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Abstract

The connection between constraints and universal algebra has been looked at in,
e.g., Jeavons, Cohen and Pearson, 1998, and has given interesting results. Since the
connection between universal algebra and category theory is so obvious, we will in
this paper investigate if the usage of category theory has any impact on the results
and /or reasoning and if anything can be gained from this approach.

We construct categories of problem instances and of solutions to these, and, via
an adjunction between these categories, note that the algebras give us a way of de-
scribing 'minimality of a problem,” while the coalgebras give a criterion for deciding
if a given set of solutions can be expressed by a constraint problem of a given arity.

Another pair of categories, of sets of relations and of sets of operations on a
fixed set, is defined, and this time the algebras we get give an indication of the
‘expressive power’ of a set of constraint types, while the coalgebras tell us about
the computational complexity of the corresponding constraint problem.

1 Introduction

The constraint satisfaction problem was first formulated by Montanari in
1974 [4] when he used it as a way of describing certain combinatorial problems
arising in image processing. Fairly soon it was realised that the framework was
useful in a much broader class of problems and it has since been the subject
of intense research, theoretical as well as experimental.

Intuitively, a constraint satisfaction problem aims at, given a set of vari-
ables subject to certain constraints on the values they can assume, finding an
assignment of values such that no constraint is violated.

A classical example of a problem often formulated as a constraint satis-
faction problem is the n-queens problem. Given n queens, place them on an
n x n squares chess board in such a way that no queen threatens (can capture)
any other queen.
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Another example is the problem of sceduling a collection of tasks. Given
the tasks and a set of constraints on them, e.g., which tasks can be performed
simultaneously, which has to preceed wich others, etc., find an assignment of
times these tasks are carried out such that no constraint is violated.

Other examples include several classical combinatorial problems, such as
the satisfiability problem from propositional logic and the colorability prob-
lem from graph theory, which can quite naturally be expressed as constraint
satisfaction problems.

The complexity of constraint satisfaction problems has also been the sub-
ject of intense research. Finding a solution by brute-force methods, i.e., going
through all possible assignments and check for constraint violations, is gen-
erally not an option. The reader is referred to Pearson & Jeavons [6] for an
in-depth discussion of the complexity of constraint satisfaction problems.

The link between universal algebra and constraint satisfaction problems
has been explored, e.g., in Jeavons, Cohen & Pearson [2], and turned out to
be fruitful. In this paper we will translate this to category theory and thus
look at the connection between category theory and constraint satisfaction
problems. Though certainly no groundbreaking discoveries are made, the first
steps towards applying more advanced categorical techniques to the problem
are taken.

1.1 Qverview of the paper

We begin with defining the constraint satisfaction problem and then con-
struct two categories consisting of problem instances and solutions to these,
respectively. We proceed with defining a pair of functors between them, and
note that these form an adjunction. The algebras given by the corresponding
monad give us a way of describing the property of 'minimality of a problem’,
while the coalgebras give a criterion for deciding if a given set of solutions can
be expressed by a constraint problem of a given arity. From this we move on
to define another pair of categories, this time they consist of sets of relations
and of sets of operations on a fixed set. An adjoint pair of functors between
these categories is defined, and the monads and comonads the pair give rise
to hand us algebras that give an indication of the ’expressive power’ of a set
of constraint types, and coalgebras which tells us about the computational
complexity of the corresponding constraint problem. We then conclude the
discussion with a few suggestions on future work.

2 Relations and constraints

Since definitions and notations varies slightly between authors, we define the
basic notions to make sure we agree on them.

First of all, we need to define what we mean by a relation over D. For any
set D and any natural number n, we denote the set of all n-tuples of elements
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of D by D™. A subset of D" is called an n-ary relation over D.
A constraint satisfaction problem is a triple (V, D, C") where:

* V is a set of variables

* D is a domain of values

» (' is a set of constraints {c1, ¢a,..., ¢}

FEach constraint ¢; € C'is a pair (s;, R;) where:

* s; 1s a tuple of length m; of variables, called the constraint scope
* R, is an my-ary relation over D, the constraint relation

A solution to a constraint satisfaction problem instance is a function f: V —
D such that for each constraint (s;, R;) with s; = (v;,,vi,...,v;,) the tuple
(f(viy), f(viy), ..., f(v;,)) is a member of R,;.

A relational structure is a tuple (V, Ey, Fa, ..., Ey) consisting of a non-
empty set V', called the universe of the relational structure, and a list £y, Fs, .. .,
E, of relations over V.

The rank function of a relational structure (V, Ey, Fa, ..., Fy) is a function
p:{1,2,...,k} = N such that for all € {1,2,...,k}, p(¢) is the arity of F;.
A relational structure X is ’similar’ to a relational structure ¥’ iff they have
identical rank functions.

Let ¥ = (V, Ey, By, ..., Ey) and X = (V'  E1, EL, .0 L) be two similar
relational structures and let p be their common rank function. A homomor-
phism from ¥ to ¥ is a function A : V — V' s.t. forall ¢ € {1,2,...,k}

(vi, 02, vp(0)) € B = (h(v1), h(va), ., h(vyi))) € B

The set of all homomorphisms from ¥ to ¥’ is denoted Hom(X, ¥').

Proposition 2.1 For any constraint satisfaction problem P = (V, D, C) with
C ={(s1, R1),(s9, Ra), ..., (84, Ry)}, the set of solutions to P equals Hom(X,¥'),
where ¥ = (V. {s1},{s2},.. .. {sg}) and ¥ = (D, Ry, Ry, ..., R,).

Proof. See Jeavons, Cohen & Pearson [2]. O

An instance of a generalised constraint satisfaction problem is a pair (3, X')
where ¥ and ¥/ are similar relational structures. A solution to (3,%') is a
homomorphism from ¥ to >’

We also need an ordering on the relational structures, which the following
definition gives us:

Definition 2.2 Let ¥ = (D, Ey, Fs,...,Ey), ¥ = (D, E,FE), ..., E}) be
similar relational structures. If £; O E! for all ¢« € {1,2,...,k}, then we
say that X C Y.
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3 The categories Ap, and p(DY)

In the following section we have chosen a fixed relational structure ¥y with
universe V' and rank function p together with a fixed set D. We now consider
all instances (X, X) where ¥ varies over all relational structures with universe
D and rank function p.

Define a category of relational structures as follows:

Definition 3.1 Define Ap , as having

* relational structures ¥ with universe D and rank function p as objects, and
 there is an arrow ¥ — X/ iff ¥ C Y.

Definition 3.2 Define the category p(D") of mappings V — D as follows:

 The objects of p(DV) are sets of mappings V — D, and
s there is an arrow M — M’ in ar(p(DV)) iff M C M.

These categories are both partial order categories and thus have a number of
interesting properties we will make use of later.

3.1 The functors Soly,(—) and Prox,(—)

Let ¥o = (V, Eq, Es, ..., E}) be a fixed relational structure with rank function
p and define two functors, Soly,(—) and Proy, (—) as:

Definition 3.3 Define the functor Sols,(—) : Ap, — o(DV)” as mapping

* objects ¥ € ob(Ap,,) to the set Hom(X, ¥) of homomorphisms from ¢ to
Y, and

o arrows f : ¥ — Y to the arrow given by the subset relation in p(DY),
reversing the direction.

Note that since Solg,(—) reverses the direction of the arrows, we get that if
there is an arrow f : ¥ — X' in Ap , then Hom(Xo, ¥) C Hom(Xg, '), so f
is mapped to the arrow Hom(Xg,Y) + Hom(3g, ¥') in p(DV)™.

Definition 3.4 Now define Proy,(—) : p(DV)”" — Ap,, as working on

s objects by mapping an object M € ob(p(DV)) to a relational structure
Proy, (M) = (D, R1, Ra, ..., Ry) where

Ri=|J  {m(o),m(va),....,m(vy) | m € M)}
'U17U27~~~7'Up(i)
while
o arrows f: M — M’ are mapped as expected.

That the functors satisfy the functor axioms follows from the properties of the
underlying relations.
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Intuitively, Soly, (—) maps a relational structure ¥ to the set of solutions
to (¥o, ¥) while Prog,(—) can be thought of as given a set of mappings "con-
structing’ a relational structure ¥ such that the mappings constitute solutions
to the problem instance (3, 3).

To show that the functors form an adjoint pair we will need the following
theorem:

Theorem 3.5 (Galois connections are adjoint pairs) Let &, 2 be two
preorder categories and F : &P — 20 G 1 2 — 7 two order-preserving
functions (regarded as functors.) Then F is left adjoint to G iff, for all p €
ob(Z) and q € ob(2),

F(p) > qin 2 & p<Gg) in 7
When this is the case, there is exactly one adjunction ¢ making F the left
adjoint for G'. For all p and q, p < GF(p) and FG(q) > q; hence also

F(p) =2 FGF(p) = F(p), Glq) < GFG(q) < G(q)
Proof. See MacLane [3]. O

The unit and counit of the adjunction are given by F'G(q) > g and GF(p) > p
for all p and q.

When the relations in question are antisymmetric as well as reflexive and
transitive (i.e., we have a partial ordering), the last line of the proposition
above collapses to

FGF(p) = F(p), GFG(q)=G(q)

Proposition 3.6 The functors Soly,(—) and Proy,(—) as defined above form
an adjoint pair with Soly,(—) left adjoint to Proy,(—).

Proof. By theorem 3.5 we have to show
Sols, (X) ¢ M in p(DV) & ¥ — Pros, (M) in Ap,,

Assume there is an arrow M — Soly, () in p(DV), that is, the solution to the
problem instance (¢, ¥) is contained in M. From the definition of Proy,(—)
it then follows that ¥ C Proyx, (M), i.e., there is an arrow ¥ — Proy, (M) in
Ap,,.

Analogously, if we assume the existence of an arrow ¥ — Proy, (M) in
o(DV), then it follows that the set of solutions to (3o, X)) is a subset of M. O

The adjunction we get is (Soly,(—), Prog,(—),n,¢) with unit n = ¥ —
Proy, (Soly, (X)) and counit ¢ = Solg, (Prog,(M)) — M. This adjunction gives
us a monad in the category Ap , which, since the category is a partial order,
is a functor PS : Ap, — Ap,"' satisfying ¥ C PS(X) and PS(PS(X)) =
PS(Y) forall ¥ in Ap,. A PS-algebra is then an element ¥ with PS(¥) = X.

Dually, we get a comonad in p(DV)*, a functor SP : p(DV)™ — (DY)
satisfying M C SP(M) (i.e., there is an arrow SP(M) — M in p(DV)™) and

L PS is of course an abbreviation of Prog, (Sols,(—))
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SP(SP(M)) = SP(M). An SP-coalgebra is an element M with SP(M) =
M.

Since the categories are partial orderings, we can deduce from theorem 3.5
that the following identities hold:

Solg, (Prog, (Soly, (¥))) = Solg, (¥)
and
Proy, (Soly, (Prox,(M))) = Prox, (M)

Consequently, any element M of p(DV) is mapped to a PS-algebra in Ap,
and any element ¥ in Ap , is mapped to an S P-coalgebra in p(DV).

3.2 PS-algebras and S P-coalgebras

Let us now have a look at what the algebras and coalgebras in the previous
section can offer us.

Proposition 3.7 Let K, = (V,{ey, ea,...}) be a complete graph with n ver-
tices, and set Y, = (V.{e1},{e2},...).

For any GCP instance P = (Xk,, %), a minimal binary constraint satis-
faction problem, as defined in Montanari [4], with the same solution as P is
given by

<2Kn7 PI’OZK” (SOIEKn (Z))>

Hence P s a minimal binary satisfaction problem iff
Prox,. (Solg, (X)) =2X.

Proof. See Jeavons, Cohen & Pearson [2]. O

The problem of deriving the unique minimal constraint network with the same
solution as a given problem instance is described by Montanari as the central
problem in many practical applications [4], so it is clear that the PS-algebras
are of interest.

Proposition 3.8 A set of mappings M in o(DV) is the set of solutions to
some constraint satisfaction problem instance with constraint hypergraph g

of
Solg, (Prog,(M)) = M

Proof. See Jeavons, Cohen & Pearson [2]. O

Thus the problem instance P in proposition 3.7 is a minimal binary satisfaction
problem iff 3 is a PS-algebra and a set M of mappings is the set of solutions
to some constraint satisfaction problem instance iff M is an S P-coalgebra.
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4 The categories Ap and €)p

We will now consider the collection of instances of the generalised constraint
satisfaction problem where we fix the domain of values and the set of possible
constraint relations and let the hypergraphs vary. Let us start with defining
two new categories, the categories of relations and of operations on a fixed
domain, respectively.

Definition 4.1 Define the categories Qp and Ap as follows:

* Let Ap be the category of all sets of relations on a given set D, ordered by
inclusion, and

* let Qp be the category of all sets of operations on D, ordered by inclusion.

The following definitions are needed in the construction of the adjunction
between these categories.

Definition 4.2 Let r be a relation over a given set D). An operation o : D" —
D is called a polymorphism of r iff Yty ta, ... t, € ro(ty,ta,...,t,) €r. If o
is a polymorphism of r, r is said to be an invariant for o.

4.1 The functors Inv(—) and Pol(—)

The following two functors are well-known in universal algebra, see, e.g.,

Rosenberg [7].

Definition 4.3 Define the functor Pol : Ap — Q% as follows:
* For every object R in Ap,

Pol(R) ={o | Vr € R, o0 is a polymorphism of r}

and

» an arrow R — R’ in Ap is mapped to the arrow Pol(R) + Pol(R') in Q3.

That Pol(—) really is a functor follows from the following argument:
Suppose there is an arrow B — R’ in Ap, i.e., R C R'. Any operation o

which is a polymorphism of R’ is also a polymorphism of R, since R C R', so

Pol(R") C Pol(R) and thus there is an arrow Pol(R') + Pol(R) in Q3.

Definition 4.4 Now define the functore Inv(—) : Q% — Ap as
» mapping an object O in Qp to the set {r | Yo € O.r is an invariant for o}
and

+ an arrow O — O’ in Q% is mapped to the arrow Inv(O) « Inv(0’) in Ap.

Inv(—) is a functor, which we can convince ourselves of by noting that if there
is an arrow O < O’ in QF, i.e., O is a subset of O’, then given any relation r
in Inv(O’) and an operation o in O, this operation must also be in O, so r is
an invariant for O and thus r € Inv(O).
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4.2 Inv(=) and Pol(=) form an adjoint pair

Similarly to the functors Solg,(—) and Proy,(—), Inv(—) and Pol(—) form an
adjoint pair, but before we show this, we note the following:

Lemma 4.5

(i) For any object R in Ap, the arrow R — Inv(Pol(R)) exists in ar(Ap).
(ii) For any object O in Qp, the arrow O — Pol(Inv(0)) exists in ar(Q35).

Proof.

(i) Let r be a relation on D and consider Inv(Pol({r})). By the definition
of Pol(—) we get that

Inv(Pol({r})) = Inv({o | o polymorphism of r}) =
{r’ | o' € {o | o polymorphism of r} A+’ invariant for o'}

Clearly, r belongs to this set.

(ii) Now let o be an operation on D and consider Pol(Inv({o})). From the
definition of Inv(—) we get

Pol(Inv({o})) = Pol({r | r invariant for o}) =
{o" | ¥ € {r | r invariant for o} A o’ polymorphism of r'}

And again we see that o must belong to this set.
O

Proposition 4.6 The functors Pol(—) : Ap — QF and Inv(—) : QF — Ap
form an adjoint pair with Pol(—) left adjoint to Inv(—).

Proof. As was the case with Soly, (—) and Proyx,(—), by theorem 3.5 we have
to show the following:

Pol(R) < O in Q% & R — Inv(0) in Ap

First, assume Pol(R) < O, so Inv(Pol(R)) — Inv(O) and since by lemma
4.5 we know that there is an arrow R — Inv(Pol(R)), composition of these
gives us the arrow R — Inv(O). Similarly, given R — Inv(O), Pol(R) «
Pol(Inv(0O)) and since the arrow O — Pol(Inv(O)) exists, composition gives
us that Pol(R) « O exists. O

The adjunction given by this pair, (Pol(—),Inv(—),n,¢), has unit n : R —
Inv(Pol(R)) and counit ¢ : O — Inv(Pol(0)). This gives us a monad on
the category Ap which is a functor [P : Ap — Ap satisfying R C IP(R)
and [P(IP(R)) = IP(R) for every object R € Ap. An [P-algebra is then
an element R in Ap with [P(R) = R. We also get a comonad on 2%, a
functor PI : QFf — QF with O C PI(0) and PI(PI(0O)) = PI(O), so a
Pl-coalgebra is an element O of Qp with PI(O) = O.
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4.3 IP-algebras and Pl-coalgebras

In Jeavons, Cohen & Pearson [2], the significance of the Inv(Pol(—)) functor
is shown. Intuitively, the set of relations Inv(Pol(R)) is exactly those relations
which can be expressed by problem instances in GCP(R), where GCP(R) is
the collection of instances (X, ¥') of generalised combinatorial problems where
every relation in ¥’ is an element of R.

Since Pol(Inv(Pol(R))) = Pol(R), it stands to reason that every object
R in Ap is mapped to a Pl-coalgebra. In Jeavons [1], is shown that Pol(R)
determines (up to polynomial-time reductions) the complexity of R. By show-
ing that Pol(R) has to satisfy at least one out of six conditions, the possible
choices of Pol(R) is reduced, and each one of the conditions is associated with
a complexity class.

5 Conclusion

The complexity of constraint satisfaction problems is an important issue and
certainly worthy of the attention it has received in the past. By formulating
the problem in this setting it is hoped that further analysis, using results from
category theory, is simplified and it is quite possible much work already done
in this field can be adapted more or less easily.

5.1 Future Work

Future work naturally includes further examination of the (co-)algebras pre-
sented in this paper. Further analysis of the minimality characterisation given
by the PS-algebras would certainly be interesting, and, due to the importance
of computational complexity, the PI-coalgebras deserve some attention.

As was noted by one of the anonymous referees of this paper, studying
categories with more structure than a mere ordering could be of interest, say,
categories with morphisms expressing the dynamics of partially solving con-
straint problems. The suggested reference, Mukai [5], looks very interesting.

Linkoping, March, 2000
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