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The aim of this work is to present an analytical solution to reduce the stress concentration factor (SCF)
around a circular hole in an isotropic homogeneous plate subjected to far-field uniaxial loading. In this
paper the elastic response of an inhomogeneous annular ring made of functionally graded material
(FGM), inserted around a hole of a homogeneous plate, is studied. By assuming that Young’s modulus var-
ies in the radial direction with power law and that Poisson’s ratio is constant, the governing differential
equations for plane stress conditions are obtained. Using stress function a general solution in explicit
closed form is presented and the SCF investigated to highlight the inhomogeneity effects. Furthermore,
the explicit solution for an inner homogeneous ring, with different properties with respect to those of
the plate, is explicitly obtained and numerical results are compared between homogeneous ring and
FGM ring.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Functionally graded materials (FGMs) are composites made of
two or more constituent phases with a continuously variable com-
position. These materials are usually associated with particulate
composite where the volume fraction of particles varies in one or
several directions; at the macroscopic scale the composite may
be assumed inhomogeneous and often locally isotropic. In view
of the growing importance of these materials, an accurate investi-
gation into elastic deformation for inhomogeneous structures is
devoted to improve their performance in applications. Birman
and Byrd (2007) have presented a review of the principal develop-
ments in functionally graded materials and of the diverse areas of
interest of this topic for a successful implementation of these
materials. The concept of FGM is used by many authors to model
the interphase zone around an inclusion in periodic composite to
develop homogeneization methods and determine effective elastic
properties of the composite (Lutz and Zimmerman, 1996; Artioli
et al., 2010; Dryden and Batra, 2013). Many authors investigate
the response of FGM composite systems with different geometries
such as hollow cylinders, coatings on substrate and sandwich pan-
els to obtain benchmarks for the accuracy of numerical solutions
and to provide useful information in FGM design (Batra, 2011;
Theotokoglou and Tampouloglou, 2008; Hosseini-Hashemi et al.,
2013; Sburlati et al., 2013).
This work deals with the problem of maximizing the strength of
a homogeneous plate with a circular hole subjected to uniaxial
load by using an annular ring around the hole made of FGM with
properties varying in radial direction. We shall show that, with a
suitable choice of the ring graded material properties, the maxi-
mum value of the hoop stress, computed on all the material re-
gions, can be reduced with respect to the homogeneous plate
value. This can be useful to prevent mechanical failure in the entire
plate.

A biomimetic approach regarding the fact that blood vessel
holes in load-bearing bones are not normally involved in structural
failures suggested the idea of this paper. Actually, some studies
have found that the increase of strength is due to a radial distribu-
tion of the elastic modulus around the holes which reduce the
stress concentration factor (SCF) when compared to those in
homogeneous plates (Buskirk et al., 2002; Nagpal et al., 2012).
The method to reduce SCF around circular or elliptic holes applying
reinforced homogeneous layers embedded in homogeneous plate
has been widely used in applications; however in so doing, the
interfacial mismatch-induced stresses become relevant for the
mechanical integrity of the plate and an optimum design also re-
quires reduction of interfacial stress by material combination and
geometric configuration (Chao et al., 2009; Sburlati, 2009a). In a
similar way, the interest of some authors is devoted to reducing
the mismatch of thermo mechanical properties at the interface
by using FGM to increase the resistance of film/coating to contact
or impact problems (Suresh, 2001; Sburlati, 2002; Sburlati, 2004;
Kashtalyan and Menshykova, 2008; Sburlati, 2012a).
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Fig. 1. Homogeneous medium subjected to a far-field uniaxial load with an FGM
ring around the hole.
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In recent years, researchers have studied the problem to reduce
SCF around holes by using entire FGM plates. Kubair and Bhanu-
Chandar (2008) have numerically investigated the effect of mate-
rial inhomogeneity on the SCF due to a circular hole in functionally
graded panels by using different graded laws (potential and expo-
nential); a parametric study was performed using a finite element
approach. The authors have shown that a desired reduction in the
SCF is obtained when the material properties progressively in-
crease away from the hole. On the other hand, the SCF is least af-
fected by Poisson’s ratio. A different approach was used by Yang
et al. (2010) to study the two-dimensional stress distribution of a
functionally graded plate with circular hole under arbitrary con-
stant loads. By using the method of piece-wise homogeneous lay-
ers the solution was obtained by means of complex variable
functions. The stress reduction was investigated and it was also
found that Poisson’s ratio variation influences the reduction of
the SCF less. In Mohammadi et al. (2011), a radial expression of
Young’s modulus depending on two adjustable parameters was
used. This assumption also permits us to model a plate where
the FGM behavior is essentially bounded in a region around the
hole. The SCF in a plate made of functionally graded material
was considered by assuming Young’s modulus and Poisson’s ratio
exponentially variable in the radial direction. In the cases of biaxial
tension and pure shear load the SCF was obtained in terms of Kum-
mer’s functions and the influence of the inhomogeneity effects
were investigated. We remark that most of the above mentioned
studies concern entire FGM plates; however, in practice, it is often
not feasible to manufacture an entire plate with graded material
and it is sufficient to use only a thin FGM coating around a hole
to mitigate the SCF (Sburlati, 2012b).

In this paper an analytical solution in closed form for a
homogeneous plate subjected to uniaxial load with a radially
functional graded ring inserted around the inner hole is ob-
tained. To study the local effect of the hole we assume the infi-
nite medium model for the homogeneous isotropic plate. The
graded material in the thickness of the ring is considered with
Young’s modulus that varies with a monotonic power law; Pois-
son’s ratio is assumed constant and equal in the ring and in the
isotropic medium. This last assumption is motivated by numeri-
cal investigations concerning the entire FGM plate. Furthermore,
we assume the ring and the plate perfectly connected together.
The Airy stress function is introduced by plain stress conditions
to obtain the explicit elastic solution in closed form (Nie and Ba-
tra, 2010; Sburlati, 2009b). Then we compare these solution with
the case of a homogeneous ring. The investigation of numerical
results permits us to give information on the constitutive and
geometric parameters to optimize the strength of the plate by
material tailoring. Maple program was used for formal calcula-
tions and numerical results.
2. Problem formulation

To analyze the local effects around the hole in a plate we as-
sume the model of an infinite elastic medium with a circular hole
of radius a subjected to a inplane uniform far-field uniaxial load P
as shown in Fig. 1. The effects of two different rings around the
hole ða 6 r 6 bÞ are studied: a homogeneous (HM) isotropic ring
and a functionally graded (FG) ring. The plane stress assumptions
are introduced and in the FGM we consider radial variation of
Young’s modulus and Poisson’s ratio constant.

By using a cylindrical coordinate system ð0; r; h; zÞ the equations
of equilibrium in the absence of body forces are
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where rr;rrh and rh are the stress components. The displacement
components ur and uh are related to the strains er; eh and erh by
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and the compatibility equation is
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The plane stress constitutive equations are

er ¼
1

EðrÞ rr � mrhð Þ; eh ¼
1

EðrÞ rh � mrrð Þ; erh ¼
2ð1þ mÞ

EðrÞ rrh:

ð2:4Þ

The specific boundary conditions of the problem shown in Fig. 1
are introduced by considering the uniform stress solution for the
homogeneous plate without hole (Sadd, 2009). Actually, we know
that the presence of the hole acts to disturb this uniform field but
we expect this disturbance to be local in nature. The disturbed field
will decrease to zero as we move far away from the hole. Based on
this we transform the uniform stress from Cartesian coordinates to
polar coordinates; in this way we choose the following far-field
conditions

rrð1; hÞ ¼
P
2
ð1þ cos 2hÞ; rrhð1; hÞ ¼ �

P
2

sin 2h ð2:5Þ

and the stress-free hole conditions in the form

rrða; hÞ ¼ 0; rrhða; hÞ ¼ 0: ð2:6Þ

Furthermore, at the interface ðfor r ¼ bÞ we assume that the
ring and the plate are perfectly bonded together; so we require

rrðb; hÞ½ � ¼ 0; rrhðb; hÞ½ � ¼ 0; ð2:7Þ

urðb; hÞ½ � ¼ 0; uhðb; hÞ½ � ¼ 0: ð2:8Þ
3. Solution to the problem

To solve our problem we use the Airy stress function uðr; hÞ; the
stress components are
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By taking into account the boundary conditions (2.5) we as-
sume the Airy stress function in the form

u r; hð Þ ¼ u0ðrÞ þu2 rð Þ cosð2hÞ: ð3:2Þ

The compatibility Eq. (2.3) in the regions in which the material
is homogeneous
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r2r2uðr; #Þ ¼ 0: ð3:3Þ

Concerning the functional ring, we assume that the variation of
Young’s modulus is

EðrÞ ¼ Eb
r
b

� �m
; ð3:4Þ

where m is a real positive number while Poisson’s ratio m is assumed
constant and equal to the value of the homogeneous medium. In
this region the compatibility conditions (2.3), by substituting (3.2)
in (2.4) and assuming (3.4), become
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4. Homogeneous inner ring

The solution for the case of a homogeneous ring around a hole
of a homogeneous plate with different elastic modulus is per-
formed in this section. We assume that elastic moduli are Ea and
Eb, respectively in the ring and plate. We introduce the apexes ðiÞ
and ðoÞ to indicate respectively the quantities related to the inner
region ða 6 r 6 bÞ and the outer region ðr P bÞ.

The solution (3.2) of Eqs. (3.5) and (3.6) for m ¼ 0 assumes, in
the outer region, the form

uðoÞ r; hð Þ ¼ z1 lnðrÞ þ z2r2 þ z3r2 lnðrÞ
� �

P

þ z24 þ
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P cos 2h; ð4:1Þ

where z1; z2; z3 and z24; z23; z21; z22 are suitable constants. For the in-
ner region, taking into account the interface conditions (2.7, 2.8),
the solution of Eqs. (3.5) and (3.6) are
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The explicit solution is now written, by using Eq. (3.1) and
boundary conditions (2.6), (2.7) in terms of the constants
a2;a22;a24. In the inner region we have
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In the outer region we have
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The remaining constants a2;a22;a24 are obtained by imposing
the interface conditions on the displacement (2.8). So doing we get

a2 ¼ �
Eab2
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In order to investigate the hoop stress near the hole we intro-
duce the following quantities

KðHMÞ
a ¼ rðiÞh a;p=2ð Þ

P
¼ 4 a2 � 3a2a22 þ

a24
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� �
: ð4:10Þ

For an isotropic homogeneous plate we obtain the SCF by putt-
ing a2 ¼ 1=4; a22 ¼ 0 and a24 ¼ a2=2. Furthermore, we consider
the normalized hoop stress at the interface in the form

KðHMÞ
b ¼ rðiÞh b;p=2ð Þ
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� 3
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Actually, the decrease of Young’s modulus in the inner ring with
respect to the value of the entire plate leads to an increase of the
hoop stress at the interface (for r ¼ b). For this reason, if
KðHMÞ

a > KðHMÞ
b , the SCF is at the rim of the hole, while on the other

hand, if KðHMÞ
a < KðHMÞ

b the SCF occurs at the interface between the
rim of the hole and the plate. Numerical investigations will be per-
formed in Section 6.

5. FGM inner ring solution

The solution for the stress function in an FGM inner ring is ob-
tained by solving compatibility Eqs. (3.5) and (3.6). The solution
(3.2) becomes

uðFGÞ r; hð Þ ¼ C1 rm=2þq=2þ1 þ C2 rm=2�q=2þ1� �
P þ rmþ1ðD1A1ðrÞ

þ D2A2ðrÞ þ D3B1ðrÞ þ D4B2ðrÞÞP cos 2h; ð5:1Þ

where

A1 rð Þ ¼ r�m=2�a=2; A2 rð Þ ¼ r�m=2þa=2;

B1 rð Þ ¼ r�m=2�b=2; B2 rð Þ ¼ r�m=2þb=2
ð5:2Þ

and C1;C2;D1;D2;D3;D4 are constants to be found. We have also set
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ð5:3Þ
Depending on the specific values of m and m, the coefficients a; b
can assume real or complex values. In this work we assume that m
is in the range

0 6 m 6
8ð2�

ffiffiffi
3
p
Þ

m� 7þ 4
ffiffiffi
3
p : ð5:4Þ

This assumption, which is true for many cases of applicative
interest, ensures that a and b are real (see also Section 6).

The stress and displacement fields, in the inner FG region, are
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where the quantities M11;M12M13;M14;M21;M22;M23;M24 are coeffi-
cients depending on m and m (see Appendix).

For the outer homogeneous region we assume the stress func-
tion in the form (4.1) and we obtain

rðoÞr ¼ P
1
2
þ z1

r2

� �
þ 1

2
� 4z24

r2 �
6z23

r4

� �
P cos 2h;

rðoÞh ¼ P
1
2
� z1

r2

� �
� 1

2
� 6z23

r4

� �
P cos 2h;

rðoÞrh ¼ �
1
2
þ 2z24

r2 þ
6z23

r4

� �
P sin 2h;

uðoÞr ¼
1� mð ÞPr

2Eb
� 1þ mð ÞPz1

Ebr
þ 1

Eb

1þ mð Þr
2

þ 4z24

r
þ 2 ð1þ mÞz23

r3

� �
P cos 2h;

uðoÞh ¼ �
1þ mð Þ

Eb

r
2
þ z24

r
� 2z23

r3

� �
P sin 2h:

ð5:6Þ

By using boundary and interface conditions (2.5)–(2.8) we are
able to explicitly write the constants D1;D2;D3;D4;C1;C2 for the in-
ner region and z1; z23; z24 for the solution in the outer region (see
Appendix). The behavior of the stress components will be investi-
gated in the next section.



Fig. 2. Normalized radial stress in the radial direction for h ¼ p=2 ðm ¼ 0:3Þ.

Fig. 3. Angular variation of the normalized radial stress for r ¼ 2a.
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In a similar way as the previous Section 4 for homogeneous
ring, we introduce the following quantities

KðFGÞ
a ¼ rðFGÞ

h ða;p=2Þ
P

¼ mþ qþ 2ð Þ m� qþ 2ð Þqam=2�q=2b�m=2þ1

2a 1þ mð Þm mþ qþ 2ð Þa�q bq=2 � m� qþ 2ð Þb�q=2
� �

þ b� að Þam=2

2a
aa�a=2D1 � bab=2D4
� �

:

ð5:7Þ

We remark that this expression assumes the conventional SCF
value for a homogeneous plate by assuming a ¼ b or m ¼ 0. Fur-
thermore, we define the quantities
KðFGÞ
b ¼ rðFGÞ

h ðb;p=2Þ
P

¼ 1� 6z23

b4 �
z1

b2 : ð5:8Þ

If KðFGÞ
a > KðFGÞ

b , the SC is at the rim of the hole, instead if
KðFGÞ

a < KðFGÞ
b the SCF occurs at the interface. Numerical investiga-

tions will be performed in Section 6.
6. Numerical results

In this section numerical results are obtained to optimize the
graded elastic properties of the ring in order to reduce SCF in the
entire homogeneous plate. We compare the two solutions pre-
sented in Sections 4 and 5 for a homogeneous ring (HM-ring)
and a functionally graded ring (FG-ring); furthermore, we compare
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the numerical results with those obtained for a homogeneous plate
with hole (HM-plate) by assuming E ¼ Eb.

In the numerical example we take b=a ¼ 3; m ¼ 0:5
ðEa ffi 0:57EbÞ; m ¼ 0:3. In Fig. 2 the behavior of the normalized ra-
dial stress rr=P in the thickness of the plate for h ¼ p=2 is pre-
sented; the maximum value occurs in the ring and decreases
with respect to the homogeneous case. The normalized radial
stress for r ¼ 2a in terms of the angular distribution is shown in
Fig. 3 and presents a reduction of the maximum value in the ring
in comparison with the homogeneous stiffener plate. In Fig. 4 the
normalized hoop stress rh=P in the thickness of the plate at
h ¼ p=2 is shown; we observe the reduction of the stress value at
the rim of the hole (SCF) due to the graded properties and the con-
tinuity of the stress on the interface in comparison with the homo-
geneous ring. In Fig. 5 the normalized hoop stress in the rim of the
circular hole ðr ¼ aÞ in terms of the angular distribution shows that
the reduction of the stress is comparable with the reduction ob-
tained by using HM ring but the gap on the interface is fully
avoided by using material inhomogeneity. In Fig. 6 the normalized
Fig. 4. Normalized hoop stress in the ra

Fig. 5. Angular variation of the normalized ho
tangential stress rrh=P is shown for h ¼ p=4; the variation with the
angular distribution is shown in Fig. 7 for r ¼ 2a.

Then, in Fig. 8, by considering b=a ¼ 3; m ¼ 0:3; h ¼ p=2 and
different values of m in the range ð0 6 m 6 9Þ we plot the hoop
stress in the radial direction. We observe that the maximum value
of hoop stress is no longer necessarily in the inner part of the ring
r ¼ a as in the homogeneous case. As m increases, one observes
from Fig. 8 that KðFGÞ

a decreases while KðFGÞ
b increases. For this reason

the aim to minimize the hoop stress to prevent failure cannot take
into account only the value in r ¼ a. A numerical analysis can be
done to find the value of m for which one obtains the choice
m ¼ ~m where KðFGÞ

a ¼ KðFGÞ
b (see Eqs. (5.7) and (5.8)). In our numer-

ical case this condition gives ~m ffi 1:10 corresponding to
Ea=Eb ffi 0:30. For values of m < ~m we have KðFGÞ

a < KðFGÞ
b and so the

hoop stress has its maximum value for r ¼ a. For values of m > ~m
we have KðFGÞ

a > KðFGÞ
b and the maximum hoop stress occurs at the

interface r ¼ b.
In a similar way, for the homogeneous ring case, with two dif-

ferent Young’s moduli Ea and Eb related by equation:
dial direction for h ¼ p=2 ðm ¼ 0:3Þ.

op stress on the rim of the circular hole.



Fig. 8. Normalized hoop stress in radial direction for different inhomogeneity parameter m in plate with FGM ring ðb ¼ 3a; h ¼ p=2; m ¼ 0:3Þ.

Fig. 7. Angular variation of the normalized tangential stress for r ¼ 2a.

Fig. 6. Normalized tangential stress in the radial direction for h ¼ p=4 ðm ¼ 0:3Þ.
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Fig. 9. Normalized hoop stress in radial direction for different m values in plate with HM ring ðb ¼ 3a; h ¼ p=2; m ¼ 0:3Þ.
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Ea=Eb ¼ ða=bÞm, in Fig. 9 we plot the normalized hoop stress in the
radial direction for different values of m. At the interface we ob-
serve the gap due to the mismatch of the material; as KðHMÞ

a de-
creases, KðHMÞ

b increases and the gap at the interface increases.
The corresponding value of m ¼ m̂ where KðHMÞ

a ¼ KðHMÞ
b (see Eqs.

(4.10) and (4.11)) occurs for m̂ ¼ 0:85 corresponding to a ratio
Ea=Eb ffi 0:39.
7. Concluding remarks

In this paper analytical solutions in closed form useful to inves-
tigate the effects of material inhomogeneity, to reduce SCF around
a hole of a homogeneous plate, are obtained. Numerical results and
comparisons with solutions for a conventional homogeneous
material inner ring can be helpful to material scientists in order
to design new materials according to the required performances.
The conclusions from the parametric study are the following:

1. A required reduction in the SCF of the entire homogeneous plate
can be obtained with FGM ring in which Young’s modulus pro-
gressively increases away from the center of the hole in an opti-
mized way.

2. The stress concentration variation depends only on the inhomo-
geneity parameter m and the ratio b=a.

3. Numerical comparisons with the solution for a homogeneous
ring permit us to show that the SCF is less influenced by the var-
iation of Poisson’s ratio.

Thus, the explicit solutions obtained allow us to better describe
a compositional variation of the elastic properties near the holes in
the thickness of the annular ring; compositional variations that, if
optimized, can lead to increase the load bearing capacity in the
plate (see, for example Götzen et al., 2003; Venkataraman et al.,
2003).
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Appendix A

We write the coefficient and constant values for the FGM ring
case.

M11 ¼
m2 þ 2 1� að Þm� að2� aÞ
� �

m
2ðmþ aÞ �m� a� 6

mþ a
;

M12 ¼
m2 þ 2 aþ 1ð Þmþ að2þ aÞ
� �

m
2ðm� aÞ �mþ a� 6

m� a
;

M13 ¼
m2 þ 2 1� bð Þm� bð2� bÞ
� �

m
2ðmþ bÞ �m� b� 6

mþ b
;

M14 ¼
m2 þ 2bþ 2ð Þmþ bð2þ bÞ
� �

m
2ðm� bÞ �mþ b� 6

m� b
;

M21 ¼
1

96
m2 4m� 28ð Þ þm b2 � a2 þ 28b� 4bm� 24m� 88

� �� �
þ 1

96
�b3 � 6b2 þ 6a2 þ a2bþ 64b� 192m� 192
� �

;

ð8:1Þ

M22 ¼
1

96
m2 4m� 28ð Þ þm a2 � b2 � 28aþ 4am� 24m� 88

� �� �
þ 1

96
a3 � 6a2 þ 6b2 � b2a� 64a� 192m� 192
� �

;

M23 ¼
1

96
m2 4m� 28ð Þ �m a2 � b2 þ 28b� 4bmþ 24mþ 88

� �� �
� 1

96
�b3 þ 6b2 � 6a2 þ a2bþ 64bþ 192mþ 192
� �

;

M24 ¼
1

96
m2 4m� 28ð Þ �m b2 � a2 � 28aþ 4amþ 24mþ 88

� �� �
� 1

96
a3 � 6b2 þ 6a2 � b2a� 64aþ 192mþ 192
� �

:

Furthermore, we have

z1 ¼ �
b2

2

þ
b2 m� qþ 2ð Þ bq=2 � b�q=2aq

� �
mþ 2þ qð Þ

2m 1þ mð Þ mþ qþ 2ð Þbq=2 � m� qþ 2ð Þaq b�q=2
� � ; ð8:2Þ

and



z23 ¼ �
b4

4
� bmþ3 mþ bþ 2ð ÞB2 bð Þ

4
D4 �

bmþ3 m� aþ 2ð ÞA1 bð Þ
4

D1

þ bmþ3 m� bþ 2ð Þ a� bð ÞA2 að ÞB1 bð Þ þ 2b mþ aþ 2ð ÞA2 bð ÞB1 að Þð ÞB2 að Þ
4 aþ bð ÞB1 að ÞA2 að Þ D4

þ bmþ3 � mþ aþ 2ð Þ a� bð ÞA2 bð ÞB1 að Þ þ 2a m� bþ 2ð ÞA2 að ÞB1 bð Þð ÞA1 að Þ
4 aþ bð ÞB1 að ÞA2 að Þ D1; ð8:3Þ

z24 ¼
b2

2
þ bmþ1 m� aþ 6ð ÞA1 bð Þ

4
D1 þ bmþ1 mþ bþ 6ð ÞB2 bð Þ

4
D4 þ bmþ1 a� bð Þ mþ aþ 6ð ÞA1 að ÞA2 bð Þ

4 aþ bð ÞA2 að Þ � a m� bþ 6ð ÞA1 að ÞB1 bð Þ
2 aþ bð ÞB1 að Þ

� �
D1

� bmþ1 a� bð Þ m� bþ 6ð ÞB1 bð ÞB2 að Þ
4 aþ bð ÞB1 að Þ þ b mþ aþ 6ð ÞA2 bð ÞB2 að Þ

2 aþ bð ÞA2 að Þ

� �
D4 ð8:4Þ
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C1 ¼
m� qþ 2ð Þa�q b1�m=2

1þ mð Þm mþ qþ 2ð Þa�q bq=2 � m� qþ 2ð Þb�q=2
� � ;

C2 ¼ �
mþ 2þ qð Þb1�m=2

1þ mð Þm mþ qþ 2ð Þa�q bq=2 � m� qþ 2ð Þb�q=2
� � :

ð8:5Þ

Finally we get

D2 ¼ �
2bB2 að Þ

aþ bð ÞA2 að ÞD4 þ
a� bð ÞA1 að Þ
aþ bð ÞA2 að ÞD1; D1 ¼

D11

K
;

D3 ¼ �
a� bð ÞB2 að Þ
aþ bð ÞB1 að ÞD4 �

2aA1 að Þ
aþ bð ÞB1 að ÞD1 D4 ¼

D44

K
;

ð8:6Þ

where

D11 ¼4bbmb aþbð Þ mþa�2ð Þ 1þmð Þþ2M12�2M22ð ÞA2 að ÞA2 bð Þ2B2 bð ÞB2 að Þ

þ2amb a2�b2� �
m�b�2ð Þ 1þmð Þþ2M13�2M21ð ÞA2 bð ÞA2 að Þ2B2 að Þ2

�2bbm aþbð Þ2 mþb�2ð Þ 1þmð Þþ2M14�2M23ð ÞA2 bð ÞA2 að Þ2B2 bð Þ2;

D44 ¼ �4ba aþ bð Þ m� b� 2ð Þ 1þ mð Þð
þ2M13 � 2M21ÞA2 að ÞA2 bð ÞB2 að Þ
þ2a�m bbm a2 � b2� �

mþ a� 2ð Þ 1þ mð Þð
þ2M12 � 2M22ÞA2 bð Þ2B2 bð Þ þ 2b aþ bð Þ2 m� a� 2ð Þ 1þ mð Þð
þ2M11 � 2M24ÞA2 að Þ2B2 bð Þ; ð8:7Þ

K ¼ k1 b2m a�mA2 bð Þ2B2 bð Þ2 þ k2 bmA2 bð Þ2B2 að Þ2

þ k3 bmA2 að ÞA2 bð ÞB2 að ÞB2 bð Þ þ k4 bmA2 að Þ2B2 bð Þ2

þ k5 amA2 að Þ2B2 að Þ2 ð8:8Þ

and the coefficients ki are in terms of m and m in the following form

k1 ¼ 2 a2 � b2� �
mþ aþ 4� 2m�M22ð ÞM14ð

� mþ bþ 4� 2m�M23ð ÞM12Þ
þ a2 � b2� �

mþ aþ 2ð Þm�m� a� 10ð ÞM23ð
� mþ bþ 2ð Þm�m� b� 10ð ÞM22Þ
þ2 a� bð Þ2 aþ bð Þ 1þ mð Þ m� 3ð Þ;

k2 ¼ aþbð Þ2 m�bþ2ð Þm�mþb�10þ2M13ð ÞM22ð
�2 mþaþ4�2mð ÞM13Þþ aþbð Þ2 2 m�bþ4�2m�M21ð ÞM12ð
� mþaþ2ð Þm�m�a�10ð ÞM21Þ�2 aþbð Þ3 1þmð Þ m�3ð Þ;
k3 ¼ 2a aþ bð Þ 2 mþ bþ 4� 2m�M23ð ÞM13ð
� m� bþ 2ð Þm�mþ b� 10ð ÞM23Þ
þ2b aþ bð Þ 2 mþ aþ 4� 2m�M22ð ÞM11ð
� m� aþ 2ð Þm�mþ a� 10ð ÞM22Þ
þ2 aþ bð Þb mþ aþ 2ð Þm�m� a� 10þ 2M12ð ÞM24

þ2a aþ bð Þ mþ bþ 2ð Þm�m� b� 10þ 2M14ð ÞM21

�4 aþ bð Þ m� bþ 4� 2mð ÞaM14ð
þ m� aþ 4� 2mð ÞbM12 � 4ab 1þ mð Þ m� 3ð ÞÞ;
k4 ¼ 2 aþ bð Þ2 m� aþ 4� 2m�M24ð ÞM14ð
� mþ bþ 4� 2m�M23ð ÞM11Þ þ aþ bð Þ2 m� aþ 2ð Þmðð
þa�m� 10ÞM23 � mþ bþ 2ð Þm�m� b� 10ð ÞM24Þ
�2 aþ bð Þ3 1þ mð Þ m� 3ð Þ;
k5 ¼ a2 � b2� �
2 m� bþ 4� 2m�M21ð ÞM11ð

� m� aþ 2ð Þm�mþ a� 10ð ÞM21Þ
þ a2 � b2� �

2 �mþ a� 4þ 2mþM24ð ÞM13ð
þ m� bþ 2ð Þm�mþ b� 10ð ÞM24Þ
þ2 a� bð Þ2 aþ bð Þ 1þ mð Þ m� 3ð Þ: ð8:9Þ
References

Artioli, E., Bisegna, P., Maceri, F., 2010. Effective longitudinal shear moduli of
periodic fibre-reinforced composites with radially-graded fibres. International
Journal of Solids and Structures 47, 383–397.

Batra, R.C., 2011. Material tailoring and universal relations for axysimmetric
deformations of functionally graded rubberlike cylinders and spheres.
Mathematics and Mechanics of Solids 16, 729–738.

Birman, V., Byrd, L.W., 2007. Modeling and analysis of functionally graded materials
and structures. Applied Mechanics Review 60, 195–216.

Buskirk, S.R., Venkataraman, S., Ifju, P.G., Rapoff, A.J., 2002. Functionally graded
biomimetic plate with hole. In: SEM Annual Conference & Exposition on
Experimental and Applied Mechanics.

Chao, C.K., Lu, L.M., Chen, C.K., Chen, F.M., 2009. Analytical solution for a
reinforcement layer bonded to an elliptic hole under a remote uniform load.
International Journal of Solids and Structures 46, 2959–2965.

Dryden, J.R., Batra, R.C., 2013. Optimum Young’s modulus of a homogeneous
cylinder energetically equivalent to a functionally graded cylinder. Journal of
Elasticity 110, 95–110.

Götzen, N., Cross, A.R., Ifju, P.G., Rapoff, A., 2003. Understanding stress
concentration about a nutrient foramen. Journal of Biomechanics 36 (10),
1511–1521.

Hosseini-Hashemi, Sh., Salehipuor, H., Atashipour, S.R., Sburlati, R., 2013. On the
exact in-plane and out-of-plane free vibration analysis of thick functionally

http://refhub.elsevier.com/S0020-7683(13)00281-3/h0005
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0005
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0005
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0010
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0010
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0010
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0015
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0015
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0020
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0020
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0020
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0025
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0025
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0025
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0030
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0030
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0030
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0035
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0035


3658 R. Sburlati / International Journal of Solids and Structures 50 (2013) 3649–3658
graded rectangular plates: explicit 3-D elastic solutions. Composites Part B:
Engineering, Composites: Part B 46 (1), 108–115.

Kashtalyan, M., Menshykova, M., 2008. Three-dimensional analysis of a functionally
graded coating/substrate system of finite thickness. Proceedings of the Royal
Society: A 366, 1821–1826.

Kubair, D.V., Bhanu-Chandar, B., 2008. Stress concentration factor due to a circular
hole in functionally graded panels ander uniaxial tension. International Journal
of Mechanical Sciences 50, 732–742.

Lutz, M.P., Zimmerman, R.W., 1996. Effect of the interphase zone on the bulk
modulus of a particular composite. ASME, Journal of Applied Mechanics 63,
855–861.

Mohammadi, M., Dryden, J.R., Jiang, L., 2011. Stress concentration around a hole in a
radially inhomogeneous plate. International Journal of Solids and Structures 48,
483–491.

Nagpal, S., Jain, N., Sayal, S., 2012. Stress concentration and its mitigation
techniques in flat plate with singularities: a critical review. Engineering
Journal 16 (1).

Nie, G.J., Batra, R.C., 2010. Exact solutions and material tayloring for functionally
graded hollow circular cylinders. Journal of Elasticity 99, 179–201.

Sadd, M.H., 2009. Elasticity, second ed. Academic Press.
Sburlati, R., 2002. The contact behavior between a foam core sandwich plate and a

rigid indenter. Composites Part B: Engineering 33, 325–332.
Sburlati, R., 2004. An exact solution for the impact law in thick elastic plates.

International Journal of Solids and Structures 41 (9–10), 2539–2550.
Sburlati, R., 2009a. Adhesive elastic contact between a symmetric indenter and
elastic film/substrate systems. International Journal of Solids and Structures 46
(5), 975–988.

Sburlati, R., 2009b. Three-dimensional analytical solution for an axisymmetric
biharmonic problem. Journal of Elasticity 95 (1–2), 79–97.

Sburlati, R., 2012a. Elastic solution in a functionally graded coating subjected to a
concentrated force. Journal of Mechanics of Materials and Structures 7 (4), 401–
412.

Sburlati, R., 2012b. Analytical elastic solutions for pressurized hollow cylinders with
internal functionally graded coatings. Composite Structures 94 (12), 3592–
3600.

Sburlati, R., Atashipour, S.R., Hosseini-Hashemi, Sh., 2013. Study on the effect of
functionally graded coating layers on elastic deformation of a thick circular
plate: a closed-form elasticity solution. Composite Structure 99 (1), 131–140.

Suresh, S., 2001. Graded materials for resistance to contact deformation and
damage. Science 292 (5526), 2447–2451.

Theotokoglou, E.E., Tampouloglou, I.H., 2008. The radially nonhomogeneous elastic
axisymmentric problem. International Journal of Solids and Structures 45,
6535–6552.

Venkataraman, S., Haftka, R.T., Rapoff, A.J., 2003. Structural optimization using
biological variable to help understand bones design holes. Structural and
Multidisciplinary Optimization 25, 19–34.

Yang, Q., Gao, C.F., Chen, W., 2010. Stress analysis of a functionally graded material
plate with a circular hole. Archive of Applied Mechanics 80, 895–907.

http://refhub.elsevier.com/S0020-7683(13)00281-3/h0035
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0035
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0040
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0040
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0040
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0045
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0045
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0045
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0050
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0050
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0050
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0055
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0055
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0055
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0060
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0060
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0060
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0065
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0065
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0070
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0075
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0075
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0080
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0080
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0085
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0085
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0085
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0090
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0090
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0095
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0095
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0095
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0100
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0100
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0100
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0105
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0105
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0105
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0110
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0110
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0115
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0115
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0115
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0120
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0120
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0120
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0125
http://refhub.elsevier.com/S0020-7683(13)00281-3/h0125

	Stress concentration factor due to a functionally graded ring around  a hole in an isotropic plate
	1 Introduction
	2 Problem formulation
	3 Solution to the problem
	4 Homogeneous inner ring
	5 FGM inner ring solution
	6 Numerical results
	7 Concluding remarks
	Acknowledgments
	Appendix A 
	References


