα is given.

Corollary 1.1. Let G be a finite primitive permutation group onΩ with a suborbit of
length4. ThenGα is explicitly listed in the following table:

Gα |Gα | Examples of groupsG

Z4 22 Zp:Z4

D8 23 Z2
p:D8

D16 24 PGL2(9)

Z8:Z2 24 M10
[25] 25 Aut(A6)

A4 223 PSL2(11)
S4 233 PSL3(3)

A4 × Z3 2232 P�L2(27)
(A4 × Z3):Z2 2332 A7
S4 × S3 2432 S7

The candidates forGα with |∆(α)| = 4 given by Wang [22] were obtained by
classification of such groupsG. Several groups in Wang’s list will be proved not to ha
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suborbits of length 4, and a precise list of such groups is given in Theorem 3.4. The
of Sims [18] and Corollary 1.1 motivates the following problem.

Problem 1.2. Let G be a primitive permutation group onΩ that has a ‘small’ suborbit
Find the possibilities for the point stabiliserGα whereα ∈ Ω .

The other main motivation for this paper is a problem in algebraic graph theory
Γ be a graph with vertex setV Γ and edge setEΓ . An ordered pair of adjacent vertice
is called anarc, and the set of arcs ofΓ is denoted byAΓ . If a subgroupG � AutΓ
is transitive onV Γ , EΓ , or AΓ , then the graphΓ is said to beG-vertex-transitive,G-
edge-transitive, or G-arc-transitive, respectively; in particular,Γ is simply calledvertex-
transitive, edge-transitive, or arc-transitiveif G = AutΓ . Further, ifΓ is vertex-transitive
and edge-transitive but not arc-transitive, thenΓ is called ahalf-arc-transitive graph.

It was proved in [21] that the valency of a finite half-arc-transitive graph is even. I
Bouwer gave a construction of a half-arc-transitive graph of valency 2k for everyk � 2.
The study of half-arc-transitive graphs has currently been an active topic (see [10,12,
for references). In [10], given any primep � 5, infinitely many half-arc-transitive graph
of valency 2k andp-power order were constructed for each non-trivial factork of p − 1.
By a classical result of Dirichlet (1837, see [17, p. 205]), for any positive integerk, there
exists a primep such thatk dividesp − 1. We thus have the following result.

Theorem A. For each positive integerk � 2, there exist infinitely many half-arc-transitiv
graphs of valency2k and prime power order.

However, although considerable attention has been paid to the existence prob
vertex-primitive half-arc-transitive graphs, only a few values of 2k have been known to
be the valencies of such graphs until now (see, for example, [5,14,24]). It is quite
shown that there exist no vertex-primitive half-arc-transitive graphs of valency 4 (see
for example). Here we propose to study the following problem.

Problem 1.3. Find all positive integersk such that there exist vertex-primitive half-ar
transitive graphs of valency 2k.

In this paper we construct vertex-primitivehalf-arc-transitive graphs of valency 2k

for infinitely many integersk, with 14 being the smallest valency. Moreover, we pro
that there are no vertex-primitive half-arc-transitive graphs of valency less than 10
following theorem.

Theorem 1.4.

(1) There exist no vertex-primitive half-arc-transitive graphs of valency less than10.
(2) For eachm � 1, there exists a vertex-primitive half-arc-transitive graph of vale

2(22m+1 − 1).
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We have been unable to determine whether there exist vertex-primitive ha
transitive graphs of valencies 10 and 12. It was proposed in [24] to determine the sm
valency 2k of a vertex-primitive half-arc-transitive graph; see also [12]. By Theorem
we know that 2k ∈ {10,12,14}. Also it would be interesting to find out if for every positiv
even integer 2k � 14, there exists a vertex-primitive half-arc-transitive graph of valencyk.

A graphΓ is called aCayley graphof a groupR if AutΓ contains a subgroup whic
is isomorphic toR and acts regularly onV Γ . For an integerr � 2, an (r + 1)-tuple
(v0, v1, . . . , vr ) of vertices ofΓ is called anr-arc if vi is adjacent tovi+1 for 0 � i � r −1,
andvi−1 �= vi+1 for 1 � i � r − 1. If a subgroupG � AutΓ is transitive on the set ofs-
arcs ofΓ , thenΓ is said to be(G, s)-arc-transitive. A (G, s)-arc-transitive graph is calle
(G, s)-transitiveif it is not (G, s + 1)-arc-transitive. In particular, a graphΓ is said to be
s-transitiveif it is (AutΓ, s)-transitive.

By Theorem 1.4, finite vertex-primitive edge-transitive graphs with valency less th
are arc-transitive. All vertex-primitive arc-transitive graphs of valency 3 and valency
classified in the next theorem.

Theorem 1.5. Let Γ be a vertex-primitive arc-transitive graph of valencyl, wherel = 3
or 4. Then the following two statements are true, wherep is a prime, andn is the number
of vertices ofΓ :

(1) If l = 3, thenΓ is ans-transitive graph such thats, n, AutΓ , andΓ are as in Table1;
further,Γ is a Cayley graph if and only ifΓ ∼= K4.

(2) If l = 4, thenΓ is one ofm non-isomorphics-transitive graphs such thats, m, n,
andAutΓ are as in Table2; further,Γ is a Cayley graph of a groupR if and only if
AutΓ = Zp:Z4, Z2

p:D8, PGL2(5), PGL2(7), PGL2(11), or PSL2(23), andR = Zp, Z2
p,

Z5, Z7:Z3, Z11:Z5, Z23:Z11, respectively.

Remark. Theorem 1.5 tells us that there are only two vertex-primitive 3-arc-trans
graphs of valency 4; there is only one vertex-primitive 3-arc-transitive graph of va
4 with an odd number of vertices; there are only a few vertex-primitive 2-arc-tran
Cayley graphs of valency at most 4. This indicates that graphs of these kinds are r
fact, vertex-primitive 4-arc-transitive graphs have been classified in [7]. It is shown in
that there exist no 4-arc-transitive graphs with an odd number of vertices. It is shown
that 2-arc-transitive Cayley graphs are rare.These results motivate the following proble

Table 1
Vertex-primitive arc-transitive graphs of valency 3

AutΓ Stabiliser s n Graph

S4 S3 2 4 Complete graphK4
S5 D12 3 10 Petersen
PGL2(7) D12 3 28 Coxeter
Aut(PSL3(3)) S4 × Z2 5 234 Wong
PSL2(p), p ≡ ±1 (mod 16) S4 4 (p(p2 − 1))/48 Γ is unique
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Table 2
Vertex-primitive arc-transitive graphs of valency 4

AutΓ Vertex-stabiliser s n m Comments

Zp:Z4 Z4 1 p 1 p > 5

Z2
p:D8 D8 1 p2 1 p � 3

PSL2(p) S4 2 (p(p2 − 1))/48 1 p ≡ ±1 (mod 8), p �= 7

PSL2(p) A4 2 (p(p2 − 1))/24 [(p + ε)/12] p ≡ ±3 (mod 8), p �= 5, ε = ±1

3 | (p + ε), p �≡ ±1 (mod 10)

PGL2(p) S4 2 (p(p2 − 1))/24 1 p ≡ ±3 (mod 8)

PGL2(7) D16 1 21 1 Cayley

Aut(A6) [25] 1 45 1 non-Cayley

PSL2(17) D16 1 153 1 non-Cayley

S7 S4 × S3 3 35 1 odd graph

PSL3(7) (A4:Z3):Z2 3 26 068 1 non-Cayley

Problem 1.6. Classify the vertex-primitive 3-arc-transitive graphs, and the vertex-prim
2-arc-transitive Cayley graphs.

This paper is organized as follows. Section 2 collects some preliminary resu
Section 3, a precise list of primitive permutation groups with suborbits of length
given, and then in Section 4, their orbital graphs of out-valency 4 are analyzed. F
in Section 5, Theorems 1.4 and 1.5 are proved.

2. Permutation groups, orbital graphs, and coset graphs

In this section, we collect some notation and results which will be used later.
Let G be a transitive permutation group onΩ . For an orbital∆ = (α,β)G, the orbital

∆∗ = (β,α)G is called thepaired orbital of ∆. If ∆ = ∆∗, then∆ is calledself-paired,
and∆(α) is called aself-paired suborbit. The digraphΣ := (Ω,∆) with vertex setΩ
and arc set∆ is an orbital graph ofG. Let Σ∗ denote the orbital graph(Ω,∆∗). Then
Σ ∪Σ∗ := (Ω,∆∪∆∗), as an undirected graph with vertex setΩ and edge set∆∪∆∗, is
G-vertex-transitive andG-edge-transitive. Further,Σ ∪ Σ∗ is G-arc-transitive if and only
if ∆ is self-paired, that is,∆ = ∆∗ and henceΣ ∪Σ∗ = Σ . Conversely, for an arbitraryG-
vertex-transitive graph withG � AutΓ , G is a transitive permutation group on the ver
setV Γ . Thus, if furtherΓ is G-edge-transitive, then there exists an orbital graphΣ of G

such thatΓ ∼= Σ ∪ Σ∗.
For an abstract groupG, a subgroupH � G is said to becore freeif no non-trivial

normal subgroup ofG is contained inH . For a subsetS ⊆ G and a core free subgrou
H of G, the coset graphΓ = Cos(G,H,HSH) is defined as the digraph with verte
set V Γ = [G : H ] = {Hx | x ∈ G} such thatHx is adjacent toHy if and only if
yx−1 ∈ HSH . It easily follows that each elementg ∈ G induces an automorphism ofΓ

by thecoset action, that is,
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g :Hx �→ Hxg for all x ∈ G.

In the coset action,G is faithful on V Γ , and so we may assume thatG � AutΓ . Then
G acts transitively onV Γ , andΓ is G-vertex-transitive. IfHS−1H = HSH , then the
adjacency relation ofΓ is symmetric, and soΓ can be viewed as an undirected gra
by identifying two arcs(Hx,Hy) and(Hy,Hx) with an edge{Hx,Hy}. The following
lemma collects some basic properties about coset graphs.

Lemma 2.1. LetΓ = Cos(G,H,HSH) be an undirected graph. Then

(i) Γ is connected if and only if〈H,S〉 = G;
(ii) Γ is G-edge-transitive if and only ifHSH = H {g,g−1}H for someg ∈ G;
(iii) Γ is G-arc-transitive if and only ifHSH = HgH for someg ∈ G such thatg2 ∈ H .

Let Aut(G,H) = {σ ∈ Aut(G) | Hσ = H }. Some elements ofAut(G,H) induce
automorphisms ofΓ .

Lemma 2.2. Suppose thatσ ∈ Aut(G,H). ThenΓ = Cos(G,H,HSH) is isomorphic
to Σ = Cos(G,H,HSσH). Moreover,σ induces an automorphism ofΓ if and only if
HSσ H = HSH .

Proof. Each elementσ ∈ Aut(G,H) induces a permutation on the vertex set[G : H ] by
the natural action, that is,(Hx)σ = Hxσ . Further,

Hx is adjacent toHy in Γ ⇐⇒ yx−1 ∈ HSH

⇐⇒ (
yx−1)σ ∈ (HSH)σ

⇐⇒ yσ
(
xσ

)−1 ∈ HSσ H

⇐⇒ Hxσ is adjacent toHyσ in Σ.

Thusσ induces an isomorphism fromΓ to Σ , andσ induces an automorphism ofΓ if
and only ifΓ = Σ , and this in turn is true if and only ifHSσ H = HSH . �

We need a criterion for determining isomorphic classes of certain coset graphs.

Lemma 2.3. Let Γ = Cos(G,H,HSH) andΣ = Cos(G,H,HT H). Assume thatG =
AutΓ = AutΣ . ThenΓ is isomorphic toΣ if and only if there existsσ ∈ Aut(G,H) such
thatHSσ H = HT H .

Proof. Let σ ∈ Aut(G,H) be such thatHSσ H = HT H . Then the following map is a
isomorphism fromΓ to Σ :

φ :Hg �→ Hgσ .
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Conversely, suppose thatΓ ∼= Σ . Let ψ ∈ Sym(Ω) be an isomorphism fromΓ to Σ ,
whereΩ = [G : H ]. SinceG acts transitively onΩ , we may assumeαψ = α, where
α is the pointH ∈ Ω . For an arc(β, γ ) ∈ AΣ , we have(β ′, γ ′) := (β, γ )ψ

−1 ∈ AΓ ,
and for x ∈ AutΓ , (β ′′, γ ′′) := (β ′, γ ′)x ∈ AΓ . Then (β ′′′, γ ′′′) := (β ′′, γ ′′)ψ ∈ AΣ ,
and hence(β, γ )ψ

−1xψ = (β ′, γ ′)xψ = (β ′′, γ ′′)ψ = (β ′′′, γ ′′′) ∈ AΣ . Thusψ−1xψ is an
automorphism ofΣ , and soψ−1(AutΓ )ψ � AutΣ . SinceΓ ∼= Σ , AutΓ ∼= AutΣ and
henceψ−1(AutΓ )ψ = AutΣ .

Assume further thatG = AutΓ = AutΣ . ThenGψ = G, that is,ψ ∈ NSym(Ω)(G). Thus
ψ induces, by conjugation, an automorphismτ of G. Further,H = Gα = Gαψ = (Gα)ψ =
ψ−1Hψ = Hψ , and henceψ ∈ NSym(Ω)(H). ThenHτ = Hψ = H . Forg ∈ G, let ω ∈ Ω

be such thatαg = ω. Thenω = Hg, andωψ = αgψ = αψgψ = αgψ = αgτ
. Therefore,

(Hg)ψ = ωψ = αgτ = Hgτ . It follows thatHSτH = (HSH)τ = (HSH)ψ = HT H . �

In the following, let Γ = Cos(G,H,H {g,g−1}H) with g ∈ G \ H . Then the
neighborhood of the vertexH is the set{Hx | x ∈ {g,g−1}H }, and its size is the valenc
of Γ and equals|H {g,g−1}H |/|H |. The valency may be further written as the followi
form.

Lemma 2.4. The valency ofΓ is equal to |H |/|H ∩ Hg| if HgH = Hg−1H , or
2|H |/|H ∩ Hg| otherwise.

The following lemma will be used for deciding whether aG-edge transitive graph i
arc-transitive, in an extremal case.

Lemma 2.5. Assume thatG�AutΓ . ThenΓ is arc-transitive if and only if there existsσ ∈
Aut(G,H) such thatgσ ∈ Hg−1H , or equivalently,σ interchangesHgH andHg−1H .

Proof. Suppose thatΓ is arc-transitive. Denote byα the vertexH of Γ . ThenGα = H ,
both αg = Hg andαg−1 = Hg−1 are neighbors ofα. Thus there exists someφ ∈ AutΓ

such thatαφ = α and (αg)φ = αg−1
. SinceG � AutΓ , φ induces, by conjugation, a

automorphismσ of G. Thus(αx)φ = αxφ = (αφ)x
φ = αxσ

for all x ∈ G. In particular,
αg−1 = (αg)φ = αgσ

, and α = (αh)φ = αhσ
for all h ∈ H . It follows that gσ g,hσ ∈

Gα = H , and hencegσ ∈ Hg−1 ⊆ Hg−1H andHσ = H .
On the other hand, ifgτ ∈ Hg−1H for someτ ∈ Aut(G,H), then gτ = h1g

−1h2

for some elementsh1, h2 ∈ H . Thus we have(Hg)τh−1
2 = (Hgτ )h

−1
2 = (Hgτ )h−1

2 =
(H(h1g

−1h2))h
−1
2 = Hg−1. It follows thatΓ is G-arc-transitive. �

The next two lemmas provide methods for constructing certain coset graphs.

Lemma 2.6. For Γ = Cos(G,H,H {g,g−1}H), let P = H ∩ Hg. ThenP,Pg−1 � H .
Further, assume thatP is conjugate toPg−1

in H . Then there existsx ∈ G such that
P = H ∩ Hx , x normalisesP , andΓ = Cos(G,H,H {x, x−1}H).
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Proof. SinceP = H ∩ Hg , we haveP � Hg, and thusPg−1 � H . Let h ∈ H be such
that Ph = Pg−1

. Let x = hg. ThenPx = Phg = P , H {g,g−1}H = H {x, x−1}H , and
Γ = Cos(G,H,H {x, x−1}H). Further,P = H ∩ Hx , normalised byx. �

Lemma 2.7. Suppose thatHgH = Hg−1H . Then there existsx ∈ G such thatH ∩ Hx =
H ∩ Hg =: P , x ∈ NG(P) \ H , x2 ∈ H ∩ Hx , gx ∈ H , andHgH = HxH . In particular,
|NG(P) : P | is even.

Proof. Since HgH = Hg−1H , Γ is G-arc-transitive. Letα = H and β = Hg, two
vertices ofΓ . Thenβ = αg , Gα = H andGβ = Hg . Since(α,β) is an arc ofΓ , there

existsx ∈ G \ H such thatαx = β and βx = α. Thusαx2 = βx = α, βx2 = αx = β ,
αgx = βx = α, and Hg = Gβ = Gαx = Gx

α = Hx . It follows that x2, gx ∈ Gα = H ,
x2 ∈ Gβ = Hg = Hx . Hencex2 ∈ H ∩ Hg = H ∩ Hx , x−1g−1 ∈ H , and HgH =
Hg−1H = Hx(x−1g−1)H = HxH . Further,(H ∩ Hx)x = Hx ∩ Hx2 = Hx ∩ H , and
hencex ∈ NG(H ∩ Hx). �

Finally, we quote a known result abouts-arc-transitive graphs, refer to [7] and [
Chapter 17].

Proposition 2.8. Let Γ be a(G, s)-transitive graph of valencyk with s � 2. Then for a
vertexα, the following statements are true:

(i) if k = 3, then(s,Gα) = (2,S3), (3,D12), (4,S4), or (5,S4 × Z2);
(ii) if k = 4, thens = 2 andA4 � Gα � S4; s = 3 andA4 ×Z3 � Gα � S4 ×S3; s = 4 and

Gα = Z2
3.Q8.S3; or s = 7 andGα = [35].Q8.S3.

3. Primitive permutation groups with a suborbit of length 4

Let G be a primitive permutation group on a setΩ . Assume thatG has a suborbit∆(α)

of length 4, whereα ∈ Ω . ThenG is classified by a collection of articles, see Quirin [1
Sims [18], and Wang [22]. Here we work out a precise list of such groups. LetΣ be the
orbital graph corresponding∆(α), which is of out-valency 4. ThenΣ may be represente
as a coset graph:

Σ = Cos(G,H,HgH),

whereH = Gα , andg ∈ G \ H . Denote byβ the vertexαg = Hg. ThenGαβ = H ∩ Hg ,
and as|Σ(α)| = 4, |H : H ∩ Hg| = |Gα : Gαβ | = 4.

3.1. Non-examples

We here prove that three groups in Wang’s list do not have suborbits of length 4
first group isPSL2(7), as a permutation of degree 7, has no suborbits of length 4. I
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following lemmas, we deal with the other two groups. For a groupM and a subgroupN
of M, by N charM we mean thatN is a characteristic subgroup ofM.

Lemma 3.1. The groupPSL3(7).3 has no primitive permutation representation which h
a suborbit of length4.

Proof. Suppose thatG := PSL3(7).3 has a primitive permutation representation onΩ

such that∆(α) is a suborbit of length 4 atα, whereα ∈ Ω . Then by [4], we conclude tha
G

∆(α)
α

∼= S4, andH = Gα
∼= Z2

6:S3. Takeg ∈ G such thatαg ∈ ∆(α), and letP = H ∩Hg .
Then|H : P | = 4, and so|P | = 2 · 33. Let P3 be a Sylow 3-subgroup ofP . ThenP3 � P ,
P = NH (P3), andP3 is also a Sylow 3-subgroup ofG. Hence in particular, all subgroup
of H which are isomorphic toP are conjugate (inH ). By Lemma 2.6, we may assum
g ∈ NG(P) \H . Further,P3 charP , and henceP3�NG(P), soP3 char NG(P). LetK be a
maximal subgroup ofG such thatNG(P) � K. By the Atlas [4], eitherK is conjugate
to H and K ∼= Z2

6:S3, or K ∼= Z2
3:(2A4). Thus K has a normal subgroupQ such that

K/Q ∼= S4 or A4. SinceNG(P) > P , we have 1< |NG(P) : P | � |K : P | = 4. It follows
that |K : NG(P)| = 1 or 2. ThenNG(P) � K, henceP3 � K. ThusK/Q has a norma
subgroupP3Q/Q ∼= Z3, which is a contradiction. �

We need the following lemma to proveP�+
8 (2).Z3 has no suborbits of length 4.

Lemma 3.2. LetV = Z2 � S4. Suppose thatW ∼= Z3
2.S4 is a subgroup ofV . If X is a Sylow

3-subgroup ofW , thenNW(X) = Z3.[4].

Proof. By the definition of the wreath productZ2 � S4, we may assume thatV =
〈a1, a2, a3, a4〉.S4 such thatS4 transitively permutes{a1, a2, a3, a4}. ThusS4 contains an
elementx such thatx :a1 → a2, a2 → a3, a3 → a1, anda4 → a4. Let X = 〈x〉 ∼= Z3. It
follows thatCV (x) = 〈a1a2a3, a4〉 × X ∼= Z2

2 × Z3.
Let W < V be such thatW = M.S4 ∼= Z3

2.S4, whereM ∼= Z3
2. Then by Sylow theorem

we may assume thatX < W . SinceCW(x) � CV (x) ∼= Z2
2 × Z3, we conclude thatx does

not centraliseM. It then follows thatCM(x) ∼= Z2. Now CW(x)/CM(x) ∼= CW (x)M/M �
CW/M(x) = 〈x〉, wherex = xM ∈ W/M. ThusCW(x) = CM(x).〈x〉 ∼= Z2 × Z3, and so
NW(X) = Z3.[4]. �

For a groupG, denote bysoc(G) thesocleof G, which is the subgroup ofG generated
by all minimal normal subgroups ofG; by Op(G) we mean the largest normalp-subgroup
of G, wherep is a prime.

Lemma 3.3. There is no primitive permutation representation ofP�+
8 (2).Z3 that has a

suborbit of length4.

Proof. Suppose thatG := P�+
8 (2).Z3 has a primitive permutation representation onΩ

with a suborbit∆(α) of length 4. Then by a result of Knapp [6],|Gα| � 2436, and thus by
the Atlas [4], we have thatH := Gα

∼= 31+4+ :(2S4) such thatG∆(α)
α

∼= S4. Takeg ∈ G such
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thatβ := αg ∈ ∆(α). ThenGαβ = H ∩ Hg ∼= 31+4+ :(2.S3) = (31+4+ .3):[4]. Let P = Gαβ ,
and letP3 = O3(P ). ThenP3 ∼= 31+4+ .3, andP3 is a Sylow 3-subgroup ofG. Hence all
subgroups ofH which are isomorphic toP are conjugate (inH ). By Lemma 2.6, we may
chooseg ∈ NG(P). Then in particular,P < NG(P) � NG(P3).

Since P3 is a Sylow 3-subgroup,NG(P3) is contained in a maximal subgrou
of G of index coprime to 3. By the Atlas [4], eitherNG(P3) � Hx for somex ∈ G,
or NG(P3) � I ∼= (34:23.S4).3, whereI is a maximal subgroup ofG of order 2636.
Suppose thatNG(P3) � Hx . Then|Hx : NG(P3)| properly divides|Hx : P | = 4. Hence
|Hx : NG(P3)| = 1 or 2, and soP3 char NG(P3) � Hx ∼= H , which is not possible
Therefore,NG(P3) � I , and soNG(P3) = NI (P3).

Let S = soc(G) = P�+
8 (2). By the Atlas [4], the intersectionI ∩ S ∼= 34:(23.S4),

and I ∩ S is contained in a maximal subgroupJ of S.2 such thatJ ∼= S3 � S4. Then
M := O3(I ∩ S) = O3(J ) ∼= Z4

3, and thusZ3
2.S4 ∼= (I ∩ S)/M < J/M ∼= Z2 � S4. By

Lemma 3.2, the normaliser of the Sylow 3-subgroup(P3 ∩ S)/M of (I ∩ S)/M is
isomorphic toZ3.[4]. Thus the normaliser ofP3 ∩ S in I ∩ S is (P3 ∩ S).[4]. We observe
that an element normalisingP3 also normaliseP3 ∩ S. HenceNI (P3) � NI (P3 ∩ S). Let
Q be a Sylow 2-subgroup ofNI (P3). ThenQ � I ∩ S, and soQ � NI∩S(P3 ∩ S). Hence
|Q| is a divisor of 4. However,P3.[4] = P < NG(P) � NG(P3) = NI (P3) = P3Q, which
is a contradiction. �

After the above proof of Lemma 3.3 was obtained, the truth of the statement
lemma was also confirmed byMagma. The authors are grateful to C. Schneider
implementing the computation.

3.2. The classification

Let G be a primitive permutation group on a setΩ which has a suborbit of length 4. B
the results of [16,18,22], we have a list of candidates for the pair(G,Gα) whereα ∈ Ω .
Among them,PSL2(7) of degree 7,PSL3(7).Z3 and P�+(8,2).Z3 have no suborbit o
length 4, see Lemmas 3.1 and 3.3. A precise list of such pairs(G,Gα) with G insoluble is
now given as follows.

Theorem 3.4. Let G be an insoluble primitive permutation group onΩ which has a
suborbit of length4. Then for a pointα ∈ Ω , one of the following holds:

(i) G = PGL2(p), andGα
∼= S4, wherep is a prime andp ≡ ±3 (mod 8);

(ii) G = PSL2(p), andGα
∼= S4, wherep > 7 is a prime andp ≡ ±1 (mod 8);

(iii) G = PSL2(p), andGα
∼= A4, wherep � 5 is a prime,p ≡ ±3 (mod 8), andp �≡ ±1

(mod 10);
(iv) G = PSL2(3t ), andGα

∼= A4, wheret is an odd prime,3t ≡ ±3 (mod 8), and3t �≡ ±1
(mod 10);

(v) G andGα lie in Table3.

The soluble primitive permutation groups with a suborbit of length 4 were classifie
Wang [22], see Theorem 5.4(ii). The primitive permutation groups with suborbits of le
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Table 3

G Gα |Ω|
PGL2(7) D16 21
PGL2(9) D16 45
M10 Z8:Z2 45
Aut(A6) [25] 45
PSL2(17) D16 153
P�L2(27) A4 × Z3 819
PSL3(3) S4 234
PSL3(7) (A4 × Z3):Z2 26068
A7 (A4 × Z3):Z2 35
S7 S4 × S3 35

3 were classified by Wong [23], which consists of soluble groups, and insoluble g
given in the following theorem.

Theorem 3.5 (Wong [23]).LetG be an insoluble primitive permutation group onΩ which
has a suborbit of length3. ThenG andGα , whereα ∈ Ω , lie in the following table:

G A5 S5 PGL2(7) PSL2(11) PSL2(13) PSL3(3) Aut(PSL3(3)) PSL2(p)

Gα S3 D12 D12 D12 D12 S4 S4 × Z2 S4

3.3. Automorphism groups of certain graphs

Theorems 3.4 and 3.5 enable us to determine the automorphism groups of certain
primitive graphs.

Lemma 3.6. Suppose thatG is an insoluble primitive permutation group onΩ which
has an orbital graphΣ of out-valencyl, where l = 3 or 4. Let Γ = Σ ∪ Σ∗. Then
G � AutΣ � AutΓ � Aut(soc(G)).

Proof. Let A = AutΓ . ThenG � A � Sym(Ω). SinceG is primitive,A is primitive. By
Theorems 3.5 and 3.4, we have thatsoc(G) = PSL2(q), PSL3(3), A7, or PSL3(7).

Suppose thatsoc(G) �= soc(A). Then there exists a pair of subgroupsK andL of A

such thatG � K < L � A, soc(G) = soc(K) �= soc(L), andK is maximal inL. Such
pairs(K,L) are classified in [11]. SinceΓ is of valencyl or 2l, for α ∈ Ω , every prime
divisor of |Aα| is smaller than 2l � 8. Inspecting the pairs(K,L) given in [11], calculation
shows that(soc(G), soc(L)) lies in the following table:

soc(G) soc(L) Ω |Ω| Comments

A5 A6 3,3-partitions 10 l = 3
A7 A8 4,4-partitions 35 l = 4
PSL2(7) A8 2-sets 28 G > PSL2(7), l = 3
PSL2(9) A10 2-sets 45 G > PSL2(9), l = 4
PSL2(7) U3(3) singular 1-spaces 28
PSL2(11) M11 [M11 : M9.2] 55
PSL3(3) P�+

6 (3) orbit of non-singular points 117 P�+
6 (3) ∼= PSL4(3)
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Further, sinceΓ is aG-edge-transitive graph of valencyl or 2l, soc(L) has a suborbit o
length at most 8. Ifsoc(L) = A6 or U3(3), thenL is 2-transitive onΩ , and so the valenc
of Γ equals|Ω | − 1 > 8, which is a contradiction. Thussoc(L) �= A6,U3(3).

Suppose now that(soc(G), soc(L)) = (A7,A8). Calculation shows thatsoc(L), acting
on “4,4”-partitions, has exactly three suborbits, of length 1, 16, and 18, which
contradiction.

Suppose that the pair(soc(G), soc(L)) is one of(PSL2(7),A8), (PSL2(9),A10), and
(PSL2(11),M11). Note thatsoc(L) is a 4-transitive permutation of degreed , whered =
8,10, or 11, respectively. Thensoc(L), acting on 2-sets, has exactly three suborbits w
length 1, 2(d − 2), and((d − 2)(d − 3))/2, respectively. This contradicts thatsoc(L) has
a suborbit of length at most 8.

Thus(soc(G), soc(L)) = (PSL3(3),PSL4(3)). ThenG ∼= PSL3(3).2 and the stabilise
of α in soc(L) is isomorphic toU4(2):Z2. By the Atlas [4], we know thatU4(2):Z2 has no
permutation representation of degree less than 27, which contradicts the fact thatΓ is of
valency at most 8.

Therefore, we have thatsoc(A) = soc(G). ThusG � AutΓ � Aut(soc(G)), and further,
G � AutΣ � AutΓ � Aut(soc(G)), as claimed. �

4. Graphs with insoluble automorphism groups

This section treats insoluble primitive permutation groups with suborbits of length
LetG be a primitive permutation group onΩ which has a suborbit∆(α) of length 4. Let

Σ be the corresponding orbital graph ofG, which is of out-valency 4, and letΓ = Σ ∪Σ∗.
ThenΓ is a G-edge-transitive undirected graph of valency 4 or 8. Takeg ∈ G such that
β := αg ∈ ∆(α). Let H = Gα andP = Gαβ = H ∩ Hg. Then|H : P | = 4, andΓ may be
represented as a coset graph

Γ = Cos
(
G,H,H

{
g,g−1}H )

.

ThenΓ is G-arc-transitive if and only ifH {g,g−1}H = HgH , and this in turn is true i
and only ifHgH = HfH for somef ∈ G such thatf 2 ∈ H . The notation defined her
will be used throughout this section.

We use a series of lemmas to analyze the graphΓ for each of the groupsG listed in
Theorem 3.4.

4.1. Infinite families of groups

In this subsection, we treat the infinite families of groups given in Theorem 3.4.

Lemma 4.1. Suppose that eitherG = PGL2(p) for p ≡ ±3 (mod 8), or G = PSL2(p) for
p ≡ ±1 (mod 8) andp > 7, wherep is a prime, such thatH = Gα = S4. ThenG has only
one suborbit of length4, andΓ is the corresponding orbital graph, which is undirect
and has valency4. Further,
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(i) AutΓ = G, andΓ is 2-transitive;
(ii) Γ is a Cayley graph of a groupR if and only if AutΓ = PGL2(5), PGL2(11), or

PSL2(23) andR = Z5, Z11:Z5, or Z23:Z11, respectively.

Proof. NowP ∼= S3 andNG(P) ∼= S3×Z2. Since all subgroups ofS4 isomorphic toS3 are
conjugate, by Lemma 2.6, we may assumeg ∈ NG(P) \ H . ThenH {g,g−1}H = HxH ,
wherex is an involution. It follows thatG has only one suborbit of length 4, whic
corresponds toHxH , and thatΓ is the corresponding orbital graph. ThusΓ is an
(undirected) arc-transitive graph of valency 4. By Theorem 3.4 and Lemma 3.6,AutΓ = G,
and soΓ is 2-transitive.

Suppose thatAutΓ has a regular subgroupR. Then|R| = | AutΓ |/|H | = |G|/24. All
subgroups ofG are known (see [20, p. 417]), and inspecting these subgroups, it is e
shown thatG is one ofPGL2(5), PGL2(11), andPSL2(23). These groupsG indeed have a
regular subgroupR, which is isomorphic toZ5, Z11:Z5, or Z23:Z11, respectively. Therefore
Γ is a Cayley graph ofR if and only if AutΓ = PGL2(5), PGL2(11), or PSL2(23). �

The family of groups given in Theorem 3.4(iii) is treated in the next lemma.

Lemma 4.2. Let G = PSL2(p), wherep is a prime, p ≡ ±3 (mod 8), and p �≡ ±1
(mod 10), such thatH = Gα = A4. Then either

(i) Γ is an arc-transitive graph of valency8, andAutΓ = PGL2(p); or
(ii) Γ is 2-transitive of valency4, and the following two statements hold:

(a) either AutΓ = PGL2(p) and Γ is unique, or AutΓ = PSL2(p) and Γ is
isomorphic to one of[(p + ε)/12] non-isomorphic graphs, whereε = ±1 such
that 3 | (p + ε);

(b) Γ is a Cayley graph if and only ifAutΓ = PGL2(5), andΓ = K5.

Proof. Since |H : P | = 4, P = H ∩ Hg = 〈z〉 ∼= Z3. By Lemma 2.6, we may choos
g ∈ NG(P). Inspecting the subgroups ofPSL2(p) (see [20, p. 417]), we conclude th
NG(P) ∼= Dp+ε , whereε = ±1 with 3 | (p + ε), NAut(G)(H) ∼= S4, and NAut(G)(P ) ∼=
D2(p+ε). Thus there is an involutionσ ∈ NAut(G)(H) \ G such thatzσ = z−1. It follows
that NAut(G)(P ) = 〈δ〉:〈σ 〉 such thato(δ) = p + ε and δσ = δ−1. SinceNAut(G)(P ) �
NG(P) ∼= Dp+ε, we may writeNG(P) = 〈a, b〉, wherea = δ2, b2 = 1 andbab = a−1.
So〈z〉 = 〈δ(p+ε)/3〉 = 〈a(p+ε)/6〉, andσ = δtb for some odd integert .

Assume thatHgH �= Hg−1H . ThenΓ is of valency 8, andg is not an involution.
Thusg ∈ 〈a〉, and sogσ = g−1. By Lemma 2.5,AutΓ � 〈G,σ 〉 = PGL2(p), andΓ is
arc-transitive. Further, by Lemma 3.6, we haveAutΓ = PGL2(p).

Assume next thatHgH = Hg−1H . ThenΓ has valency 4 and isG-arc-transitive. Thus
by Lemma 2.7, we may assume thatg ∈ NG(P) such thatg2 ∈ P . SinceP ∼= Z3, we may
further assume thatg is an involution. Then either(p + ε)/2 is even andg = a(p+ε)/4, or
g = aib, where 1� i � (p + ε)/2.

For the former, that is,Γ = Cos(G,H,Ha(p+ε)/4H), since (Ha(p+ε)/4H)σ =
Ha(p+ε)/4H , we haveAutΓ = 〈G,σ 〉 = PGL2(p). Suppose thatHa(p+ε)/4H = HaibH

for some 1� i � (p + ε)/2. Then ha(p+ε)/4h′ = aib for someh,h′ ∈ H . Let T =
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O2(H) ∼= Z2
2. SinceH = T :〈z〉 and z ∈ 〈a〉, it follows that tal t ′ = aib, wheret, t ′ ∈ T

andl is an integer. It is easily shown thatH ∩〈a, b〉 = P = 〈z〉, and it then follows that both
t, t ′ �= 1. Since〈z〉 acts by conjugation transitively on the 3 involutions ofT , t ′ = z−ktzk

for some integerk. Thustalz−ktzk = aib, and sotal′ t = ai′b, wherel′ andi ′ are integers
Sinceai′b is an involution,al′ is an involution, and soal′ = a(p+ε)/4. It then follows
that〈t, a(p+ε)/4, ai′b〉 is a subgroup of order 8. This is a contradiction since 8� |G|. Thus
Ha(p+ε)/4H �= HaibH .

Suppose thatg = aib with 1 � i � (p + ε)/2. We claim that, for any integersk < j ,

HajbH = HakbH if and only if
p + ε

6

∣∣∣∣ (j − k). (1)

Assume that(p + ε)/6 | (j − k). Thenaj−k ∈ 〈z〉, and soaj−k = 1, z, or z−1. Henceak =
aj , ajz, or ajz−1, andakb = ajb, aj zb, or ajz−1b, respectively. SoHakbH = HajbH .

On the other hand, assume thatHajbH = HakbH . Then h1a
jbh2 = akb, where

h1, h2 ∈ H . If h1 ∈ 〈z〉 or h2 ∈ 〈z〉, it follows sincezb = z−1 andaz = za, thataj−k =
ajbakb = h−1

1 h2 or h1h
−1
2 , so aj−k ∈ H ∩ NG(P) = 〈z〉, as claimed. Suppose th

h1 /∈ 〈z〉 and h2 /∈ 〈z〉. Since〈z〉 acts by conjugation transitively on the 3 non-iden
elements ofT , we may writeh1 = z1h, andh2 = z′

1h, whereh ∈ T and z1, z
′
1 ∈ 〈z〉.

Then calculation shows thathzl′akbh = zlajb for some integersl′ andl. Now b1 := zlaj b

and b2 := zl′akb are involutions ofNG(P), andb1b2 = zl′−lak−j ∈ 〈a〉. Sinceh is an
involution, h interchangesb1 and b2. Hencehb1b2h = b2b1 = (b1b2)

−1; in particular,
h ∈ NG(〈b1b2〉) � NG(〈a〉) = NG(P) ∼= Dp+ε. SinceNG(P) is a maximal subgroup inG,
we conclude that eitherh ∈ NG(P), orb1b2 = 1. If h ∈ NG(P), thenzh = z−1, not possible.
Thuszl′−lak−j = b1b2 = 1, and soaj−k ∈ 〈z〉 and(p + ε)/6 | (j −k). Therefore, the claim
in (1) is true.

It follows from claim (1) thatHajbH �= HakbH for 1 � k < j � (p + ε)/6. Thus we
may assume that 1� i � (p + ε)/6. By Lemma 3.6,PSL2(p) = G � AutΓ � Aut(G) =
PGL2(p). Sinceσ = δtb wheret is an odd integer, we have

(
HaibH

)σ = H
(
δ2ib

)δt b
H = Hδ2t−2ibH = Hat−ibH. (2)

By Lemma 2.2,σ ∈ AutΓ if and only if HaibH = (HaibH)σ = Hat−ibH . Therefore,
by claim (1), σ ∈ AutΓ if and only if (p + ε)/6 divides (t − i) − i, in other words,
2i ≡ t (mod (p + ε)/6).

Suppose that 2i ≡ t (mod (p+ε)/6). Then sincet is odd, we have that(p+ε)/6 is odd.
In this case, 2i ≡ t (mod (p + ε)/6) has exactly one solution fori ∈ {1,2, . . . , (p + ε)/6},
andAutΓ � 〈G,σ 〉 = Aut(G), soAutΓ = Aut(G) = PGL2(p).

Suppose now that 2i �≡ t (mod (p + ε)/6). There are exactly(p + ε)/6−1 or (p + ε)/6
values ofi satisfy this condition, depending on(p+ε)/6 is odd or even, respectively. The
(HaibH)σ = Hat−ibH �= HaibH . Let it � (p + ε)/6 be such thatit ≡ t − i ((p + ε)/6).
Thenit �= i but Cos(G,H,HaibH) ∼= Cos(G,H,Hait bH). Thus there exists[p + ε/12]
non-isomorphic coset graphs, denoted byΣ1,Σ2, . . . ,Σ[(p+ε)/12]. Sinceσ /∈ AutΣj and
AutΣj � Aut(G), we conclude thatAutΣj = G. So in this caseAutΓ = G.
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Therefore, in all the cases,AutΓ = G or Aut(G). By Proposition 2.8,Γ is not 3-arc-
transitive. Inspecting subgroups ofPSL2(p) andPGL2(p) (see [20, p. 417]), it is easil
shown thatAutΓ has a regular subgroupR if and only if AutΓ = PGL2(5), R ∼= Z5, and
Γ ∼= K5. SoΓ is a Cayley graph if and only ifΓ ∼= K5. �

The next lemma analyses the groups in Theorem 3.4(iv).

Lemma 4.3. Assume thatsoc(G) = PSL2(3t ) with t odd prime satisfying Theorem3.4(iv).
ThenΓ is an arc-transitive graph of valency8.

Proof. By Theorem 3.4, in this case,G = PSL2(3t ) or P�L2(27).
Suppose first thatG = PSL2(3t ). ThenH ∼= A4, and henceP = H ∩ Hg = 〈z〉 ∼= Z3.

By Lemma 2.6, we may assume thatg ∈ NG(P). It is known thatNG(P) ∼= Zt
3 is a

Sylow 3-subgroup ofG (see [20, p. 417]), sog is of order 3. WriteNG(P) = P × P̃ ,
so that we may assumeg ∈ P̃ . Since no elementx ∈ NG(P) \ H such thatx2 ∈ P , by
Lemma 2.7, we haveHgH �= Hg−1H , andΓ is aG-edge-transitive graph of valency
Inspecting subgroups ofPSL2(p) andPGL2(p) (see [20, p. 417]), it is easily shown th
NPGL2(3t )(H ) = H :〈σ 〉 ∼= S4, whereσ is of order 2 such thatzσ = z−1, andNPGL2(3t )(P ) =
NG(P):〈σ 〉 ∼= Zt

3:Z2, whereσ inverts all elements ofNG(P). In particular,gσ = g−1, and
hence by Lemma 2.5,Γ is arc-transitive.

If G = P�L2(27), thenΓ is soc(G)-edge-transitive. Thus by the previous paragra
Γ has valency 8 and is arc-transitive.�

We next consider the groups listed in Table 3 which is notP�L2(27).

4.2. Graphs arising fromA7, S7, PSL3(3), andPSL3(7)

Lemma 4.4. If soc(G) = A7, thenAutΓ = S7 andΓ is a3-transitive non-Cayley graph o
valency4, which is isomorphic to the odd graphO3.

Proof. Assume thatG = A7. ThenH ∼= (A4 × Z3):Z2, P ∼= Z2
3:Z2, andNG(P) ∼= Z2

3:Z4.

It is easily shown thatP andPg−1
are conjugate inH . By Lemma 2.6, we may choos

g ∈ NG(P) \ H , sog2 ∈ P . ThusΓ is an undirected arc-transitive graph of valency 4
is actually known thatΓ is the odd graphO3 (see, for example, Biggs [1, p. 58, p. 13
or [8, p. 310]); further,AutΓ = S7, Γ is 3-transitive and is not a Cayley graph. It is no
easily shown that the graphΓ is the only graph of valency 4 such thatS7 is primitive on
the vertex set. �

Lemma 4.5. Assume thatG = PSL3(3) andH = Gα = S4. ThenΓ is an arc-transitive
graph of valency8, andAutΓ = Aut(G) ∼= PSL3(3).2.

Proof. Now P = H ∩ Hg ∼= S3. Since all subgroups ofH isomorphic toS3 are conjugate
in H , by Lemma 2.6, we may chooseg ∈ NG(P) \H . Let z be an element ofP of order 3.
ThenZ3 ∼= 〈z〉 charP , and henceNG(P) � NG(〈z〉). By the Atlas [4],|CG(z)| = 54 or 9.



764 C.H. Li et al. / Journal of Algebra 279 (2004) 749–770

t

t

re

by
Suppose|CG(z)| = 54. Let∆0 be the set of elements ofH of order 3 which are no
z, z−1, and let∆ = ⋃

x∈C ∆x
0 ∪ {z, z−1}. Then all elements of∆ are conjugate toz, and

so |∆| � |zG| = |G : CG(z)| = 104. We next compute the size of
⋃

x∈C ∆x
0. Arbitrarily

take x1, x2 ∈ C := CG(z). Suppose that∆x1
0 ∩ ∆

x2
0 �= ∅. Then ∆

x1x
−1
2

0 ∩ ∆0 contains

an elementy /∈ 〈z〉. Then A4 ∼= 〈y, z〉 � Hx1x
−1
2 ∩ H . It follows that 〈y, z〉 is normal

in both Hx1x
−1
2 and H . SinceG is simple andH is maximal inG, we conclude tha

〈y, z〉� 〈Hx1x
−1
2 ,H 〉 = H , henceHx1x

−1
2 = H . Thusx1x

−1
2 ∈ NG(H)∩C = H ∩C = 〈z〉,

and Hx1 = Hx2, so in particular,∆x1
0 = ∆

x2
0 . Therefore, either∆x1

0 ∩ ∆
x2
0 = ∅, or

∆
x1
0 = ∆

x2
0 , and so there are exactly|C : 〈z〉| different∆x

0 with x ∈ C. Now |C : 〈z〉| = 18,
and so

104� |∆| =
∣∣∣∣
⋃
x∈C

∆x
0

∣∣∣∣ + 2= ∣∣C : 〈z〉∣∣|∆0| + 2 = 18× 6+ 2= 110,

which is a contradiction.
Thus|CG(z)| = 9. By the Atlas [4],G has no elements of order 9, and soCG(z) ∼= Z2

3
andNG(〈z〉) ∼= Z2

3:Z2. SinceP < NG(P) � NG(〈z〉), we haveNG(P) = NG(〈z〉) = P ×
Z ∼= S3 ×Z3. In particular,|NG(P) : P | = 3, andZ is the center ofNG(P). By Lemma 2.7,
HgH �= Hg−1H , andΓ is of valency 8.

By the Atlas [4], NAut(G)(H) = H × 〈σ 〉 for an elementσ ∈ Aut(G) of order 2.
In particular,Pσ = P , and (NG(P))σ = NGσ (P σ ) = NG(P). Henceσ normalises the
centerZ of NG(P). Now g = hz1 for someh ∈ P and somez1 ∈ Z \ {1}. It follows
that H {g,g−1}H = H {z1, z

−1
1 }H . If zσ

1 = z1, thenσ centralises bothH and z1, so σ

centralises〈H,z1〉 = G, which is not possible. Thuszσ
1 = z−1

1 , and henceΓ is arc-
transitive graph, andAutΓ = 〈G,σ 〉 = Aut(G). �

Lemma 4.6. Assume thatG = PSL3(7) and H = Gα = (A4 × Z3):Z2. Then Γ is a
3-transitive non-Cayley graph of valency4, and AutΓ = G. Moreover,G has exactly
three self-paired suborbits of length4 and the three corresponding orbital graphs a
isomorphic.

Proof. Now P ∼= Z2
3:Z2, andNG(P) ∼= Z2

3:Q8. Obviously, all subgroups ofH which are
isomorphic toP are conjugate. By Lemma 2.6, we may assumeg ∈ NG(P). Further,
NG(P)/P ∼= Z2

2, and sog2 ∈ P . ThusH {g,g−1}H = HgH , andΓ has valency 4. By
Proposition 2.8,Γ is (G,3)-arc-transitive.

Let P2 be a Sylow 2-subgroup ofP , and letX2 be a Sylow 2-subgroup ofNG(P) which
containsP2. SinceX2 ∼= Q8, we may writeX2 = 〈i, j | i4 = j4 = 1, ij = i3〉. It follows
thatHgH = HiH , HjH , or HijH . By the Atlas [4], we conclude thatNG.3(H) = Z2

6:S3

andNG.3(P ) = Z2
3:(Q8:Z3). It follows that there existsz ∈ NG.3(H) such thato(z) = 3, and

〈z〉 transitively permutes (by conjugation)〈i〉, 〈j 〉, and〈ij 〉. Thus〈z〉 transitively permutes
HiH , HjH , andHijH , so up-to isomorphism,Γ is unique.

Since AutΓ is also a primitive permutation group with a suborbit of length 4,
Lemma 3.1 and Theorem 3.4,AutΓ = G = PSL3(7). By the Atlas [4], G has no
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maximal subgroup of order divisible by|V Γ | = |G : H | = 26 068. ThusAutΓ contains
no subgroups acting regularly onV Γ , and soΓ is not a Cayley graph.�

4.3. Three1-transitive graphs

Here we treat the five groups in Table 3 for which the stabilisers are 2-subgroup
need a simple lemma.

Lemma 4.7. LetG be a primitive permutation group onΩ with a suborbit∆(α) of length
p2 for a primep. Assume thatH = Gα is a p-group andg ∈ G is such thatαg ∈ ∆(α).
ThenNG(H ∩ Hg) is not ap-group.

Proof. By the assumption,H is a core free maximal subgroup ofG. Let P = H ∩ Hg .
Then |H : P | = |Hg : P | = p2. SinceH is a p-group, we have|H : NH(P )| � p and
|Hg : NHg(P )| � p. It follows thatNH (P )�H andNHg(P )�Hg.

Suppose thatNG(P) is a p-subgroup ofG. SinceH is maximal inG, it follows that
H is a Sylowp-subgroup ofG. ThusNH(P ) � NG(P) � Hx for somex ∈ G, and hence
|NG(P) : NH(P )| � |Hx : NH (P )| = |Hx|/|NH(P )| = |H |/|NH(P )| � p. ThusNH(P )

is normal in both ofH andNG(P), and so normal in〈H,NG(P)〉. SinceH is maximal
in G, we have〈H,NG(P)〉 = G or H . As H is core free inG andNH (P ) is normal in
〈H,NG(P)〉, we conclude that〈H,NG(P)〉 = H , and soH � NG(P). ThenNHg (P ) �
NG(P) � H , and hence|H : NHg (P )| = |H |/|NHg(P )| = |Hg|/|NHg(P )| � p. It follows
NHg(P ) is normal inH . ThusNHg(P )�〈H,Hg〉 = G, which is a contradiction. SoNG(P)

is not ap-group. �

Finally, we treat the groupsPGL2(7), PGL2(9), M10, Aut(A6), andPSL2(17).

Lemma 4.8. Let G be one of the groupsPGL2(7), PGL2(9), M10, Aut(A6), andPSL2(17).
Then the following statements hold:

(i) Γ is a 1-transitive graph of valency4;
(ii) Γ is a Cayley graph of a groupR if and only ifG = PGL2(7) andR = Z7:Z3;
(iii) eitherAutΓ = G, or soc(G) = A6 andAutΓ = Aut(A6).

Moreover, all suborbits ofG of length4 are self-paired,PSL2(17) has exactly two suborbit
of length4, and the others have exactly one suborbit of length4.

Proof. Let A = AutΓ . Then by Lemma 3.6,G � A � Aut(soc(G)). We note that|V Γ | =
21, 45, or 153 forsoc(G) = PSL2(7), A6, or PSL2(17), respectively. It follows that the
vertex stabilisersGα andAα are Sylow 2-groups ofG andA, respectively, andA has a
regular subgroupR if and only if G = PGL2(7) andR = Z7:Z3 (refer to the Atlas [4]).
ThusΓ is not 2-arc-transitive, andΓ is a Cayley graph if and only ifG = PGL2(7).

As stated at the beginning of Section 4,Γ = Cos(G,H,H {g,g−1}H) whereH = Gα ,
and the subgroupP := H ∩ Hg has index 4 inH . SinceH is a Sylow 2-subgroup ofG,
we have|H : NH(P )| � 2, and so|NH(P ) : P | � 2. Thus by Lemma 4.7,NG(P) is not a
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2-group. It then follows from the Atlas [4] that eitherNG(P) ∼= S4 andNG(P) < soc(G),
or G = Aut(A6) andNG(P) ∼= S4 × Z2. HenceP ∼= Z2

2 or Z3
2, respectively. LetN < NG(P)

be such thatN ∼= S3. ThenNG(P) = P :N , andNH (P ) = H ∩ NG(P) = H ∩ (P :N) =
P :(H ∩ N). Hence|NH(P ) : P | = |H ∩ N |. Noting that|NH(P ) : P | � 2 andN ∼= S3, we
have|H ∩ N | = 2. Let H ∩ N = 〈σ 〉, and letz ∈ N be of order 3. ThenN = 〈z, σ 〉 and
zσ = z−1. ThusNG(P) = P :〈z, σ 〉 = (P :〈σ 〉)〈z〉, and so

H
{
y, y−1}H = H

{
z, z−1}H = HσzH, for eachy ∈ NG(P) \ H. (3)

Assume thatG = PGL2(7), PGL2(9), or PSL2(17). Then we haveH ∼= D16 and
P = H ∩ Hg ∼= Z2

2. Let H = 〈a, b | a8 = b2 = 1, bab = a−1〉. ThenH has exactly four
subgroups isomorphic toZ2

2: 〈a4, b〉, 〈a4, b〉a , 〈a4, ab〉, and〈a4, ab〉a. ThusP is one of
them.

Suppose thatG = PGL2(7) or PGL2(9). ThenNG(P) ∼= S4 ∼= NG(Pg−1
), and so by

the Atlas [4],NG(P),NG(Pg−1
) � soc(G); in particular,soc(G) containsP andPg−1

.
SinceH � soc(G), we may chooseb /∈ soc(G). Then〈a4, b〉, 〈a4, b〉a � soc(G), and thus

P,Pg−1 ∈ {〈a4, ab〉, 〈a4, ab〉a}. SoP andPg−1
are conjugate inH . By Lemma 2.6, we

may assumeg ∈ NG(P) \ H . ThenH {g,g−1}H = HσzH by (3). It follows thatG has
exactly one suborbit of length 4, which is self-paired, andΓ is the corresponding orbita
graph, of valency 4.

Assume thatG = PSL2(17). If 〈a4, b〉 and〈a4, ab〉 are conjugate inG, then it follows
from the Sylow theorem that all subgroups ofG isomorphic toZ2

2 are conjugate, an
so all subgroups ofG isomorphic toS4 are conjugate, which is a contradiction. Th
〈a4, b〉 and〈a4, ab〉 are not conjugate inG. By the Atlas [4],G has exactly two conjugat
classes of subgroups isomorphic toS4. Thus G has exactly two conjugacy classes
subgroups isomorphic toZ2

2. SinceP,Pg−1
are conjugate inG and P,Pg−1 � H , it

follows that P and Pg−1
are conjugate inH . By Lemma 2.6, we may assume th

g ∈ NG(P) \ H . Then H {g,g−1}H = HσzH by (3), and soΓ is of valency 4, and
the corresponding suborbitΓ (α) is self-paired. This particularly shows thatG has a
unique suborbit of length 4 corresponding to a given arc stabiliserP . It follows that
G has at most two suborbits of length 4, corresponding toHg1H and Hg2H , where
g1 ∈ NG(〈a4, b〉) andg2 ∈ NG(〈a4, ab〉). It is known thatNAut(G)(H) ∼= D32, see [4]. Write

NAut(G)(H) = 〈δ, b〉 such thatδ2 = a andδb = δ−1. Then〈a4, b〉δ−1 = 〈a4, ab〉, and hence

(Hg1H)δ
−1 = Hg2H . By Lemma 2.2,δ−1 is an isomorphism fromCos(G,H,Hg1H)

to Cos(G,H,Hg2H). Suppose thatHg1H = Hg2H . Then δ is an automorphism o
Cos(G,H,Hg1H), and soCos(G,H,Hg1H) is an orbital graph of〈G,δ〉 = Aut(G) of
valency 4. However, by Theorem 3.4,PGL2(17) has no suborbits of length 4, which
a contradiction. ThusHg1H �= Hg2H , andG has exactly two suborbits of length 4 a
AutΓ = G.

Assume now thatG = M10. By the Atlas [4],H ∼= Z8:Z2, and further, it is easily show
thatH has a presentationH = 〈a, b | a8 = 1 = b2, bab = a3〉. It follows thatH has exactly
two subgroups〈a4, b〉 and〈a4, b〉a isomorphic toZ2

2. ThusP andPg−1
are conjugate inH .

By Lemma 2.6, we may assume thatg ∈ NG(P) \ H . ThenH {g,g−1}H = HσzH by (3).
It follows thatG has exactly one suborbit of length 4, which is self-paired.
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Note thatM10 andPGL2(9) are two primitive subgroups ofAut(A6) of degree 45, and
have no suborbits of length 2. It follows thatAut(A6) has exactly one suborbit of length
Therefore, these three groups have one common orbital graphΓ of valency 4. Further, by
Lemma 3.6 and Theorem 3.4,AutΓ = Aut(A6). �

5. Proofs of theorems

Theorems 1.4 and 1.5 will be proved in this section.
It is known and easily shown that every edge-transitive Cayley graph of an abelian

is arc-transitive, see, for example, [12].

5.1. Graphs corresponding with suborbits of length3

Let G be a primitive permutation group onΩ which has an orbital graphΣ of out-
valency 3. LetΓ = Σ ∪ Σ∗. ThenΓ is G-edge-transitive and has valency 3 or 6.

Assume first thatG is soluble. Thensoc(G) is abelian and regular onΩ , andΓ is a
Cayley graph ofsoc(G). ThusΓ is arc-transitive of valency 3 or 6. Further, it is eas
shown thatΓ is of valency 3 if and only ifG = A4 or S4 andΓ ∼= K4.

Assume next thatG is insoluble. Take two verticesα,β of Γ such thatβ ∈ Γ (α).
Then there existsg ∈ G such thatαg = β . Let H = Gα , andP = H ∩ Hg = Gαβ . Then
Γ = Cos(G,H,H {g,g−1}H), and|H |/|H ∩ Hg| = 3. By Theorem 3.5,H is isomorphic
to S3, D12, S4, or S4 × Z2, and soP is a Sylow 2-subgroup ofH . By Lemma 2.6, we may
assumeg ∈ NG(P). We next analyse the groups listed in Theorem 3.5 one by one.

If G = A5 or S5, then it is easily shown thatΓ is the Petersen graph andAutΓ = S5.
If G = PGL2(7), then it is easily shown thatΓ is the Coxeter graph andAutΓ = PGL2(7).
It is well known that both Petersen graph and Coxeter graph are 3-transitive non-C
graphs.

Assume now thatG = PSL2(11) or PSL2(13). ThenH ∼= D12, andP ∼= Z2
2. By the

Atlas [4], we haveNG(P) ∼= A4. As g normalisesP and〈H,g〉 = G, we conclude thatg
is of order 3, andΓ = Cos(G,H,H {g,g−1}H) has valency 6. Further, by the Atlas [4
there existsσ ∈ Aut(G) such thatHσ = H andgσ = g−1. Therefore, by Lemma 2.5,Γ is
arc-transitive, andAutΓ = Aut(G).

Assume next thatG = PSL3(3) or Aut(PSL3(3)). Then H ∼= S4 or S4 × Z2. Thus
P ∼= D8 or D8 × Z2, respectively. By the Atlas [4], we have thatNG(P) is of order 16
or 32. Henceg ∈ NG(P) is such thatg2 ∈ P , and soΓ has valency 3. It is well-known tha
this graph is 5-transitive, andAutΓ = Aut(G) ∼= PSL3(3).Z2 (refer to [1, 18a]). Finally, by
the Atlas [4],Aut(PSL3(3)) has no maximal subgroup of order divisible by 234, and he
Γ is not a Cayley graph.

Assume finally thatG = PSL2(p), wherep ≡ ±1 (mod 16) is a prime. ThenH ∼= S4
andP ∼= D8. Sincep ≡ ±1 (mod 16), a Sylow 2-subgroup ofG has order 16. Inspectin
the subgroups ofG, see [20, p. 417], we conclude thatNG(P) is a Sylow 2-subgroup ofG.
Thusg2 ∈ P , andΓ is cubic and arc transitive. It is known thatAutΓ = PSL2(p) andΓ is
4-transitive (refer to [1, 18b]). SinceAutΓ has no subgroups of order(p(p2 − 1))/48 (see
[20, p. 417]),Γ is not a Cayley graph.
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In summary, we have proved the following result.

Proposition 5.1.

(1) There exist no vertex-primitive half-arc-transitive graphs of valency6.
(2) Vertex-primitive arc-transitive cubic graphs satisfy Theorem1.5(1).

5.2. An infinite family of half-arc-transitive graphs

Here we construct an infinite family of vertex-primitive half-arc-transitive graphs.
LetG = Sz(q) be a Suzuki group, whereq = 22m+1 � 8. By [19], we have the following

conclusions:

(a) there exist maximal subgroups ofG which are isomorphic to a dihedral groupD2(q−1)

of order 2(q − 1);
(b) if Q is a Sylow 2-subgroup ofG, thenQ ∼= Ze

2.Z
e
2 wheree = 2m + 1, Q ∩ Qx = 1, or

Q for anyx ∈ G;
(c) all involutions ofG are conjugate, and each involutionz is contained in the center o

the Sylow 2-subgroup ofG containingz;
(d) if g is an element ofG of order 4, theng is not conjugate inAut(G) to g−1;
(e) Out(G) ∼= Z2m+1.

Construction 5.2. Let G = Sz(q), and letH be a maximal subgroup ofG such that
H = 〈a〉:〈z〉 ∼= D2(q−1), wherez is an involution. LetS be a Sylow 2-subgroup ofG
which containsz. Let g be an element ofS of order 4 such thatg2 �= z. Set Γ =
Cos(G,H,H {g,g−1}H).

Then we have the following conclusion.

Proposition 5.3. For each positive integerm, the graph constructed in Construction5.2 is
a vertex-primitive half-arc-transitive graph of valency2(22m+1 − 1).

Proof. Suppose thatHgH = Hg−1H . By Lemma 2.7, there existsx ∈ G such that

x ∈ NG(H ∩ Hg), x2 ∈ H ∩ Hg, and gx ∈ H.

Noting that H ∩ Hg = 〈z〉, we havex2 = z or 1. Sincex normalisesH ∩ Hg , we
have xz = zx. So x, z ∈ Q for some Sylow 2-subgroupQ of G. By property (b),
Q = S, and hencegx ∈ S ∩ H = 〈z〉. Then gx = z or 1, and g2 = (zx−1)2 = z

or 1, which is a contradiction. ThusHgH �= Hg−1H , and so the coset graphΓ =
Cos(G,H,H {g,g−1}H) has valency 2(q −1) and admits a half-arc-transitive action ofG.

Now G � AutΓ � Sym(V Γ ), and bothG andAutΓ are primitive onV Γ . Suppose
that soc(AutΓ ) �= G. Then by [11],soc(AutΓ ) = Aq2+1 or Sp4(q), which has point
stabiliser isomorphic toSq2−1 or PSL2(q)×PSL2(q), respectively. However, neitherSq2−1
nor PSL2(q) × PSL2(q) has a permutation representation of degreeq − 1 or 2(q − 1),
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contradicting the factΓ admits a half-arc-transitive group action andΓ has valency
2(q − 1). Therefore,soc(AutΓ ) = G andAutΓ � Aut(G). Further, sinceOut(G) ∼= Z2m+1
is of odd order,(HgH)σ �= Hg−1H for all σ ∈ Aut(G), so HgH andHg−1H are not
conjugate inAutΓ . By Lemma 2.5,Γ is not arc-transitive. �

5.3. Proof of Theorems1.4and1.5

Let G be a primitive permutation group onΩ which has a suborbit∆(α) of lengthl,
wherel = 3 or 4. LetΣ be the corresponding orbital graph ofG of out-valencyl, and
let Γ = Σ ∪ Σ∗. ThenΓ is aG-edge-transitive undirected graph of valencyl or 2l. Take
two verticesα,β such thatβ ∈ ∆(α). Thenβ = αg for someg ∈ G. Let H = Gα , and let
P = Gαβ = H ∩ Hg. Then|H : P | = l, andΓ = Cos(G,H,H {g,g−1}H).

Lemma 5.4. Let G be a soluble primitive permutation group onΩ that has a suborbit o
length4. ThenΓ is arc-transitive, and the following statements hold:

(i) G = Zp:Z4, Z2
p:Z4, Z2

p:D8, Z3
p:A4, or Z3

p:S4, wherep is an odd prime.

(ii) If Γ is of valency4, thenAut(Γ ) = S5 (∼= PGL2(5)), Zp:Z4, or Z2
p:D8.

Proof. SinceG is primitive, we have thatsoc(G) = Zd
p for some primep and some intege

d � 1, which is regular onΩ . It follows thatΓ is a Cayley graph ofZd
p, and henceΓ is arc-

transitive. IdentifyingV Γ with soc(G) and lettingα be the identity ofsoc(G), it follows
thatGα � Aut(Zd

p) is faithful on the suborbit∆(α). ThusGα � S4. It then follows from
Wang [22] that parts (i) and (ii) are true.�

Now we are ready to prove the two main theorems of this paper.

Proof of Theorem 1.4. The proof of part (2) of Theorem 1.4 follows from Proposition 5
Next we prove part (1) of Theorem 1.4.

Suppose thatΓ is a vertex-primitive half-arc-transitive graph of valency less than
Then by Tutte’s theorem (see [21]), the valency ofΓ is 2, 4, 6, or 8. It is known that ther
exist no vertex-primitive half-arc-transitive graphs of valency 2 or 4. By Proposition 5.
Γ is not of valency 6. ThusΓ has valency 8.

Let G = AutΓ . ThenG is a primitive permutation group on the vertex setV Γ . Since
Γ is edge-transitive but not arc-transitive, we have thatGα acting onΓ (α) has 2 orbits of
equal length, which is 4. ThusG has a suborbit of length 4. Since an edge-transitive Ca
graph of an abelian group is arc-transitive,G is insoluble, and soG is a group listed in
Theorem 3.4. Then by Lemmas 4.1–4.8,Γ is arc-transitive, which is a contradiction. Th
proves Theorem 1.4(1).�

Proof of Theorem 1.5. Part (1) of Theorem 1.5 is proved in Proposition 5.1.
Let Γ be a vertex-primitive arc-transitive graph of valency 4. ThenAutΓ is a primitive

permutation group on the vertex set and has a self-paired suborbit of length 4. IG is
soluble, then by Lemma 5.4,Γ is as in part (2) of Theorem 1.5. Assume thatAutΓ is
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insoluble. ThenAutΓ is a group listed in Theorem 3.4, and hence by Lemmas 4.1–4.8
statements in part (2) of Theorem 1.5 are true.�
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