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1 Introduction

The past ten years or so have witnessed an abundant activity that tries to understand the
properties of the quark gluon plasma, the mechanism(s) of deconfinement and the character-
istics of the transition from hadronic matter to quarks and gluons. Experimentally, collabo-
rations at RHIC [1-5] and now ALICE at the LHC [6] are among the main efforts dedicated
to this aim. On the other hand, lattice simulations [7-19] as well as hydrodynamic model-
ing [20-32] help investigate the thermodynamic and transport properties of the plasma.

From a perturbative QCD standpoint, calculations at high temperature use the so-
called hard-thermal-loop (HTL) summation of Feynman diagrams [33-40]. For example,
one determines the pressure and the quark number susceptibilities from the thermodynamic
potential calculated to two and three-loop order [41-48], or the electric and magnetic
properties of the plasma [49].

HTL summation came about in order to overcome early problems encountered in the
standard loop-expansion of high-temperature QCD [38, 40]. However, it makes the next-
to-leading order (NLO) dispersion relations for slow-moving quasiparticles, quarks and
gluons, difficult to calculate as they involve the use of the fully HTL-dressed propagators
and vertices. The first quantity calculated in NLO fully-HTL-dressed perturbation is the
non-moving gluon damping rate [50]. That was followed by the calculation of the non-

moving quark damping rate! [51, 52]. These calculations have been performed in the

!This quantity was later calculated in [53] using the real-time formalism.



imaginary-time formalism of finite-temperature quantum field theory [36, 54]; they extract
the damping rates from the imaginary part of the fully-HTL-dressed one-loop order self-
energies after analytic continuation to real energies is taken. In a line of works, we have used
this formalism and looked into the infrared behavior of fully-HTL-dressed one-loop-order
damping rates of slow-moving longitudinal [55, 56] and transverse gluons [57], quarks [58—
60], fermions? [61-63] and photons [64] in QED, and quasiparticles [65] in scalar QED.?

In this logic, the natural step forward is to try to calculate the NLO energies of the
quasiparticles. That would come from the real part of the fully-HTL-dressed one-loop order
self-energies. This is notoriously much harder than extracting the imaginary part. The
first contribution in this direction is the determination of the pure-gluon plasma frequency
wy (0) at next-to-leading order in the long wavelength limit [66]. Imaginary-time formalism
is used and the number N; of quark flavors is set to zero from the outset. A gauge-invariant
result is found:

wy (0) = \/?])chT (1—0.09\/ﬁcg+...), Ny =0. (1.1)

In this result, ¢ is the strong coupling constant, T' the temperature and N, the number
of colors. The next contribution came some time later [67], [53] and [68], namely the
determination of the NLO fermion mass wq, (0) in high-7" QCD (and QED). For quarks, the
result found is [68]:

wq(O):%(Hfﬁ...), N, = 3,Nj = 2. (1.2)
This calculation was performed in the real-time formalism of quantum field theory (for
reviews on this formalism, see [36, 69, 70]).

One should note in this respect that the NLO contributions to such quantities come for
soft one-loop diagrams. Indeed, a general power-counting analysis performed in [71] using
the real-time formalism shows that, except for the photon self-energy where two-loop dia-
grams with hard internal momenta do contribute, next-to-leading order contributions come
from soft one-loop diagrams with HTL-dressed vertices and propagators. The work [53]
shows that the usual power-counting in imaginary-time formalism overestimates a number
of terms that are in effect subleading.

The present work aims at determining the NLO dispersion relations, real part (energy)
and imaginary part (damping rate), for slow-moving quasi-quarks in a quark-gluon plasma
at high temperature with bare masses taken to zero. We use the closed-time-path formu-
lation of the real-time formalism of finite-temperature quantum field theory [72, 73]. The
advantage is that we avoid the analytic continuation from discrete Matsubara frequencies to
continuous real energies and all that comes with it which, in a sophisticated calculation like
the determination of the dispersion relations, can make it difficult to extract the analytic
behavior of the physical quantities. But as everything comes with a price, one disadvantage

2Note that the fermion damping rate at zero momentum in finite-temperature QED is independently
calculated in [53] using the real-time formalism. The same result is found.
3In scalar QED, we have also calculated the NLO energy of the quasiparticle.



is that, as a result of the so-called doubling of degrees of freedom, each n-point function
acquires a tensor structure with 2" components to start with, which means a significant
increase in the number of say one-loop diagrams involving three and four-point 1PI vertex
functions. In addition, this calculation will not benefit from nice simplifications that arise
when we set the quark momentum to zero, like the replacement of momentum contractions
of HTL vertices with appropriate HTL self-energy differences via Ward identities [68].

This article is organized as follows. After this introduction, we define in section two the
HTL-dressed quark and gluon propagators, as well as the quark energies and damping rates
at next-to-leading order g?T. These quantities are directly related to the NLO fully-HTL-
dressed quark self-energy 2(1). This quantity is calculated in section three. We give there
an explicit expression of ©(1) in terms of the three and four HTL-dressed vertex functions.
These functions are derived ab initio as discrepancies between different results in the liter-
ature are found [74, 75]. Then, in section four, we introduce a Feynman parametrization
to help perform the solid-angle integrals present in the vertex hard thermal loops.

Still, the subsequent integration task remains formidable. In section five, we take
a prototype and show how one can carry out with such integrals. The work is mainly
numerical. We choose to avoid using the spectral decompositions of the HTL-dressed
propagators and aim at getting a finite result with the multi-integral as defined. We
indicate in this section how it is possible to obtain a stable behavior down to 10~% in unit
of the quark thermal mass m.

Brief concluding remarks populate section six. An appendix is dedicated to the deriva-
tion of the three and four-vertex hard thermal loops.

2 The NLO dispersion relations

We consider QCD with NN, colors and Ny flavors. The quark dispersion relations can been
cast as:

det (P— X (P)) =0. (2.1)
Here, P = (po,p) is the quark external soft four-momentum and ¥ (P) is the quark self-
energy, which can be decomposed into two components ¥ in the following manner:

5 (P) = vy (P) + 7,54 (P). (2.2)

In this expression, v+, = ('yo F ?.ﬁ) /2, with p = p/p and {v#} the four Dirac matrices.
Relation (2.1) is equivalent to the following two dispersion relations:

poFp— 2L (P)=0. (2.3)

On shell, the (complex) quark energy pg = Q(p) can be decomposed in powers of the
coupling constant g:

Q) =290 + W) +.... (2.4)

This follows a similar decomposition of >, namely:

Y (P) = Surr (P) + 2 (P) + ..., (2.5)
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Figure 1. Lowest-order quark energies. Ultra-relativistic behavior sets in quickly.

where Yy, is the lowest-order contribution, formed by the hard thermal loops of order
gT, and (M the NLO contribution, of order ¢gT. The contribution Q(©) (p) = wy (p) is
thus of lowest order g7, and Q) (p) is the NLO contribution of order 2T . The dispersion
relations (2.3) can therefore be decomposed as:

w+(p) + Qg)(p) + - =£p+ ZprLs (Qx (p) ,p) + Eg_tl) Qs (p),p)+--.. (2.6)
Remembering that p ~ g7', We have:

B = (ws(p), p)
1— &u ZHTLi (w7p)‘w=wi(p) .

o (p) (2.7)
Here 0, stands for /0w. The real parts of Q$ )(p) are the NLO corrections wﬂ_f ) (p) to the
plasma quark energies, and the negatives of the imaginary parts are their damping rates
Y+ (p)-

The quantities w4 (p) are the solutions to the lowest-order dispersion relations in which
only ¥prr+ (P) are retained in (2.3). These latter are known:

2
m 1 w w +
SurLs (w,p) = —L [il +3 (1 ¥ ) In p} , (2.8)
p 2 p) w-—p
where my = Cr/8¢gT is the quark thermal mass to lowest order with Cp =

(NC2 — 1) /2N.. The lowest-order quark energies wy (p) are real; they are displayed in fig-
ure 1. Note how quickly the ultra-relativistic behavior sets in, at already p ~ 6 (2) my for
wy(—)(p). This indicates that the soft region is effectively narrow. For soft p = p/my <1,
they can be obtained in power series:

1_ 1. 16 _ _
wslp) =my (12 3+ 155 1+ O ). (29)



Also, from the definition of the HTL self-energies Xyr,, one can rewrite:

UJ2 2
0 () = LT (o), ). (2.10)
/

The HTL self-energies >yy71, define also the HTL-dressed quark propagator, which can
also be decomposed into two components:

A(P) = v4p A (P) +7-pA4 (P);
2

- m 1 +
AT (P) :poip—?f :Fl—i-—pmfc(pipo)lnpo P

bo—Pp '

5 (2.11)

The HTL-dressed gluon propagator is also a quantity we need. In the Landau gauge,* it
is given by the following relation:

Ay (K) = A (K) Pl + Ap (K) P, (2.12)

in which PE,}L are the usual transverse and longitudinal projectors respectively:

KK, KK,

T _
Pl = g + K2 K2 0w T T

(2.13)

where, in the plasma rest-frame, K = (k, kol%). The quantities A7, are the transverse
and longitudinal gluon HTL-dressed propagators respectively, given by:

2
A;(K):J@—4@[1+RT<1—k0mk0+k)}

k2 2k ko—k
K2
A (K) = [K2+2m§]€2 <1—§21n :gj:)] . (2.14)

In this expression, mg = \/(Ne + Ny /2)/6gT is the gluon thermal mass to lowest order.

3 The NLO quark self-energy

There are two one-loop HTL-dressed diagrams that contribute to the NLO quark self-energy
¥ displayed® in figure 2 and figure 3. The diagram in figure 2 writes as follows:

4
S Py = —igcr [ ST PQAQI QP B

with Q = P — K, and the diagram in figure 3 writes as:

—ig? 4
S () = S [ (P A (). (32)

4The Landau gauge is part of a class of covariant gauges for which the soft one-loop order corrections
to the lowest-order dispersion relations are independent of the gauge [66].
®The Feynman diagrams are drawn using jaxodraw [76].
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Figure 2. NLO HTL-summed quark self-energy 251)' The large dots indicate HTL-dressed vertex
functions and propagators. All momenta are soft.

There are three summation structures: Lorentz (explicit), Dirac, and RTF. We introduce
now the Keldysh indices (“r/a” basis) of the closed-time-path (CTP) formulation of the
finite-temperature real-time formalism [36, 69, 70, 73]. The retarted (R), advanced (A),
and symmetric (S) propagators are given by the following definitions:

A%,F (K) = rﬁ,F (K)

A (ko +ie k) ;
A p (K) = A p (K) = Apr (ko —ie.F)
Afyp (K) = A p (K) = Np.r (ko) sign(ko) [Af p (K) = A p (K)], (3.3)

where B stands for bosons and F' for fermions, and Np r are related to the Bose-Einstein
Fermi-Dirac distributions np r via the relations:

1

= T (3.4)

Npr(x)=1£2npr(x); npr(z)

We then have for the two components of Egl) the following explicit expressions:

—ig?C d'K
s (p) = 05 | et 0 [T (PLQ) AT Q)T (0 P) A3, (K)

+TL (P,Q) A (Q)TY,, (@, P) A, (K)
+T4, (P,Q) A® (Q)TY,, (Q,P) A}, (K)
+T0,, (P, Q) AR (Q) T, (Q, P) AR, (K)
+ Tl (P,Q) AY (Q) T, (Q, P) AL, (K], (3.5)

(1)

and for the two components of ¥, the following expressions:

=8 (P) =

- 2 4
—ig°Cr [ d°K L S
4 / (27_[_)4tr ’Yip [Farrr (Pa K) A,u,u (K)

+ T (PK) AL (K) + T (P K) Ay, (K)] (3.6)

aarr arar

Note that these expressions of Eg in eq. (3.5) and Egl) in eq. (3.6) have been written

in [53] using a different notation.



Figure 3. NLO HTL-summed quark self-energy 252). The large dots indicate HTL-dressed vertex
functions and propagators. All momenta are soft.

The HTL-dressed vertex functions I' are derived in the literature [74, 75, 77] . However,
there are discrepancies in these results [74, 75], which led us to rederive all three and four-
point HTL-dressed vertex functions ab initio in the CTP formalism. We recover the results
of [75]; these are presented in appendix A. For our needs, we have:

I (PQ) ="+ 12 (P,Q);
I (PQ) ="+ IY_(P,Q);
I"laiaur (P7 Q) - 1—\gra (P7 Q) =0, (3'7)

for the two-quarks-one-gluon vertices, and:

v (P,K)=I" (P,K); T (P,K)=T" (P,K)=0, (3.8)

arrr aarr arar

for the two-quarks-two-gluons vertices. In these relations, the quantities I’s are hard
thermal loops given by these solid-angle integrals:

dQ stp
I* (P.O) = m> s ;
e (£, Q) mf/ 4 (PS +ine) (QS + inge)’
) —SkSv
™ (P.K) = m2 u
nne (£ ) mf/ 4 (PS +inie) (PS + inge)

1 1
. [(P+K)S+ime+ (P—K)S + ime

where S = (1, §) and the indices n; and 72 take the values 4+ or —. Using these results, we

can rewrite Eg and Z‘gljz above as simply:

(3.9)

-4 2 4

S () = TG [ty [+ 1 (PQ) AV @) (0 17 (@, P) A5 ()
F I (P,Q) AS(Q) (7 + I (Q, P)) AL, (K): (3.10)
—i 2 4

=) (P) = 94CF / (‘;;;tmﬂﬂ” (P, K)AS, (K). (3.11)

We now work out the contractions over the Dirac and Lorentz indices. Starting with
¥, the contributions that do not include a hard thermal loop write generically as:

FXY(P.K) = tr (ve,7"76,7") A%, (K) AY, (Q)



( ek G k:) AF(K)AY, (Q)
[ (1= (Pete — 26k ack) ) — 2kok
X (Ek +4 k) + k2 (1 + pe. qe)] AT (K)AY, (Q). (3.12)
In this expression, Ay, (K) = Ay (K) /K?. Also, pe = epp with €, = £ and similarly for g,

with summation understood over ¢;. The superscripts X and Y indicate the RTF indices
(R, S, and A). The contributions that involve one hard thermal loop vertex function writes:

d) 1
XY — m v X Y — 2 s
Feymn, (P = tr (v, 11, 76,9") Ay (K) AL, (Q) mf/ (PS +ime) (QS + ine)

ks + 2P¢.5 ¢S

e — De-5 — Ge-5) (3.13)

Here 71 and 19 take the values . Due to the symmetry in A, The other contribution
with one hard-thermal-loop vertex function is equal to the one above when changing 7,
into 72, namely:

tr (e, 7 Veo Lo ) Dy (K) AY, (Q) = tr (e, IE 0 ve,7”) AN, (K)AY, (Q). (3.14)

The contribution involving two hard-thermal-loop vertex functions is longer. It generically
writes:

F6}§371772y771772 (P’ K) = tr <’YGPI#1W2’Y€QI?I;’177§> A;w ( )Azeq (Q)
B o, 1
N mf/ (PS + ime) (QS + inge)
% / dQ 1
dr (PS'+ m €

~—

(QS’ me) o

2 4 peGed 8?4 k3kE 4 peghskd



The integrand in Zgl) is faster to write:

dQs 1
4 [PS +ime] [PS + inae]

1
X _ v X
G€p§7]17]2 (P7 K) = itr (767)[#1772) A“V (K) = m?/

1 1
X
[(P+K) S+ime  (P=K) s+m25]
X (1 — pes— k.8 4 pes k32) A (K) (3.16)
(k:2 (1 — pe.8) — 2kok (ks — pe.d ks) + k2 .3 kSQ) A¥ (K).

From these expressions, we can write the NLO HTL-dresses quark self-energy in a compact
form:

> (p) = ~ig’Cr [ d'K [F$R (P, K) + F$ (P, K) + 2F,SR_ (P, K) + FS_ (P, K)
+ - 9 (27T)4 +;0 ) +;0 ) +;—— 9 +;—— )

+F8S (PK)+F3R

(P.K)+F2S . (PK)+GS.__(P,K)].(3.17)

4 HTL vertex functions and Feynman parametrization

The next step is to find a way to evaluate the solid-angle integrals involved in the hard-
thermal-loop vertex functions. The way we do this is to rewrite these integrals using the
Feynman parametrization. From egs. (3.13), (3.15), and (3.16) above, we see that we have
two kinds of solid-angle integrals to deal with, namely:

Q. nge
Jpe <P,Q>=/d s

e im [PS + ime [QS + inae]’
Ly, (P K) = / Cf: [PS+z’§1:]g[]§S + e
. [(P n K)ls Cime (P K)ls ¥ e (4.1)
The simplest of all these integrals is the integral:
T (P Q) = / ciil: (PS + z'me)l(QS + inoe) (4.2)

Remember that S is the 4-vector (1, $) and the integration is over the solid angle of §. Let
us put aside the ie prescription for the moment. Using the Feynman parametrization:

1 ! 1
— = du , 4.3
AB /0 (Au+ B (1 —u))? (43)
we write: . .
A 1 d
J0 (P,Q) = / du / L= / T (4.4)
0 47 (P — Ku) S] 0o (P—Ku)
where K = P — (). In this case, the integral over u can be done formally to get:
1 (1 —up)ug
T (P.Q) = In (4.5)

2WA  (1—wug)ur’



with the notation uj o = (PK + \/Z) /K2 and A = PK? — P?K?. Noticing that PS +

ime = po + ime — pP.8, the reintroduction of the ic’s in the final result (4.5) is a matter of

shifting pg — po + ime and gy — qo + in2e. This also applies to the two next integrals.
The next HTL vertex function to consider is the solid-angle integral:

0i o [dQs &
Jmm (P’ Q) N / 47 (PS + i?hE) (QS + i7726) ' (4'6)

Using a Feynman parametrization and the notation R = P — (P — Q) u in which pg and g
are redefined with the corresponding ic’s, we obtain the result:

o, (PQ) = = / du’- / de———
0—1‘7’
70 ro+7r 7
= d 7——1 4.
/0 u[r%—rz o g —r| 12 (4.7)

Little useful comes from pushing further the integration over u as the final result will not

have a reasonably simple formal expression; it is better to leave this expression as it is and
let the integration over u be done numerically. However, the Feynman parametrization is
useful as it reduces the number of integrations to be performed from two (solid angle) to
one (over u) or zero when this latter is explicitly feasible.

The third HTL-vertex solid-angle integral is:

dQ '8
i P _ S X .
J771772 (P, Q) / A (PS +ime) (QS + inge) o

This solid-angle integral can be performed using the Feynman parametrization and, still
with R =P — (P — Q) u, we have:

1
T (P.Q) = [ du (A + By ')

1 o, To+T
A’?1772 ) <1_2T1n >§

1 3 To+ T
B = 5 + (1—1 : ) (4.9)

rg — 12 r2 2r  ro—r

The integration over u is left to be performed numerically.
The two-gluon-two-fermion HTL vertex function uses the Feynman integral:

1 Ul
—_ = 2'/ dul/ dUQ . 4.10
ABC 0 0 [(C*B) u1u2+(B—A) U1+A]3 ( )

Now calling Py 2 = (po + i1 2¢, D), we rewrite:
s (P K) = Jie (PK) + Jh (P —K)

dQ SHSY S«
JHe (pK ® ) 4.11
mn2 ( ) = / A7 PLSP,S (P + K)S ( )

,10,



Calling C = (PL+K)S, B = PSS, A = PS, and the four-vector T = wjusK +
t

ui (Py — Py) + Py, with tg = ujusko + iuy (m1 —n2) e + po + inze and t = U1U2E + P,
we have:
dQ S“S”Sa
J#ﬁg (P K) = 2/ du1 ul/ dug/ 47‘(‘ to_ts (4.12)

Since the quantity J})7, is fully symmetric in the Lorentz indices, we only need to find the
000, 007, 0¢7, and ijk components. We have:

du2

Iy (P K) =2 / duy uy

to—tS

= 2/ du1 ul/ dUQio (4.13)
0 0 (2 - t2)

Note that in this case, the Feynman parametrization does not reduce the number of inte-
grations to perform. Yet, it still has an advantage over the original integration over the
solid angle Qg of the original unit vector § as, cast this way, the subsequent integration
over the azimuthal angle of k will now be trivial. The next solid-angle integral is:

d'LLQ

o (PK) =2 / duy uy

to—ts

= 2/ du1 ul/ du27 (4.14)
0 0 (2 - t2)

The next solid-angle integral involves a symmetric rank-2 tensor structure:

/\Z/\

JY (P K) =2 / duy uy dug

2

47T t(]—ts

= / duy ul/ duo (Cn1n25 + Dmmtl j) :
0 0
C B to B L to + t
R (i 2) AP d— 1
to (582 —=3t3) 3 to+t

D = ——~ 1+ 1] 4.1
ey (4.15)

and the last solid-angle integral involves a completely symmetric rank-3 tensor structure:
5575k

to—{s

_ / duy ul/ duQ[ wone (P07 + 055 48567 ) 4 By 997"
1 12 3tg, to+t
E ., =— 240 ___ 20 :
m 2t3< +(t3—t2) 2% tg—1t]°

t 5 12 3o, to+t
F, =— |24 -9 _ 1 . 4.16
Tz —2)? 28 ( Ty ot Mot (4.16)

JIk (PK) =2 / duy uy dU2

2

— 11 —



5 Integration: a prototype

The next task is of course to evaluate all the integrals in eq. (3.17), one after the other,
and add them together. This is not an easy matter. Here we show how one can carry out
with such expressions. We work in units of the quark thermal mass, i.e., we take my = 1.
This means that the ratio:

16N (Ne+ Np/2) <3+ Nf) , (5.1)

m} 6(N2—1) 2

with N, = 3 will replace mg in the gluon propagators. This ratio is equal to 4 for Ny = 2,
a value we take in this section.
It is best to work out a prototype, namely:©

I(te) = / d'KAG (K) AT (Q) / Cﬁ (PS5 - z’s)l(QS — ie)

+o0 +1 —+00 1
:/ dk:/ dSC/ dk‘o/ du M (t,k, ko, x,u,e). (5.2)
0 —1 —00 0

The notation is explained as we proceed. As before, P = (pp,p) is the four-momentum

—

of the external soft “on-shell” quark, K = (ko, k) the four-momentum of the soft gluon

in the loop, and Q = P — K; see figure 2. The quantity x is cosine the angle between k
and  — the integration over the azimuthal angle of k is done trivially. The integration
variable u is from the Feynman parametrization when the solid-angle integral is performed,
see eq. (4.4). The quantity ¢ is the ratio p/po, to be introduced more naturally later in this
discussion. The integrand M in this example is therefore given by the following relation:

k?Np (ko) sign (ko)
Fu?2+2Bu+ A

M (t,k, ko, z,u,e) = (A} (k, ko, €) — AT (k. ko, —<)] AR (q,q0,¢) -

(5.3)
The quantity Np (ko) is related to the Bose-Einstein distribution, see eq. (3.4), and
A% (k, ko, €) is the retarded transverse gluon propagator, which can be written as:

R(-1) _ 4K o o ko o ( (ko — k) +¢°

. 2k0 2 2 € € 1
+1 {3]{2 (ko —k ) (arctan <k0 — k) — arctan (ko n k>> - 551gn(k0)] .

The quantity AR (¢, qo,€) is the retarted quark propagator, given by:

2 2
R(-1) 1 G0—4q, ((@0+q9”+e
AN q,40,€) = —+q—qo — 1n<
( ) q 4¢? (g0 — q)? + &2

€ 5 5
+—2 [arctan ( ) — arctan < )]
2q q +4q q0 —q

SPrefactors are not important in this section. They are not displayed. The quantities Re I (t,e) and

Im I(t,e) are plotted in arbitrary units.
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Figure 4. The quark momentum p (solid) and energy py (dashed) as functions of the ratio t = p/py.
The quark mass my is taken equal to one. The fast-moving limit is ¢ — 1. Slow-moving quarks

would be for t < 0.64.
2 2
i (5 +-"In <<q0 T+ 52>
4q (0 —q)* +¢

+ X ;q {arctan( c > — arctan( c ﬂ) . (5.5)
2q 9 +4q 9 —4q

The momentum ¢= p — k and the energy qo = po — ko where pg is the quark energy. The

quantities F', B and A in the denominator of M are regularized relativistic relations:

A = (po —ie)? — p*;
B = k.p'— (ko — 2ie) (po — ic) ;
F = (kg — 2ie)* — k2. (5.6)

As mentioned above, the variable ¢ is the ratio p/pg, in terms of which the quark momentum

p(t) /my= \/L—;ln (ﬂ) (5.7)

Remember we take the quark thermal mass my = 1. The above relation comes from the

writes:

lowest-order quark dispersion relation A~!(pg,p) = 0 where A™! is given in eq. (2.11). The
behavior of p(t) and po(t) = w_(p(t)) is shown in figure 4. Slow-moving quarks would have
p S 1 (in units of my), which translates into ¢ < 0.64. The limit ¢ — 1 is the fast-moving
region in which both p(t) and py(t) are large.

In this example, the integral over u can be done analytically, which reduces the number
of integrations in eq. (5.2) to three. Indeed, one obtains:

+o00o +1 +o0o
I(t,¢) _/ dk;/ dx/ dko k*Np (ko) sign (ko)
0 -1 —00
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X [A¥ (kv kUa 5) - A% (ka k07 _6)] AF—{ (CL q0, 5) Vv (t’ k? kUa x, 6) ) (58)
with the function V' given by the following expression, see eq. (4.5):

1
1
V(t,k, Kk = d
(¢ ks ko, 2, €) /0 “Fu? ¥ 2Bu+ A
L (1 [(er =12 i?) (P i?)

— n
2WANZ | (e =1 +i22) (B +ir?)
+12 |arctan [ — ) — arctan -
5 11
9 Ty — 1
— arctan () + arctan < - >]> . (5.9)
12 12

The quantities are 7; = Re s; and i; = Im s; with:

_B;\/Z; SQZM; A=DB2_ AF (5.10)

S1 = Ia

There are difficulties with the integral I (¢,£). One is that the integrand features sudden
jumps, those coming from the arctans in the propagators, the Bose-Einstein distribution
at kg = 0, and eventually those coming from V. Such jumps make any integration method
either too long to be useful, or give unstable results. This instability is more intense when
trying to take € smaller and smaller. So, in order to see more closely what is at stake, we
have partitioned the integration region in the (k, kp) plane into domains bounded by the
following lines of sudden jumps:

ko = 0; ko=xk; ko=poxp*+k?—2pkux;
Ipg—p* 11-¢2 t 1 1+t
k=k=-20"P _ _m(EY). (5.11)
2po—xp  2t1—at\ 1—t 2 1—1

The last (vertical) line is simply the line & = py — ¢. Using the change of variables

0 = arctan k and ¢ = arctan kg, these domains are plotted in figure 5. If one integrates M
in each of the domains of figure 5 separately and sum up the results, one finds that I (¢,¢)
becomes stable and reliable in the limit ¢ — 0. See figure 6 (the units of I(¢,¢) there are
arbitrary): both the real and imaginary parts of I(¢) behave smoothly, and these two plots
are obtained with ¢ = 3.2 x 107 (in units of my).

The dependence in € is of course an issue to explore. Figure 7 shows how for example
I(t = 0.32,¢) behaves as a function of m = —log;ye. The behavior is stable down until
e~ 107® (in units of my), below which the numerics loose reliability. This is way beyond
any precision we can hope for, and we notice that I(¢,e) converges smoothly to a finite
value already satisfactorily reached at e ~ 1076, The smooth convergence to finite values
is also obtained for other values of t.
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arctan kg

¢

6 = arctan k

Figure 5. Boundaries in (k, ko) plane at which the integrand M has sharp jumps (see text for
details). Here t = 0.45 and x = 0.8.

ofF 8_;'
_otb
-4} 6
= -of = |
& s} E 4.
_10. o ol o..
12 ' N
—14E ] OL
00 01 02 03 04 05 06 00 0.1 02 03 04 05 06
t=p/po t=p/po

Figure 6. The real and imaginary parts of I(t) for soft p (meaning ¢t < 0.64). Both parts have a
stable behavior. Here, ¢ = 3.2 x 107%. The units of I(t) are arbitrary.

ImI(t = 0.32)

2 4 6 8§ 10 12 14 2 4 6 § 10 12 14

m = —log,,€ m = —log,,€

Figure 7. The e-dependence of I(t). We see stability and convergence up until € ~ 1078, Here
t = p/po is take equal to 0.32.
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6 Outlook

The present work aims at calculating the energies and damping rates of slow-moving quarks
at next-to-leading order in the context of massless QCD at high temperature using the real-
time formulation of the fully-dressed hard-thermal-loop perturbative expansion. These
quantities are extracted from the poles of the quark propagators. At lowest order, the
energies wy (p) are real, see eq. (2.9). The next-to-leading order contributions necessitate

the determination of the next-to-leading order quark self-energies Zs_f ), see eq. (2.7).

In this work, we have given the analytic expression of 25[1) in terms of loop-four-
momentum integrals involving fully-HTL-dressed quark and gluon propagators and vertex
functions, see egs. (3.5) and (3.6). These expressions were already written in [53]. The
HTL vertex functions themselves are derived and written as solid-angle integrals. We
have rewritten these latter using the Feynman parametrization in order to perform these
solid-angle integrals.

The next step is to perform the integrals. This is done numerically. The usual approach
is to use the spectral decomposition of the dressed propagators. But we refrain from doing
so and will try to tackle these integrals head on. This is known to be difficult. One main
difficulty is the jumps the integrands suffer from at the singular lines of the propagators,
more prominently as the regularizer ¢ — 0. We have used a prototype integral to indicate
how such difficulties might be overcome. By splitting the integration region into appropriate
domains, we can obtain an estimate of the prototype integral with a robust behavior down
to € ~ 107% in unit of the quark thermal mass m I

Of course there are many other terms to handle, more involved than the prototype.
Will there be stability for each? Can we add them all? This is currently under investigation.

A Hard thermal loop dressed vertex functions

Discrepancies between different results in the literature [74, 75] regarding the derivation of
the three and four-point hard-thermal-loop vertex functions in the CTP formalism imposed
on us an ab initio recalculation of these quantities. We recover the results of [75]. This
appendix summarizes our steps, with a notation close to [75].

A.1 Three-point vertex functions

The quark-gluon vertex functions are the sum of the bare vertices and the corresponding
hard thermal loops:

T# = 4 4 6T, (A1)

In the {12} basis of the CTP formalism, the bare vertex v* is given by the relations:

1~ lar wh e
o= D" when ==k (A.2)
t 0 otherwise
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The indices 7, j, and k take the values 1 and 2. The hard-thermal-loop contributions 6I'*
to these vertices are obtained by calculating the following one-loop diagrams:

d*K
3Tl (PQR) = 1ig*Cy [ £ L — 2igN, / (Vi + Vi), (A3)

(2m)*

in which the loop momentum K is hard, in front of which external momenta are neglected.

In this expression,

Vigk = (=)™ Dy (K) Djy (K = Q) Di (K + P);
L = (=13 Dy (K) Dy (K — Q) Dy (K + P). (A.4)

The functions D;;j (K) are the four {12} components of the bare bosonic propagator:

_(Du () Dis (K)
i (D; () Dz, (K))

1+n3(k0) _ nB(kQ) 9(71{0)4’7),3(’{0) o 9( k0)+n3(k0)
— +ie K?+ie K?—ie (A.5)
9(k0)+nB(ko) 9(k0)+n3(/€0) np(ko) _ 1+nB(’f0)
K2+ie K2—ic K2 +ie K?2—ig

The quantity D;; (K) is D;; (K) with np (ko) replaced by —np (ko). We write these quan-
tities in terms of advanced (A), retarded (R) and symmetric (F') propagators:

1 1
D11=§(F—|—A+R); D12=§(F+A—R);

Dm:%(F—AJrR); DQQ:%(F—A—R), (A.6)
where:
0 (k 0 (—k
R(K) = KQ(—i?ie K(Z—O‘)'

K2 +ie K2 —ic’

F(K) = (1+2npr (ko)) (KQLE - K21_ Z,é_) : (A7)

The vertex functions in the {RA} basis are linearly related to the same functions defined
in the {12} basis. For example, the three-point vertex function I'r 44 is given by the linear
relation:

Fraa =T111 + Tz + Ti2r + Fioe. (A.8)

This relation applies to the kernels V and V’. Using the expressions (A.4) of the functions
V and V', and the relations (A.6), we arrive at the following expression:

1
Viaa = §(A1A2A3 + R1RoR3 + F1 Ay As + R1Fy As + RleFg), (A.g)

where, for short, 1, 2 and 3 denote the arguments K, K — () and K + P respectively. Next
is to integrate over the internal momentum K. This is performed in two steps: first over kg,
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done using the residue theorem in the kg-complex plane. In this regard, the terms A A A3
and R Ry R3 give zero contribution each. The three others give the following contributions:

+1 oo dfds S“$

FAA = — N .
an? Jy  FdRNBr(R) / dm (PS —ie) (QS +ie)’
—i [t o, SKg

FA=— kdkN k :

R 872 J, B.#( )/ Ar (QS +ie) (P+ Q) S —ie)’

—i [T df Sk g
F=— kdkN k . Al
ri 8#2/0 B.#( )/ I (PS— i (P+Q)S—i) A0

Here, the quantities Np p(k) are defined in eq. (3.4) and S = (1,5) is a time-like unit
four-vector in which % is nothing but k/k. Remember that every external momentum is
neglected in front of K. When summing the contributions together, some will add up to a
product of propagator denominators multiplied by ie, so are dropped, and some will stand.
In the end, we find:

2 +oo
—g°Cp dQ SHE
or = kdk k k — . A1l
RAA= "o /0 (n (k) +n ( ))/ Ar (PS —i2) (QS + ie) (A-11)
Now the integration over k£ can be done. Using the known results:

+o00 2 +00 2
/ dkkng (k) = —T% / dkknp (k) = —1T2, (A.12)

0 6 0 12

we finally find the expression for this hard thermal loop:

Ly [dD SKg
6T raa (P,Q,R) = —mf/hws_ig) Q5+ (A.13)

with my = \/Cr/8gT. The other three-point HTL vertex functions are obtained following
a similar procedure. The relations between vertices in the {RA} and {12} bases are:

Fara = T + Tz + Tain + Foio;
Faar = T+ Tior + Torn + Fooxs
Frra = T111 + 12 + Togr + Taog;
Frar = T + Tiar + Paig + Doog;
Farr = T111 + Ta11 + Tigo + Toog;
Frrr = T'111 + T2z + o212 + Too1, (A.14)

with I'y 44 = 0 identically. For each of these vertex functions, one works out steps similar
to the ones for I'r44 and one finds:

o, (A9, St .

0L ara (P,Q,R) = mf/ 4 (PS + i) (QS — ig)’

o, (A, St .

0L aar (P,Q,R) = mf/ Ar (PS +ie) (QS + ie)’
s, Sk

_— 2 )
LrrRr (P, Q,R) = mf/ 4t (PS —ig) (QS — ig)’

6FRRA (P’ Q7 R) = 6FRAR (Pa Qa R) = 5FARR (P7 Qv R) = 0. (A15)
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A.2 Four-point vertex functions

The two-gluon-two-quark vertex functions are all hard thermal loops, no bare terms, given
in the {12} basis by the relation:”

O (1, Q B, U) = —82'92(—1)#]%“/ (Zw) K'KVK

x [CrDij (K) Djy (K — Q) Dy (K + P+ U) Dy; (K + P)
—NeD;j (K)Dj (K — Q) Dy (K + P+U) Dy; (K + P)

1 _ _
+5NeDii(K = P)Dju(K — P = U) Dy (K + R)Dix(K) | . (A.16)
Consider for example the { RA}-component 6I'ra44, given by:

0T raaa = 6T 1111 + 001112 + 01121 + 011211 + 01122 + 01212 + 011901 + 01222, (A.17)

Consider the term multiplying Cp in eq. (A.16) and call it 6T, 4 4. Using the decompo-
sitions in eq. (A.6), we obtain, in a similar symbolic notation as in eq. (A.9), the relation:

1 1 1 1
5F}%AAA = §F1A2A3A4 + §R1F2A3A4 + §R1R2F3A4 + §R1R2R3F4. (A18)

The subscripts 1,2,3, and 4 stand for the momenta K, K — Q, K + P+ U, and K + P
respectively. The two contributions %A1A2A3A4 and %R1R2R3R4 to 5I‘}% a4 Yield zero
each in the kp-complex-plane integration and are not displayed explicitly in eq. (A.18).
The different terms in eq. (A.18) contribute as follows:

00 fl iNG(k)SHS” 8 .

FAAL = / 167r2/ (@P+U)S+ie) (P—R)S+i2) (PS +i2),
[T kdk [ dQ —iNg(k)KFK" § .
REAA = / 1672 / in (2P 1 0)S+ie) (Rt P+U)S —ie) (P+0)S —ie)

PREA /+°° kdk /dQs iNp(k)S"S”$ .
Jo 1672 ) 4rm (R—P)S—ie)(R+P+U)S —ic) (RS +ic)’

0 kdk [ dQ, iNp(k)SHS”$
F = . Al
RAER /0 1672 / Ir (PS+i2) (P+U)S —ie) (RS + ie) (A-19)

Adding these terms together yield the following result:

_ i dS, (ng (k) + nr (k) S*S*§
Thara =g /0 halk / Ir (PS—i)(QS+ie) (PrO)S—a)  A20

The integrations over k can now be done using eq. (A.12 ). The terms multiplying N, and
N./2 in eq. (A.16) are worked out in a similar way; they cancel each other. We therefore
have the hard-thermal-loop four-vertex function:

SHSY 8
—ig) (QS + ig)

dQ,
6FRAAA(PQRU)—mf/ 75

TA typo in (3.22) of [75] is corrected.

,19,



1 1

NP+ S—ie) T (PTR)S—io)

(A.21)

The other {RA} four-vertex hard thermal loops are worked out in a similar way. With
04444 = 0 and using the linear relationships:

0lArAA = 6T1111 + 01112 + 011121 + 6T2111 + 01122 + 6T2112 + 02121 + 6121205
0l aara = 6T1111 + 01112 + 011211 + 62111 + 01212 + 602112 + 02011 + 6122195
0Taaar = 6T1111 + 01121 + 011211 + 6T2111 + 01221 + 612101 + 02011 + 6122215
0l'rrAA = O0T'1111 + 011112 + 01121 + 01190 + 612211 + 012212 + 012201 + 022005
0TrarA = 6T1111 + 01112 + 011211 + 61212 + 02121 + 612102 + 02021 + 61722205
0TraAR = 6T1111+00' 1121 +6 1211 +0T 1221 +02112+0T 2120 +01 2012+ 62200,  (A.22)

one obtains the following results:

3

dSg SHSY
ST aran (P.Q.R.U) = m} d

dr (PS + i) (QS — i)
1 1 .
s {((P—kU)S—H’s) + ((P+R)S+z’s)] ’
L [ dQ, SHSv 8
I 4w (PS +ie) (QS + ie)

6FAARA (Pa Qv Rv U) =

3

X

1 1
[((P—FU)S—H’E) + ((P+R)S—z‘€)];

dQ, SHS”
T P = m]
6Laaar (P, Q,R,U) mf/ 4 (PS +ie) (QS + i)

1 1
. [((P%—U)S—ie) + ((P+R)S+z‘5)] ;
0T rraA (P,Q,R,U) = 0T rarA (P,Q,R,U) = éT'gaar (P,Q,R,U) =0. (A.23)

The remaining eight components can be either calculated directly or obtained from
those above using the KMS conditions.

A.3 Change of notation

Finally, as we mentioned early in this appendix, the notation we use here for the vertex
functions is close to that used in [75]. However, the notation we use in the main text is
close to the one used in [68]. They are related in the following manner:

1oty (Pr Py Py) = Ty, (P, = P)

U, (P, P, P, Py) = 100 (P, Py, Ps, —Py), (A.24)

11141312

with the understanding I; = R(A) <+ i; = a(r). Thus, for the three-vertex functions:

I"Lafrr (PaQ) = 1—‘%AA (P7 —Q,R) :’Yu"i‘[ﬁ_ (P,Q),
Fifar(PaQ) :FZAR(Pv_CLR):Wu—i_lﬁf(P?Q)»
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Flafar (Pa Q) = F%AR (Pa _Qa R) =0;
Fifra(PaQ) = FZRA(Pv_QwR) = 7M+I-lf-+ (P7Q)7
Iia (P.Q) = Thpa (P, —Q,R) =0, (A.25)

with the following definition:
dds SHE

It (P,Q) = m} / . A.26
mm (P Q) =17 [ 2 (PS +ime) (QS + inge) (4.26)
For the four-vertex functions we need in the text, we have:
I‘gryrr (P>K) = Fg;/rr (PvKa _K7P) = Fl]L%Z:LlAA (P> —P, _QaQ) = Iﬁl/— (PaK)a
Fggrr (P7 K) = Fg;jrr (Pv K’ _K7P) = F%;&AR (Pv _Pv _Q’Q) = 0;
(P K) =T, (P,K,—K,P) =T pa (P,—P,—Q,Q) =0, (A.27)
with the definition:
ds? —SHSY 8
11 (P K) = mj -
mne (P KO = mj / Ar [PS + inre] [PS + ine]
1 1
X — + - A28
[(P—}-K)S—f—zme (P—K) S +ine ( )

Note that both I* and I* are already used in the main text, see eq. (3.9).
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