
 Procedia Engineering   144  ( 2016 )  226 – 233 

1877-7058 © 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of ICOVP 2015
doi: 10.1016/j.proeng.2016.05.028 

ScienceDirect
Available online at www.sciencedirect.com

 
12th International Conference on Vibration Problems, ICOVP 2015 

Finite Element Based Vibration Analysis of a Nonprismatic 
Timoshenko Beam with Transverse Open Crack 

Alok Ranjan Biswala*, Tarapada Roya, Rabindra Kumar Beheraa, Saroj Kumar Pradhanb, 
Pramod Kumar Paridab, 

a Department of Mechanical Engineering,National Institute of Technology  Rourkela, 769008, India 
b Department of Mechanical Engineering, College of Engineering and Technology  Bhubaneswar,,751003, India 

 

Abstract 

The present day structures and machineries are designed based on optimizing of multi-objectives such as maximum strength, 
maximum life, minimum weight and minimum cost. Due to this they are flexible and allow having a very high level of stresses. 
This leads to development of cracks in their elements. Many engineering structures may have structural defects such as cracks 
due to long-term service. So it is very much essential to know the property of structures and its response in various cases. The 
present article deals with finite element based vibration analysis of a nonprismatic cracked beam. The beam is modeled using the 
Timoshenko beam theory. The governing equation of motion is derived by the Hamilton’s principle. In order to solve the 
governing equation two noded beam element with two degrees of freedom (DOF) per node is considered. In this work the effect 
of structural damping is also incorporated in the finite element model. The dynamic analysis is carried out by using state space 
model in time domain. 
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1. Introduction 

Presence of crack in a structural member is a serious threat to the performance of the structure. The effects of 
crack on the dynamic behaviour of the structural elements have been the subject of several investigations for the last 
few decades. Due to the existence of such cracks the frequencies of natural vibration, amplitudes of forced vibration,  
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and areas of dynamic stability change. The introduction of local flexibility due to presence of transverse crack in 
a structural member whose dimension depends on the number of degrees of freedom considered [1]. It was observed 
that the local flexibility matrix plays a major role for appropriate analysis of a cracked beam if analytical method 
used for solving the differential equations piece wisely [2]. The detection of structural damage through changes in 
frequencies was discussed [3, 4, 5] 

A method was used to find the lowest four natural frequencies of the cracked structure by finite element method 
[6, 7] based on combination of wave-let based elements and genetic algorithm. The experimental investigations of 
the effects of cracks and damages on the structures were reported [8]. The reduction of eigen frequencies and 
sensitivity analysis to localize a crack in a non-rotating shaft coupled to an elastic foundation was studied [9]. The 
different damage scenarios by reducing the local thickness of the selected elements at different locations along with 
finite element model (FEM) for quantification and localization of damage in beam-like structures were investigated 
[10,11].The static and dynamic analysis of a cracked prismatic beam on the basis of Hamilton's principle was 
determined using finite element analysis [12]. The component mode synthesis techniques along with finite element 
method for free vibration analysis of uniform and stepped cracked beam with circular cross section was studied [13]. 
The finite element analysis of a cracked cantilever beam and the relation between the modal natural frequencies with 
crack depth, modal natural frequency with crack location was discussed [14]. An overall flexibility matrix instead of 
local flexibility matrix find out the total flexibility and stiffness matrices of the cracked beam was considered [15]. It 
was observed that the consideration of ‘overall additional flexibility matrix’, due to presence of crack, can indeed 
give more accurate results than those obtained by using the local flexibility matrix [16]. The present article 
exclusively focused on vibration analysis of a nonprismatic cracked beam using Timoshenko beam formulations 

 

2. Mathematical formulation 

This mathematical formulation deals with finite element modeling of uncracked and cracked nonprismatic beam 
which are discussed in the following sections. 

2.1. Finite element modeling of uncracked Timoshenko beam  

For modeling the cross section of the beam, the shape function profile can be represented as 

b
b L

x
cAxA 1)( 0  (1) 

Where Ab(x) represents the area of cross section at any position x of the beam.A0 is the cross section area near the 
clamped end of the beam. Lb is the length of the beam.c is the taper ratio whose values vary from 0 to 1.Fig.1 shows 
a cantilever beam of circular cross-section having diameter D with a single transverse crack with constant depth a. 
The crack is at a distance of Xc from the clamped end of the beam. 

  

Fig. 1. A cantilever beam with crack subjected to shear force and bending moment 
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The dynamic equations of motion of system when subjected to point load Q at the free end are derived using Hamilton’sprinciple as 
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Where KE is the total kinetic energy, PE is the total potential energy and Wp is the total work done by the 
external mechanical force.  
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Where v is the volume, q is the displacement, x is the position along the beam, ρ is the density and the subscripts 
b represents the beam material. This equation can now be used to solve for the equations of motion of dynamical 
mechanical system. By using finite element formulations the displacement field in terms of shape functions can be 
represented as 

wNtxq W ][),(  (4) 

Where [Nw] and {w} are the shape function and nodal displacements respectively. Using Eqs. (4), one can simplify 
the variational indicator to include terms that represent physical parameters. The mass and stiffness matrices matrix 
for the system can be written as 
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Where ρb, Eb and Ib(x) represents the density, Young’s modulus and bending moment of inertia of the beam. 
Putting equations (4), (5), (6) into (3) results 
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Taking the integral of the above, the dynamic equation of motion becomes 
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Equation (8) now represents the mechanical system and can be used to determine the motion of the beam. By 
incorporating proportional damping [17] the governing equation of motion become 
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2.2. Finite element modeling of cracked Timoshenko beam element  

The additional strain energy due to the existence of the crack as shown in Fig. 1 can be expressed as [18] [19] 
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Where G is the strain energy release rate function. The strain energy release rate function can be expressed as 
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Where E΄=E for plane stress problem, E΄=E/1-µ2 for plane strain problem. KI2, KI3, KII2 are the stress intensity 
factors. The values of stress intensity factor can be found by using the following equation. 
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The deflection due to the application of load can be obtained by using Paris equation as 
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Therefore the overall additional flexibility matrix Cij can be obtained as  

3,2 
2

i
PPP

C
ji

c

j

i
ij

δ
 (14) 

By using equations (10), (11),(12) and (13) into equation (14) one can obtain 
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2.3. Stiffness matrix of a cracked Timoshenko beam element 

 

Fig. 2. Cracked Timoshenko beam element 

Figure 2 shows a cracked beam element with generalised loading. Under the FEM co-ordinate and notation 
system the total flexibility matrix of the cracked Timoshenko beam element is obtained by the combination of over-
all additional flexibility matrix and flexibility matrix of an intact beam as 

actovltotal CCC int  (16) 

Through the equilibrium conditions, the stiffness matrix Kc of a cracked beam element can be obtained as follows 
[20] [21] 

T
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 (17) 

Where L is the transformation matrix 
 

3. Result and discussion 

For the analysis a prismatic cantilever beam of circular cross section is considered. The length and diameter of 
the beam are 1000mm and 20 mm respectively. The physical properties of the beam are E = 206 GPA, ρ = 7800 
kg/m3 and µ = 0.3. The length of beam is divided into finite numbers of small elements. The fundamental 
frequencies are calculated by using the present MATLAB code developed and compared with the exact solution 
obtained [22] in Table 1. Tables (2-5) represent the first three natural frequencies of a cracked Timoshenko beam at 
various crack positions (Xc/L = 0.075, 0.275, 0.475 and 0.675) and relative crack depths (α/D = 0.2, 0.3, 0.4, and 
0.5). The taper ratio(c) of the beam is taken as 0.5. 
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Table 1 Comparison of natural frequencies of uncracked cantilever beam 

Natural 
frequency(rad/sec) 

Exact [22] Present code 

ω1 87.19 88.80 

ω2 556.04 556.92 

ω3 1584.69 1560.46 

 

Table 2 Natural frequencies of cracked Timoshenko beam, Xc/L =0.075  

ω (rad/sec) Xc/L α/D=0.2 α/D =0.3 α/D =0.4 α/D =0.5 

ω1 0.075 86.77 86.47 86.34 86.28 

ω2 0.075 544.45 542.55 541.70 541.29 

ω3 0.075 1530.05 1524.64 1522.22 1521.07 

 

Table 3 Natural frequencies of cracked Timoshenko beam, Xc/L =0.275. 

ω (rad/sec) Xc/L α/D=0.2 α/D =0.3 α/D =0.4 α/D =0.5 

ω1 0.275 86.83 86.52 86.37 86.31 

ω2 0.275 551.71 547.07 544.98 543.97 

ω3 0.275 1552.34 1538.58 1532.34 1529.33 

 

Table 4 Natural frequencies of cracked Timoshenko beam, Xc/L =0.475. 

ω (rad/sec) Xc/L α/D=0.2 α/D =0.3 α/D =0.4 α/D =0.5 

ω1 0.475 86.34 86.21 86.16 86.13 

ω2 0.475 554.31 548.85 546.31 545.08 

ω3 0.475 1555.35 1540.66 1533.90 1530.63 

 

Table 5 Natural frequencies of cracked Timoshenko beam, Xc/L =0.675. 

ω (rad/sec) Xc/L α/D=0.2 α/D =0.3 α/D =0.4 α/D =0.5 

ω1 0.675 86.06 86.04 86.03 86.02 

ω2 0.675 545.13 543.15 542.20 541.72 

ω3 0.675 1556.73 1542.09 1535.13 1531.71 

 
It is observed from the tables (table 2-5) that natural frequencies of a nonprismatic cracked beam decreases as crack 
depth increases at a particular position. By using the state space representation the dynamic analysis of the cracked 
beam has been conducted.1 N load is applied at the free end of cantilever beam. The frequency responses of 
uncracked and cracked beam (α/D=0.2, 0.3, 0.4, 0.5) at different crack positions (Xc/L=0.075, 0.275, 0.475, 0.675) 
are shown in fig 3. The displacement responses of cracked beam (α/D=0.2, 0.3, 0.4, 0.5) at different crack positions 
(Xc/L=0.075, 0.275, 0.475, 0.675) in time domain are shown in fig 4. From the figure it is obtained that the 
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frequency response of cracked beam dies out for all positions of crack. This is due to the presence of structural 
damping. 
  

  

Fig 3 Frequency response of nonprismatic(c=0.5) uncracked (α/D =0.0) and cracked beam (α/D =0.2, 0.3, 0.4, 0.5) for (a) Xc/L =0.075 

(b) Xc/L =0.275(c) Xc/L =0.475(d) Xc/L =0.675. 

 

  

  

Fig 4 Displacement responses of nonprismatic(c=0.5) uncracked (α/D =0.0) and cracked beam (α/D =0.2, 0.3, 0.4, 0.5) for (a) Xc/L =0.075 

(b) Xc/L =0.275(c) Xc/L =0.475(d) Xc/L =0.675 in time domain. 

4. Conclusion 

The present article focused on the vibration analysis of a nonprismatic cracked beam using finite element 
formulation. The beam is modeled using Timoshenko beam formulation by considering rotary inertia and shear 
deformations. Two noded beam elements with two degrees of freedom at each node is considered in order to solve 

(a) (b) 

(c) 
(d) 

(a) (b) 

(c) (d) 
(a)
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the governing equation. From the analysis it is observed that due to presence of crack in a beam the natural 
frequencies decrease as the relative crack depth increase. Again from dynamic analysis it is observed that the 
amplitude of vibration of cracked beam decrease by varying the relative crack depths as compared to uncracked 
beam for any value of taper ratios. 
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