
Distributed Backup through

Information Dispersal

Giampaolo Bella1, Costantino Pistagna2,
and Salvatore Riccobene3

Dipartimento di Matematica e Informatica, Università di Catania
Viale A. Doria 6, I-95125 Catania, ITALY

Abstract

The formal aspects underlying a novel distributed backup service are discussed. Strength and
originality of the service lie in the combined adoption of an established information dispersal
algorithm with a simplified version of an existing location service. Information dispersal makes
our service threshold-secure in that the backup owner only needs participation of a pre-established
threshold number of nodes to recompose a distributed backup. This means that the service is
highly available as it tolerates a number of node breakdowns. Even the right threshold number of
nodes cannot retrieve the backup on their own initiative. The location service adopted allows our
service to work over non-organized, flat networks. Indirect advantages are the optimization of the
total redundancy of data and the efficient management of resources. Our service has reached the
stage of a proof-of-concept implementation.

Keywords: Backup service, flat network, information dispersal, location service.

1 Introduction

The Internet is a peer-to-peer network in the sense that a sender must spec-
ify the address of his intended receiver for communication to get through.
Dedicated protocols have been proposed lately to provide a subset of Inter-
net nodes with specific services. The protocols achieve a logical subnet of
nodes, although these are in fact physically connected to the global network.

1 Email: giamp@dmi.unict.it
2 Email: pistagna@dmi.unict.it
3 Email: sriccobene@dmi.unict.it

Electronic Notes in Theoretical Computer Science 142 (2006) 63–77

1571-0661 © 2005 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.11.046
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81190803?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:giamp@dmi.unict.it
mailto:pistagna@dmi.unict.it
mailto:sriccobene@dmi.unict.it
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

The protocols should meet their goals without the assumption that all nodes
be continuously up and running — nodes can be temporarily unavailable for
any reasons such as local breakdown or security tampering. In short, local
unavailability should not affect global availability of a service.

A typical service is file-sharing. Files are replicated over various nodes in
order to minimize the chances of their unavailability due to unavailability of
their nodes. A crucial property is that it must be possible to find a file if
it is present on the network. Distributed backup is a similar service, except
that the backup file must be accessible to its legitimate owner only. Security
is a main concern for this service, secret sharing in particular — although it
is necessary to share (pieces of) information among certain nodes, the infor-
mation contents must not be accessible to unauthorized nodes. Replication
remains the basic strategy to guarantee availability of the backup file, but
maintains its intrinsic risks of leakage to unauthorized nodes or, even worse,
of untraceable tampering. It may also lead to excessive redundancy.

The main requirement for the service to work is that all participating nodes
be informed of each other’s address. Maintaining a participants’ list on each
node can solve the problem only for small networks. There are two main ap-
proaches towards a scalable solution: one is hierarchical and the other is flat,
namely non-hierarchical. A hierarchical setting, much in the style DNS ser-
vices are organized, guarantees that all nodes can be reached if required, but
has the drawback that, should a single node crash, all his descendants would be
cut off from the network. By contrast, a non-hierarchical setting naturally tol-
erates local faults more easily because there is no dependency relation among
the nodes. Each node only knows a certain number of neighbors. However,
this cannot guarantee that a multicast communication will reach all intended
recipients. Because an exhaustive search is necessary for both file-sharing and
backup services to work, the hierarchical setting is typically preferred.

We introduce a new service for distributed backup over a non-hierarchi-
cal network. It implements techniques of threshold secret-sharing, using the
IDA algorithm due to Rabin [9], to disperse the backup file among partici-
pants. To our knowledge, this is the first attempt of implementing threshold
secret-sharing schemes for the sake of distributed backup. Because the un-
derlying logical network is assumed non-hierarchical, a service that resembles
Chord [11], but is simpler, is adopted to keep track of the participating nodes.
Our approach has several advantages.

Optimized redundancy of data. The backup, which is often bulky, must
no longer be replicated as a whole. The threshold secret-sharing algorithm
logically fragments the backup and appropriately disperses the fragments
among the participating nodes. Both dispersal and retrieval can be paral-

G. Bella et al. / Electronic Notes in Theoretical Computer Science 142 (2006) 63–7764

lelized in the style of I/O operations on RAID disks. For a fixed redundancy,
the threshold secret-sharing algorithm guarantees a higher availability of the
service than conventional, single-block replication would.

Efficient management of resources. Resource management is efficient in
two extents. First, the basic messages necessary to keep the logical net-
work alive are limited so that bandwidth is preserved. Second, the backup
is uniformly dispersed over the logical network because all nodes are re-
quired equal resources in terms of disk space. More efficiency translates
into lower risk of resource saturation for each node, which in turn increases
the availability of the service.

Availability of service. Availability is high because only a threshold num-
ber of the participating nodes must collaborate to recompose the backup,
and because the underlying logical network is non-hierarchical, hence more
fault-tolerant. Also, the dispersal technique guarantees that the threshold
number does not imply a specific subset of nodes, so that a specific node
may not be vital to recompose the backup. As mentioned above, availability
of the service is strictly connected to both redundancy of data and efficient
management of resources.

Security of backup. There is an inherent form of secret sharing in the sense
that no subset of colluding nodes below the given threshold number can
recompose the backup. Each node sees a fragment of the backup. However,
the node is neither aware of how many fragments are necessary to recompose
the backup, nor of which nodes store the fragments. Therefore, even the
right threshold number of nodes cannot obtain the backup on their own
initiative if not informed by the owner of the backup.

This paper describes the formal aspects underlying our service for dis-
tributed backup over non-hierarchical networks. A proof-of-concept imple-
mentation is available but space constraints impose deferring its details to an
upcoming paper. The next section (§2) briefly surveys existing efforts in the
field of distributed backup without attempting to be exhaustive. It also de-
scribes in deeper detail the IDA algorithm and the Chord service, which are
a starting point to our work. Then, the subsequent section (§3) details our
distributed backup service. The final section (§4) concludes the treatment.

2 The building blocks

The literature features a number of services for distributed file-sharing, some
of which have reached the implementation stage and are deployed at present.
For example, the pioneer Napster [4] relies on a hierarchical network, while

G. Bella et al. / Electronic Notes in Theoretical Computer Science 142 (2006) 63–77 65

the more recent Gnutella does not [7]. However, fewer attempts exist to take
advantage of experience in distributed file-sharing towards the development
of fully-fledged and scalable distributed backup services.

The pStore service [2] is an eminent example implementing distributed
backup with support for versioning and secret sharing. Versioning is imple-
mented throughout the incremental philosophy, much in the style of the pop-
ular CVS service for collaborative work, whereby the new backup versions are
maintained by updating specific blocks of the initial backup. Secure sharing
is implemented through a combination of cryptography and digital signature.
On one hand, our current work is not concerned with versioning. On the other
hand, it is important to remark that our approach to secret sharing is simpler
thanks to the adoption of a threshold secret-sharing algorithm, which does
not require digital signature and relative public-key infrastructure.

We adopt Rabin’s IDA algorithm to disperse the backup file, and borrow
elements from the Chord service to implement a simple location service. Short
accounts for the two services are given in the sequel of this section, while an
exhaustive treatment can be found elsewhere [9,11]. Using this combination,
whose advantages were discussed above, for a practical service that reaches the
stage of proof-of-concept implementation appears to be novel for the current
literature, although the basic idea was foreseen by Anderson [1]. Our work is
similar in spirit to the DBS service, which fragments the backup and adds a
fixed number of forward error-correction bits to each fragment [10]. It is then
possible to recover the backup from certain fragments. Usage of resources in
terms of space is determined by the error-correction technique. By contrast,
the IDA algorithm allows the user to choose a desired redundancy parameter,
which can be chosen small or large at will depending on the specific space con-
straints. Similar comments apply to the OceanStore service. This uses Cauchy
Reed Solomon codes instead [6], which appear to be more space-efficient than
other forward error-correction codes.

2.1 IDA

In 1989, Rabin proposed IDA (Information Dispersal Algorithm) [9], an al-
gorithm whose name explains the main goal. Information dispersal has had
numerous applications [3,8]. We advocate the use of IDA to disperse a backup
among the nodes of a logical network. The algorithm will prevent each node
from accessing the contents of the received backup fragment, hence achiev-
ing the desired property of secret sharing. Moreover, it is possible to specify
a threshold number of nodes that are required to collaborate to retrieve the
backup. Collaboration of the totality of nodes is not necessary. In conse-
quence, our use of IDA achieves threshold secret sharing of the backup.

G. Bella et al. / Electronic Notes in Theoretical Computer Science 142 (2006) 63–7766

The gist of the algorithm is simple. The input is first split up into a number
of blocks of the same size (padding may be necessary). Each block is in turn
split up into F fragments of size S. Clearly, F ∗S is the size of each block. IDA
disperses the F input fragments into N output fragments. Here, N ≥ F and
R = N/F is the desired redundancy factor. Each of the N output fragments
is obtained as a linear combination of the F input fragments by means of a
coding matrix of size N × F . The coding matrix is such that any subset of
F output fragments (hence, taken from the N output fragments) allows the
reconstruction of the F input fragments by means of a decoding matrix. The
decoding matrix is the inverse of a squared submatrix of the coding matrix.
Any F colluding nodes cannot recover the backup because the coding matrix
is kept from them, hence they cannot compute the decoding matrix. By
contrast, the owner of the backup can, because he built the coding matrix. It
may be convenient to use the same coding matrix for all blocks, although one
may want to use more than one matrix to increase security. Further details
exceed the scope of this paper, and may be found elsewhere [9].

To demonstrate the benefits of using IDA for secure distributed backup,
we analyze the ratio redundancy versus availability in two different scenarios.
We use IDA in the second scenario, not in the first. For example, let us assume
the following parameters for both scenarios.

• The backup is 600MB.

• There are 60 nodes in the logical network.

• The desired redundancy factor is 4, hence the total redundancy is 2.4GB.

• For each node, the probability that the node is up and running is 0.2.

• The nodes may be up and running independently from each other.

Scenario 1: no IDA. Conventional, single-block replication is adopted. The
entire backup is replicated 4 times, according to the redundancy factor, each
time on a different node. The probability that the service is unavailable is
the probability that all 4 nodes be down at the same time, that is 0.84. In
consequence, the probability to obtain the service is 1 − 0.84, that is 0.59.
In short, a total redundancy of 2.4GB yields service availability of 0.59.

Scenario 2: IDA. IDA is adopted to disperse the backup. For example, the
backup can be seen as a single block of 15 fragments of 40MB each. Because
the redundancy factor is 4, the algorithm produces 60 output fragments of
40MB each, and disperses them appropriately. IDA guarantees that any
collaborating 15 nodes can recompose the backup (each providing its frag-
ment). The probability that the service is unavailable is the probability that
at least 46 nodes be down at the same time, that is 0.846. In consequence,

G. Bella et al. / Electronic Notes in Theoretical Computer Science 142 (2006) 63–77 67

the probability to obtain the service is at least 1 − 0.846, that is 0.99. In
short, a total redundancy of 2.4GB yields service availability of 0.99.

It is clear that the use of IDA substantially increases the percentage of ser-
vice availability that can be obtained for a fixed redundancy. It may be less
evident that availability in the first scenario is independent from the number
of nodes in the logical network, while in the second scenario it is desirably
influenced. For example, let us suppose that the number of available nodes
doubles. Availability remains unvaried in the first scenario. In the second sce-
nario, IDA can produce 120 fragments of 20MB and halve the storage capacity
required to each node, so that any collaborating 30 nodes can recompose the
backup. Service availability would go up to at least 1 − 0.891.

2.2 Chord

Chord is a widely accepted location service for nodes of a logical network.
The service, which is decentralized over a non-hierarchical network, is com-
putationally efficient. Its main goal is to determine the node that manages a
given key, but other operations are possible such as addition and departure of
nodes, insert and update of keys. There is a distributed routing table whereby
each node only has routing information about a small number of other nodes.
That information is maintained in the finger table of the node. A variant
of consistent hashing [5] is used to compute identifiers for either keys or (IP
addresses of the) nodes, and to uniformly associate keys to nodes.

The association of keys to nodes is simple. Each key is stored in the first
node whose identifier is either equal to or immediately follows the key in the
identifier space. This is the successor node of the given key. If we sequentially
draw all identifiers on a circle as in Figure 1(a), a number of arcs becomes
visible. Every arc contains a subset of contiguous identifiers. If we look at the
circle clockwise, each node manages the arc that terminates in the node. For
example, node 6 manages resources 1 and 5.

When a node joins the logical network, its identifiers fall into some arc.
Chord implements an addition protocol that halves that arc, and reassigns the
first half to the newcomer as in Figure 1(b). For example, after node 3 joins
the network, resource 1 is managed by node 3, no longer by node 6. On the
contrary, when a node leaves, the departure protocol joins its two adjacent
arcs. Figure 1(a) may be seen as the outcome of the departure of node 3.

When a node launches the location protocol, it relies on its finger table. The
table has log N entries, N being the highest identifier, that is the maximum
number of resources that can be handled. It contains the addresses of nodes
whose identifiers are exponentially distributed starting from the table owner’s

G. Bella et al. / Electronic Notes in Theoretical Computer Science 142 (2006) 63–7768

Fig. 1. A circular representation of identifiers

identifier. In consequence, O(log N) steps suffice to locate the required key
identifier.

A node may fail without executing the leaving protocol mentioned above.
Each node periodically checks whether its successor is up. When a node finds
out that its successor is down, it executes a recovery protocol. This protocol
updates all finger tables that addressed the failed node so as to replace that
node by the first successor that is up. Each node replicates its resources
over a number of its successors according to a desired replication factor. The
resources managed by a failed node are not lost with a probability that is
proportional to the replication factor. Rather, they are already available from
a successor. However, the resources would be lost should all nodes where they
are replicated be down.

Consistent hashing improves performance during the replication process
because nodes that are physically adjacent will get identifiers that are close
with each other. For example, this would be the case with nodes on the same
subnet. However, adjacent nodes may not have independent probability of
going down. For example, should the main switch of a subnet go down, the
entire subnet would become unavailable with all its resources. In consequence,
a considerable though localized failure would make a nearly contiguous set of
identifiers unavailable, perhaps even an entire arc (see Figure 1). This may
have drastic consequences as it may involve a larger number of identifiers than
those determined by the replication factor.

G. Bella et al. / Electronic Notes in Theoretical Computer Science 142 (2006) 63–77 69

3 The service

A personal backup service must be highly available and secure (confidential).
In this context, the backup owner is strongly accountable for the properties
of the service. In a distributed context, where the single user typically has no
control over remote machines, accountability for the properties of the service
essentially goes to the underlying protocols and their implementation.

The use of cryptography may help security but not availability because
even an encrypted backup may be altered or cancelled by remote nodes. Re-
mote tampering may either be deliberate, as is the case of malicious activity,
or not, as is the case of unexpected crashes. The conventional strategy to
increase availability is the replication of the backup across multiple nodes.
However, this strategy fails to optimize redundancy of data and to manage
resources efficiently.

As mentioned above (§1), a distributed backup service should conjugate
availability and security on one side with an intelligent use of redundancy and
of resource management on the other. This section presents the service we have
developed to achieve this complex aim. Our service adopts the IDA dispersal
algorithm [9] and borrows elements from the Chord location service [11].

3.1 Splitting the backup into blocks and fragments

The splitting protocol uses the IDA algorithm to split up the backup into
blocks and fragments (§2.1). This preparatory work can take place off-line.
Let F be the number of fragments for each block, and N be the number of
output fragments that IDA produces from F input fragments. Once the size
of the fragment is chosen, this number along with F determine the size of the
block and the total number of blocks, which we call B. We have

B = �sizeof (backup)/(F ∗ sizeof (fragment))�
The parameters are chosen as follows — an example comes later. Pa-

rameter F is chosen such that the subsequent retrieval phase can find, with
probability equal to the given percentage of service availability, any F frag-
ments among the nodes that are alive. Parameter N is chosen of the same
order as the size of the logical network. Another constraint is that the ratio
R = N/F must yield the desired redundancy factor.

Example. Let us suppose to have a backup file of 600MB, and require a
backup service with availability percentage of 0.9 and redundancy factor no
bigger than 12. We study the probability distribution function that at least
some number of nodes be up, and observe that 0.9 is the probability that,
say, 10 nodes are up. We remark that the probability that at least 10 nodes

G. Bella et al. / Electronic Notes in Theoretical Computer Science 142 (2006) 63–7770

are up is 0.9. We choose F = 10. For example, if the size of the logical
network is 200, then we can choose N = 120 to satisfy the constraint on R.
Should we choose a fragment size of 1MB, the block size would be 10MB
and the total number of blocks would be 60.

3.2 Building the IDs from the fragments

Every backup fragment must be identifiable in the logical network. Before
dispersing them, the identification protocol computes a unique ID for each
fragment by hashing the contents of the fragment. The hash function can be
public.

The backup owner must maintain a metadata file whose basic layout is
demonstrated in Figure 2(a). The metadata file contains the obvious param-
eters: size of the backup, F , N , size of the fragment and coding matrix. It
also contains a list associating each ID to the block it comes from and to the
exact position of the ID within the block as it was determined by the IDA
algorithm. Recall that B is the number of blocks in which the backup is split
(§3.1). Because parameters F and N are available in the file, this can be
compacted as in Figure 2(b), where the list of IDs implicitly expresses the
exact scheduling of the output fragments. For example, IDi is the hash of the
fragment j of block l, where j = imod N , and l = ((i − j)/N) + 1.

Whoever has access to the metadata file can recompose the backup. Keep-
ing that file secure clearly is in the backup owner’s interest. An attacker would
not gain from seeing any number of IDs. There in fact exists no explicit rela-
tion among them thanks to the properties of the hash function.

3.3 Dispersing the IDs

At this stage, the N fragments that IDA generates are available. Our dispersal
protocol disperses them over the network using their IDs. Each ID is logically
divided into two parts. We call the most significant, leftmost part IDN and
use it to address the nodes. Likewise, we call the least significant, rightmost
part IDF and use it to address the fragments stored on a specific node. The
length of the two portions with respect to the total length of an ID can be
configured depending on the size of the logical network. However, once it is
chosen, it must be kept constant. Let n be the number of bits in an IDN.
Each node keeps a finger table mapping IDNs to IP addresses. Maintainance
of the finger table is described in the sequel of this section. The node where
the backup is first launched iterates the following procedure.

First, it attempts to map the IDN for the first fragment into an IP address.
The finger table is built up incrementally, hence the required IP address may

G. Bella et al. / Electronic Notes in Theoretical Computer Science 142 (2006) 63–77 71

sizeof(backup)
F, N

sizeof(fragment)

IDA Matrix

ID1

...

IDN

Block 1

...

Block 1

Pos 1

...

Pos N

IDN+1

...

ID2N

Block 2

...

Block 2

Pos 1

...

Pos N

ID1+B*N

...

IDN+B*N

Block B

...

Block B

Pos 1

...

Pos N

...

sizeof(backup)
F, N

sizeof(fragment)

IDA Matrix

ID1

...

IDN

IDN+1

...

ID2N

ID1+B*N

...

IDN+B*N

...

(a) (b)

Fig. 2. Basic layout of a metadata file

yet be unavailable. A delegation protocol is invoked in this case, as explained
below (§3.6).

If the mapping succeeds, the starting node attempts a connection to the
node corresponding to the found IP. If this node is up, then the corresponding
fragment is sent over. This will be fragment IDP for node IDN. We remark
that this fragment is uniquely pinpointed by the pair IDN-IDP, which form
the complete ID of the fragment. Otherwise, should the node be down, an-
other candidate recipient would be computed by a suitable successor function
successor(IDN i, j). A bound s is set on the number of successors to check.
Among the s successors, the recipient is the first node that is up. Dispersal
succeeds with the same probability as the probability that at least one of the
s successors be up. Should all s successors be down, dispersal of the current
fragment would fail.

The successor function serves as a public rule to obtain a set of possible
substitutes for a given node, a simple implementation being

successor(IDN i, j) = IDN (i+j)mod 2n

G. Bella et al. / Electronic Notes in Theoretical Computer Science 142 (2006) 63–7772

This is different from the corresponding function used by Chord, which maps
both nodes and resources into nodes.

Our forward parameter s may seem to resemble Chord’s replication pa-
rameter. However, the latter states the number of times the entire backup
is copied forward, which blindly increases the total redundancy. Our forward
parameter merely expresses the number of attempts to carry out in order to
find a putative candidate where to store the fragment once.

3.4 Retrieving the IDs

When a node wants to recompose the backup, it executes the retrieval proto-
col. It starts off by reading the metadata file corresponding to that backup.
For each block of the backup, F of the N dispersed fragments must be re-
trieved. The fragments are identified by means of their IDs. Retrieval must
account for two possible scenarios. The IP address corresponding to a given
IDN may be yet unavailable, in which case location carries on by delegation
(§3.6). The other scenario sees the required node down. If so, at most s
successors are checked up until the required resources are found by means of
matching IDs. Otherwise, retrieval of the fragment fails.

Our algorithm for retrieval is not too complex and is outlined in Figure 3.
It iterates the following steps until any F fragments are found. For each block,
the starting node reads the IDNs from the metadata file and looks them up
in its finger table. If F entries are found whose IP addresses are available and
the corresponding nodes are up, then the algorithm terminates. Otherwise, it
may either be case (a), that certain IPs are currently unavailable in the table,
or case (b), that the corresponding nodes are down.

The algorithm continues by delegation in parallel on all IDNs whose match-
ing IPs are unavailable, namely those of type (a). It may time out on certain
IDNs. The outcome is threefold. First, delegation contributes to reaching
fewer than F nodes, which may be up or down, so that retrieval fails. Second,
delegation contributes to reaching a total of at least F IPs of nodes that are
up. In this case, the F required fragments are found, and the algorithm termi-
nates. Third, delegation contributes to reaching at least F IPs, although fewer
than F nodes are up. Then, the algorithm is iterated on the next successor
of the nodes that were down, namely those of type (b), for at most s times, s
being our forward parameter.

There is an important difference between the first iteration and the sub-
sequent ones. In the first iteration, finding F nodes up guarantees that the
F required fragments are found. This may not be the case in the subsequent
iterations even when F nodes are found up. One of them is the i-th succes-
sor of a node that is down, hence it may be the case that it does not store

G. Bella et al. / Electronic Notes in Theoretical Computer Science 142 (2006) 63–77 73

Metadata

IDNs

Finger Table Alive?

Delegation

Fragments

IDNs

Down
SuccessorIDNs

Successors

Finger Table

Delegation

IDNs
Fragment

available?

Found

Not Found

Time Out

YES

NO

Found

Found

Not Found

Time Out

NO

YES

BEGIN

Fragments < F

END

YES

NO

Fig. 3. Our algorithm for retrieving the backup fragments

the required fragment, which may be located in a subsequent successor (one
between the (i + 1)-th and the s-th).

3.5 Joining the network

If a node wants to join the logical network for the first time, it must execute
the joining protocol. The node must know the address of at least one node
who already is in the network, that is an entry point. The former contacts the
latter and obtains a unique ID, which will serve to identify the newcomer in
the logical network. We address this ID, whose length matches the established
length n for an IDN, as IDN �. The newcomer initializes its own finger table
as empty, and fills it up with n entries computing the IDNs as follows. If i

G. Bella et al. / Electronic Notes in Theoretical Computer Science 142 (2006) 63–7774

ranges in 1, . . . , n, then

IDN i = (IDN � + 2i−1)mod 2n

The equation describes the n IDNs that are exponentially ahead of IDN �.
Then, it delegates the node that served as entry point the task of locating
the IPs corresponding to these IDNs. At the same time, the entry-point node
contacts the n nodes whose IDNs are exponentially distributed before IDN �.
These are described by the following equation. If j ranges in 1, . . . , n, then

IDN j = (IDN � − 2j−1)mod 2n

Those nodes must update their respective finger tables by associating IDN �

to the IP of the newcomer. The newcomer is now perfectly integrated in the
logical network, as it can both locate other nodes and be located.

At this stage, the node synchronizes with the current contents of the net-
work. It seeks to retrieve fragments whose IDN matches its own, which are
possibly stored in some of its successors. The node in turn contacts each one
of its s successors.

3.6 Location by delegation

Each node maintains a finger table with at least n entries exponentially dis-
tributed ahead of the node IDN. When a node needs to locate the IP address
for a target IDN, its first attempt is to index the target IDN in its finger
table. If the target IP is yet unavailable, it launches a delegation protocol
contacting the node whose IDN is immediately smaller and is already located,
and passing on to it the target IDN. If this node is up and has got the target
IDN already resolved, it passes the pair target IDN and target IP back to the
caller. If all nodes contacted in n steps are up, then delegation is guaranteed
to succeed, otherwise it may fail.

To increase performance, a node can extend its finger table with the IP
addresses that it possibly learns through time. For example, it learns the
source IPs of the received fragments and those of a delegation request. A
finger table can contain at most 2n entries.

3.7 Leaving the network

Our service does not need a departure protocol. A node may either decide to
leave the network or fail unexpectedly. Unlike Chord for example, we do not
need to discern the two scenarios. The retrieval protocol would tolerate the
absence of the node from the network thanks to IDA’s style of dispersing the
fragments. Although its fragments are unavailable, the retrieval protocol will
look for others. When a node leaves the network, Chord requires a specific

G. Bella et al. / Electronic Notes in Theoretical Computer Science 142 (2006) 63–77 75

departure protocol that transfers its resources on to the node successor. In
consequence, if the node fails unexpectedly without executing the departure
protocol, the recovery protocol (§2.2) is mandatory to rearrange the successor
of the node in the logical position of the node.

3.8 Rejoining the network

There is a rejoining protocol for nodes that were down and return up wishing
to join the logical network once more. It is similar to the joining protocol
(§3.5). A variant is that the node can reuse the IDN from the previous session
so that it can make available the fragments that hopefully have been kept
stored. Then, the node synchronizes with the current contents of the network,
exactly as with the joining protocol.

As with the joining protocol, IDA makes our service tolerant to the cases
in which the node loses its IDN or some of the stored fragments

4 Conclusions

We have presented the formal aspects underlying our service for distributed
backup. Two are its main features. It is threshold-secure in the sense that it
tolerates, to a certain extent, loss of backup fragments thanks to the adoption
of the IDA dispersal algorithm, hence only a threshold number of fragments are
necessary to recompose the backup. It works over non-hierarchical networks
thanks to the development of a simplified version of the Chord location service.
These appear to be two valuable features to optimize redundancy of data,
manage resources efficiently, guarantee high availability of service, and provide
a high level of security.

Tolerance towards fragment loss is a key feature, so far only appanage
of services implementing error-correction techniques [6,10]. Our use of IDA
shows how tolerance of fragment loss can now be tuned at will by the backup
owner through the choice of the desired redundancy factor. Our service does
not need to absolutely retrieve specific fragments. When a fragment is un-
available, the retrieval protocol can look for another one because it just is
necessary to recover the threshold number of fragments, whichever they are.
Also, a computationally efficient bound is set on the number of successors
to check when a node is found to be down. Once the bound is reached,
the retrieval protocol abandons and looks for another fragment. Our service
has successfully reached the stage of proof-of-concept implementation (details
omitted here due to space constraints). Testing on a small/medium scale
network is expected soon.

G. Bella et al. / Electronic Notes in Theoretical Computer Science 142 (2006) 63–7776

References

[1] Anderson, R., The eternity service (1996), in Proceedings of Pragocrypt.

[2] Batten, C., K. Barr, A. Saraf and S. Treptin, pStore: A secure peer-to-peer backup system
(2001).

[3] Curcio, I. D. D., A. Puliafito, S. Riccobene and L. Vita, Design and Evaluation of a Multimedia
Storage Server for Mixed Traffic, Multimedia Systems 6 (1998), pp. 367–381.

[4] Fanning, S., http://www.napster.com.

[5] Karger, D., E. Lehman, T. Leighton, M. Levine, D. Lewin and R. Panigrahy, Consistent
Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the
World Wide Web, in: Proc. of ACM Symposium on Theory of Computing (1997), pp. 654–663.

[6] Kubiatowicz, J., D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells and B. Zhao, OceanStore: An Architecture for Global-
scale Persistent Storage, in: Proc. of ACM ASPLOS (2000).

[7] Lv, Q., P. Cao, E. Cohen, K. Li and S. Shenker, Search and replication in unstructured peer-
to-peer networks, in: Proc. of the 16th international conference on Supercomputing (2002), pp.
84–95.

[8] Lyuu, Y.-D., “Information Dispersal and Parallel Computation,” Cambridge University Press,
1993.

[9] Rabin, M. O., Efficient dispersal of information for security, load balancing, and fault tolerance,
Journal of the ACM 36 (1989), pp. 335–348.

[10] Reeder, T., http://pages.cpsc.ucalgary.ca/∼reeder/cpsc502/a1 proposal.html.

[11] Stoica, I., R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek, F. Dabek and
H. Balakrishnan, Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications,
in: Proc. of the 2001 conference on applications, technologies, architectures, and protocols for
computer communications (2001).

G. Bella et al. / Electronic Notes in Theoretical Computer Science 142 (2006) 63–77 77

http://www.napster.com
http://pages.cpsc.ucalgary.ca/~reeder/cpsc502/a1_proposal.html

	Introduction
	The building blocks
	IDA
	Chord

	The service
	Splitting the backup into blocks and fragments
	Building the IDs from the fragments
	Dispersing the IDs
	Retrieving the IDs
	Joining the network
	Location by delegation
	Leaving the network
	Rejoining the network

	Conclusions
	References

