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Abstract

We propose and analyze the ReLPM (Real Leja Points Method) for evaluating the propagator ’(4tB)v via
matrix interpolation polynomials at spectral Leja sequences. Here B is the large, sparse, nonsymmetric matrix
arising from stable 2D or 3D 8nite-di$erence discretization of linear advection–di$usion equations, and ’(z)
is the entire function ’(z) = (ez − 1)=z. The corresponding sti$ di$erential system ẏ(t) = By(t) + g; y(0) = y0,
is solved by the exact time marching scheme yi+1 = yi + 4ti’(4tiB)(Byi + g), i = 0; 1; : : : ; where the
time-step is controlled simply via the variation percentage of the solution, and can be large. Numerical
tests show substantial speed-ups (up to one order of magnitude) with respect to a classical variable step-size
Crank–Nicolson solver.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Spatial discretization of linear autonomous advection–di$usion equations, like
9u
9t (x; t) = 4u(x; t) − 〈�;∇u(x; t)〉 + g(x); x∈
; t ¿ 0;
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u(x; 0) = u0(x); x∈
;

u(x; t) = b(x); x∈ 9
; (1)

where 
 ⊂ Rp and � = (�i)∈Rp (p = 2; 3), yields naturally large systems of ordinary di$erential
equations of the form

ẏ(t) = By(t) + g; t ¿ 0;

y(0) = y0; (2)

where B is a sparse nonsymmetric n × n matrix: the solution of this system can be written as

y(t) = y0 + t’(tB)(By0 + g); (3)

where ’(z) is the entire function

’(z) =
ez − 1

z
(4)

leading to the numerical scheme

yi+1 = yi +4ti’(4tiB)vi; vi = Byi + g; i = 0; 1; : : : (5)

with 4ti = ti+1 − ti, which is exact for linear systems like (2) (cf. [12]). The solution of system (2)
is best known in the form

y(t) = exp(tB)(y0 + B−1g) − B−1g

but with the use of the operator function ’, there is no linear system to solve.
Starting from the pioneering work in the 1980s, see, e.g., [6,9,35,37,38], in several papers explicit

time integration schemes (exponential integrators) have been proposed for the solution of spatially
discretized evolution problems like (2), which rest on the possibility of approximating eCciently
the propagators exp(4tB)v or ’(4tB)v, where v∈Rn is a given vector, by polynomial methods;
see, e.g., [2,3,9–12,23,24,26–28,34,35] and the recent survey paper [22]. All such schemes share
the feature of being explicit, exact for linear autonomous problems, and superlinearly convergent
in the approximation of the propagators, and thus represent an appealing alternative to classical
8nite-di$erence solvers. In particular, exactness entails that the time-steps 4ti can be chosen, at
least in principle, arbitrarily large with no loss of accuracy.

Polynomial methods can be subdivided in two classes. We have Krylov-like methods, which are
based on the idea of projecting the propagator on a “small” Krylov subspace of the matrix via the
Arnoldi process, and typically involve long-term recurrences in the nonsymmetric case; see, e.g.,
[11,34,36] and [29] for another (nonstandard) Krylov-like approach. The second class consists of
methods based on polynomial interpolation or series expansion of the corresponding scalar analytic
function on a suitable compact subset containing the spectrum (or in general an �-pseudospectrum for
some � [39], or the 8eld of values) of the matrix (e.g. Faber and Chebyshev series, interpolation at
special points like Faber and FejPer points). They are conceived for approximating directly the matrix
function, and typically require some initial estimate of the underlying (pseudo)spectral structure.
For a survey and an extensive bibliography on polynomial methods for matrix functions, we refer
to the Ph. D. thesis [26], which contains several original convergence estimates for the Faber and
Chebyshev series methods and the FejPer points method. Despite the need of estimating (pseudo)
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spectra, this second class of methods turned out to be competitive with Krylov-based approaches,
especially on very large nonsymmetric problems, cf. [2,23–28].

In this paper, we propose and analyze the ReLPM (real Leja points method) for advection–di$u-
sion problems (1)–(2), which rests on (pseudo)spectral estimates via families of confocal ellipses,
and polynomial interpolation on real Leja sequences of the corresponding focal intervals. As known,
(1) represents a simpli8ed model, describing for example the transport of pollutants and suspended
particles in shallow water. It is worth noting, however, that the ReLPM could be useful also for more
complicated models, like nonautonomous advection–di$usion–reaction systems, for example within
operator splitting approaches [13,15], or as building-block of nonlinear exponential integrators [12].

The paper is organized as follows. In Section 2, we brieQy recall some basic results on the
approximation of analytic functions by interpolation at Leja sequences, and their extension to matrix
functions. In Section 3, we discuss the implementation of the ReLPM, with a special attention to
the key feature concerning (pseudo)spectral estimates. In Section 4, 8nally, we present a wide set of
tests on the numerical solution of 2D and 3D instances of the advection–di$usion problem (1)–(2).
The exponential integrator obtained coupling the time marching scheme (5) and ReLPM, with a
time stepping strategy based simply on the control of the variation percentage of the solution, shows
substantial speed-ups (up to one order of magnitude) with respect to a classical variable step-size
Crank–Nicolson solver.

2. Background on Leja points interpolation

In this section, we recall some basic classical results, concerning the approximation of analytic
functions on compact sets of the complex plane based on polynomial interpolation, as well as their
extension to the approximation of matrix functions.

De8ne B[0; r] = {w∈C: |w|6 r} and RC= C ∪ {∞}; if K ⊂ C is a compact set with more than
one point, then there is a function w = �(z) which maps RC \ K conformally onto RC \ B[0; 1] and
satis8es the conditions

�(∞) = ∞; lim
z→∞

�(z)
z

=
1
�
; �= cap(K); (6)

where �¿ 0 is called capacity of K (cf. [21, Theorem 3.14 and Collary]).
Sequences of Leja points {zj}∞

j=0 for the compact K are de8ned recursively as follows [18]: if z0
is an arbitrary 8xed point in K (usually such as |z0| = maxz∈K |z|, cf. [32]), the zj are chosen in
such a way that

j−1∏
k=0

|zj − zk | =max
z∈K

j−1∏
k=0

|z − zk |; j = 1; 2; : : : : (7)

By the maximum principle, the Leja points for K lie on 9K .
For any R¿ 0, de8ne now

�R = {z : |�(z)| = R=�}; KR the bounded domain with boundary �R; (8)

observe that K� = K , the compact KR has capacity R, and KR1 ⊆ KR2 if R16R2. Let f be an
analytic function on K : the extremal properties of Leja sequences make them suitable for polynomial
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interpolation. In fact, it is well-known [32,42] that the sequence of polynomials pm of degree
m that interpolate f on the Leja points z0; z1; : : : ; zm for K converges maximally to f on K ,
that is

lim sup
m→∞

‖f − pm‖1=mK =
�

Rmax
= lim sup

m→∞
‖f − p∗

m‖1=mK ; (9)

where ‖ · ‖K denotes the maximum norm on K , {p∗
m} the sequence of best uniform approximation

polynomials for f in K , and Rmax is the largest constant such that f is analytic on the interior of
KRmax . Observe that (9) implies superlinear convergence for entire functions (Rmax = ∞) and that it
also holds if we replace � and K with R and KR, respectively, for any R¿ 0 such that KR is de8ned
(e.g. for any �6R¡Rmax, but possibly also for R¡�).

Moreover, Leja sequences are attractive for interpolation at high-degree, in view of the stability
of the corresponding algorithm [32]. In fact, let fm = (f(x0); f(x1); : : : ; f(xm)), where {xj}m

j=0 are
arbitrary points of K and pm the interpolation polynomial in the Newton form of f at the {xj}m

j=0.
Then it is de8ned as map T :Cm+1 → Pm with T (fm) = pm. If we use the maximum norms

‖fm‖∞ = max
06j6m

|f(xj)|; ‖pm‖∞ =max
x∈K

|pm(x)|;

the condition number for the operator T is cond(T ) = ‖T‖ · ‖T−1‖, where ‖ · ‖ denotes the induced
norm. For many sequence of interpolation points the condition number cond(T ) grows exponentially
with the number of points, while it can be proved (cf. [8,32]) that if {xj}m

j=0 is a sequence of Leja
points for K , then

lim
m→∞(cond(T ))1=m = 1:

From these properties, a stable and eCcient polynomial approximation method for the matrix operator
’ can be derived (cf. (3), (4)). In fact, we have in general

Proposition 1 (Novati [26, Section 3.1, Theorems 22 and 23]). Let A∈Rn×n and v∈Rn. If {pm}
converges maximally to f on K and if !(A) ⊆ KR for some R¿ 0, then {pm(A)v} converges to
f(A)v. Moreover,

lim sup
m→∞

‖f(A)v− pm(A)v‖1=m2 6
R

Rmax
: (10)

As in the scalar case, property (10) of maximal convergence of the sequence of matrix interpolation
polynomials on Leja points can also be written as

lim sup
m→∞

‖f(A)v− pm(A)v‖1=m2 = lim sup
m→∞

‖f(A)v− p∗
m(A)v‖1=m2 : (11)

Observe that, when A is diagonalizable, A= X−1DX , we have

‖f(A)v− pm(A)v‖26 cond2(X ) · ‖v‖2 · ‖f − pm‖KR ; !(A) ⊆ KR;

which gives immediately (10) in view of (9).
In order to get more precise estimates on the rate of convergence of Leja points interpolation in

the superlinear case (entire matrix functions, as exp(A) and ’(A)), we can resort to known results
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for Faber series. In fact, the partial sums Fm(f) of Faber series for analytic functions f provide
another example of maximal convergence.

In the case when K is a convex compact subset of C with capacity �, symmetric with respect to
the real axis, for the exponential function it can be proved following [7,23] that:

‖exp − Fm(exp)‖KR 6
2
e
1 + %
%

ed+O(1=m)
(
eR
m

)m+1

; m¿ (1 + %)R (12)

for any %¿ 0, where  (w)= �w+d+O(1=w) is the inverse of � in (6); see also [4]. We stress that
symmetry required above is not restrictive in the application to functions of real matrices, whose
(pseudo)spectra and 8elds of values have the same property (the latter being also convex).

Now, using the fact that ’(z) = (ez − 1)=z is O(1) for Re(z)6 0 and O(exp(z)) for Re(z)¿ 0,
with a reasoning analogous to that used for (12) we can prove that

‖’ − Fm(’)‖KR =
1 + %
%

‖’‖KmO

((
R
m

)m+1
)

∼= 1 + %
%

O

((
eR
m

)m+1
)

; m¿ (1 + %)R; %¿ 0 (13)

and thus, when A is diagonalizable, we can write

‖’(A)v− pm(A)v‖26 cond2(X )‖v‖2‖’ − pm‖KR

≈ cond2(X )‖v‖2‖’ − Fm(’)‖KR

= cond2(X )
1 + %
%

‖v‖2O
((

eR
m

)m+1
)

; m¿ (1 + %)R; %¿ 0; (14)

where !(A) ⊆ KR and {pm} is any sequence of polynomials converging maximally to ’ on KR, or
equivalently on KR for any admissible R (in particular a sequence of interpolation polynomials on
Leja points of K). Here and below, it is intended that the constants of the O-symbols do not depend
on the parameters displayed on the left.

For a general real matrix A, we can resort to the convergence estimates obtained in [26], using
the 8eld of values (or numerical range) of A, W (A) = {〈u; Au〉=‖u‖22}, u∈Cn \ 0} ⊇ co(!(A)) (the
convex hull of !(A)). By a slight modi8cation in the proof of [26, Theorem 28], we obtain

‖’(A)v− Fm(A)v‖2 = 1 + %
%

‖v‖2‖’‖Km+1(2m+ 3) · O
((

R
m

)m+1
)

; m¿ (1 + %)R;

where %¿ 0 is arbitrary and W (A) ⊆ KR, and thus, in view of (10)–(11) and of the considerations
above

‖’(A)v− pm(A)v‖2 ≈ ‖’(A)v− Fm(A)v‖2

=
1 + %
%

R‖v‖2O
((

eR
m

)m)
; m¿ (1 + %)R; %¿ 0; (15)
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where again {pm} is any sequence converging maximally to ’ on KR. It is worth noting that the
loss of a unit in the exponent (compare (15) and (14)), is intrinsic in the estimating technique, cf.
[26, Theorem 28].

An “intermediate” convergence estimate can be easily obtained by resorting to the notion of pseu-
dospectrum of the matrix A. Recall that the �-pseudospectrum of A is de8ned as !�(A)={z ∈C: ‖(zI−
A)−1‖2¿ �−1}, �¿ 0, or equivalently !�(A)={z ∈ !(A+E), for some E with ‖E‖26 �}. As known,
the spectrum and the 8eld of values can be recovered as special cases from the limits � → 0 and
(after peeling away an �-border region) � → ∞, respectively; cf. the survey paper [39]. Now, in
view of the following estimate which is given immediately by the Cauchy integral representation of
the entire matrix function ’(A) − Fm(A)

‖’(A) − Fm(A)‖26 1
2*

‖’ − Fm(’)‖KR

∫
9KR

‖(zI − A)−1‖2|dz|

6
‘(9KR)
2*�

‖’ − Fm(’)‖KR ;

where !�(A) ⊆ KR, we get 8nally from (13)

‖’(A)v− pm(A)v‖2 ≈ ‖’(A)v− Fm(A)v‖2

=
1 + %
%

‖v‖2 ‘(9KR)
�

O

((
eR
m

)m+1
)

; m¿ (1 + %)R; %; �¿ 0; (16)

where once again {pm} is any polynomial sequence converging maximally to ’ on KR.
It is worth noting that estimates (14)–(16) are optimized in the cases when R is equal, respectively,

to

R! = inf{, : !(A) ⊆ K,};
Rw = inf{, : W (A) ⊂ K,};
R� = inf{, : !�(A) ⊆ K,}: (17)

3. Numerical implementation of the ReLPM interpolation method

In the sequel, the compact subsets used for estimating some pseudospectrum or the 8eld of values
of the matrix B in (2), and thus to construct the Leja points polynomial interpolation for the matrix
operator

’(A)v; A=4tB

(see (3)) will be families of confocal ellipses. There are two main reasons for this choice.
For advection–di$usion matrices arising from stable FD discretizations (like e.g. central di$erences

for grid-Peclet numbers strictly smaller than 1, or upwind method for Peclet numbers greater than 1,
cf. [30]), the convex hulls of the numerically evaluated spectra turn out to be (possibly degenerating)
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Fig. 1. Distribution of computed eigenvalues (pseudoeigenvalues) for advection–di$usion 2D matrices of dimension
n=1521 with �1=60, �2=60 (Peclet=0:75), central discretization (left), and with n=1521, �1=120, �2=120 (Peclet=1:5),
upwind discretization (right).

elliptical regions, with horizontal major axis; see Fig. 1 for an example (here the complete spectra
have been computed by the subroutine dgeev of LA-PACK). This is not surprising, even though it
is known, for example, that spectra of advection–di$usion matrices generated by central di$erences
with grid-Peclet numbers ¡ 1 are real (cf. [20]). In fact, due to strong nonnormality, the eigenvalue
problem is ill-conditioned, and what we are really computing are pseudoeigenvalues of the matrix, i.e.
a discrete �-pseudospectrum where � is related to the prescribed tolerance. It has been indeed already
observed that pseudospectra of constant coeCcients advection–di$usion operators are elliptical, and
that this has to do with the underlying Toeplitz structure; see [31,33]. It is worth observing here that
in our previous paper [2], some considerations made speaking of eigenvalues and spectra should be
more properly intended in the sense of the corresponding pseudonotions. In particular, the 8gures
showing ellipses are there also related to the computation of pseudoeigenvalues. Clearly this is not
a problem as for convergence and superlinear convergence estimates, since we have seen in the
previous section that there are clean convergence results also dealing with pseudospectra or with the
8eld of values.

We now observe that if K =E is the closure of the internal part of an ellipse of real center d and
real foci d− c and d+ c, then its capacity is the half sum of the semi-axes of the ellipse; moreover,
the family {KR}= {ER} in (8) is a family of confocal ellipses. In particular, the ellipse of capacity
c=2 degenerates into the segment Ec=2 = [d − c; d+ c]. Note that we restrict our attention to ellipses
symmetric with respect to the real axis since in our application to advection–di$usion equations we
deal with real matrices, whose spectrum, pseudospectra and 8eld of values have the same property:
in particular, the focal segment [d − c; d+ c] is a real interval.
The second reason for the choice of families of confocal ellipses follows immediately: if the

spectrum !(A) is contained in ER for some R, then, by Proposition 1, a sequence of polynomials
converging maximally to ’ on Ec=2 ⊂ R will give a sequence of matrix polynomial operators
converging (maximally) to ’(A)v. The same applies to the convergence estimates (14)–(16), i.e. if
the sequence {pm} converges maximally to ’ on Ec=2 ⊂ R, then (14)–(16) hold on ER! , ERw or
ER� , respectively (cf. (17)). Thus we are entitled to interpolate on Leja points of the focal interval
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[d − c; d + c] ⊂ R, working with real instead of complex arithmetic (as it would be required
interpolating directly on the complex Leja points of some ellipse of the family).

We are now ready to describe our approximation procedure for advection–di$usion propagators.
In view of the shape of the pseudospectra, the 8rst step consists in evaluating the focal inter-
val of the family of ellipses which will estimate such pseudospectra (and eventually the 8eld of
values); recall also, e.g., the classical papers [19,20] on ellipses-based “spectral” estimates for non-
symmetric matrices. To this aim, we could estimate by driver dndrv1 (which does not solve linear
systems) of ARPACK (ARnoldi PACKage, cf. [17]) the extreme eigenvalues of B. As observed
above, in practice this routine provides a number of �-pseudoeigenvalues, for a certain �. Then,
following [2], we could approximate the convex hull of the corresponding discrete pseudospectrum
of A = 4tB by the rectangle constructed using such (scaled) pseudoeigenvalues and select, among
the ellipses circumscribing this rectangle, that, say E = E�, of smallest capacity �, center d and
foci d + c and d − c (for a discussion about this choice, cf. [2]). In practice, however, even a
rough approximation of the focal interval [d − c; d + c], given by the extreme real-parts of the
spectrum estimated by Gershgorin’s theorem (cf. also [35]), provides a polynomial approximation
with essentially the same behavior (cf. Table 2). We stress that this approach, di$erently from
that adopted in [2], makes completely negligible the preprocessing computational cost of extreme
eigenvalue estimation. At this point, interpolating on Leja points of the focal interval, we obtain
superlinear convergence of the corresponding matrix polynomial operators to the matrix operator ’;
see (14)–(16).
An algorithm for the approximation of the advection–di$usion propagator ’(4tB)v can be now

easily developed, by means of Newton interpolation at “spectral” Leja points: we sketch the algorithm
in Table 1, and comment on it below.

Table 1
Algorithm ReLPM (Real Leja Points Method)

• INPUT: B; v;4t, tol
• Estimate the spectral focal interval [d − c; d+ c] for A=4tB, via Arnoldi approximation of extreme eigenvalues or

by Gershgorin’s theorem (see the discussion above)
• Let {xj}N

j=0 be a set of uniformly distributed points on [d − c; d+ c] for N suCciently large (say N = 10 000)
take 00 such that |00| =maxj|xj| =max{|d − c|; |d+ c|}, d0 := ’(00)

• A := 4tB, w0 := v, p0 := d0 w0, m := 0
• DO WHILE eLejam := |dm| · ‖wm‖2 ¿ tol

• wm+1 := (A − 0mI)wm

• m := m+ 1
• Compute 0m such that

∏m−1
k=0 |0m − 0k | =maxj

∏m−1
k=0 |xj − 0k | (avoiding overQow problems by scaling to

capacity 1, as described in [32])
• dm := ’(0m)
• compute the next divided di$erence dm as:

DO i = 1; m
dm := (dm − di−1)=(0m − 0i−1)

END DO

• pm := pm−1 + dmwm

END DO

• OUTPUT: the vector pm : ‖pm − ’(4tB)v‖2 ≈ eLejam 6 tol
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3.1. Comments on the implementation

The ReLPM algorithm is quite simple and eCcient. Indeed, being based on two-term vector
recurrences in real arithmetic, its storage occupancy and computational cost are very small. For
m�n (as in our application) it requires essentially only (2 + 3)n Qoats for the matrix and three
vectors, and costs ≈ (22+ 3)mn Qops (where 2 is the average number on nonzeros per row in the
matrix).

The asymptotic performance of the ReLPM is that of the Chebyshev series method studied in
[2] (in view of maximal convergence, see Section 2). For advection–di$usion matrices arising from
stable spatial discretizations, the ReLPM turns out to be slightly more eCcient than the Chebyshev
method, and more eCcient than Krylov method (see [2,23,26]). In fact, being based on a long-term
recurrence, the performance of the Krylov method for exponential operators strongly depends on a
careful choice of the threshold m for the Krylov subspace dimension; see the EXPPRO routine in [10,34],
and the EXPOKIT package [36], As shown in [2, Tables VII–VIII], even with an optimal choice of m,
the Krylov method is up to three times slower than the Chebyshev method on advection–di$usion
problems.

We stress, 8nally, that ReLPM, being based on matrix vector multiplications like Krylov methods,
is well-structured for a possible parallel implementation. One di$erence with respect to Krylov
methods is that no inner products are needed, which as known represents an advantage within
parallel sparse matrix computations (see, e.g., [16]).

Estimation of the focal interval, as well as computation of the Leja sequence, are displayed in
the algorithm only for the sake of clarity. In practice, one can estimate once and for all the focal
interval for B, and precompute a suCciently large number of Leja points. Such data are passed as
input parameters at each call of the algorithm, and scaled inside by 4t. This is the procedure to
adopt when ReLPM is used for several values of 4t, as in the time marching scheme (5). Note,
however, that the algorithm presented in Table 1 is general enough to be applied when matrix B is
not constant in time, in which case spectral data would need to be evaluated at each time-step.

We have computed the Leja points via a discrete approximation of the focal interval. As discussed
in [32] this discretization should be suCciently dense compared with the maximum degree reached by
the interpolating polynomial (at most of the order of tens in our examples). Alternatively, we could
use the “fast Leja points” algorithm recently proposed in [1], which produces m Leja-like points
with O(m2) Qops. We stress, however, that the computational cost of this part of the algorithm is
in practice a negligible fraction of the overall cost, especially if the Leja points are produced once
and for all (see above).

In practice, the exit test of the ReLPM is slightly more re8ned than that displayed in Table 1: in
order to prevent 8ctitious convergence, instead of estimating the error with |dm| · ‖wm‖2 (the norm of
the last term in Newton interpolation), we use the mean of the norms of some consecutive terms (say
the last 5). On the other hand, convergence may not take place when the smallest ellipse containing
the spectrum and having as focal interval that numerically evaluated, has a large capacity. As already
observed in [35] concerning Chebyshev series approximation, nonconvergence may be related to the
e$ect of signi8cant cancellation errors. There are two main strategies to overcome this problem:
working in higher precision, or reducing the step-size (and thus the capacity and the approximating
polynomial degree) when the size of the divided di$erences become close to the machine precision.
Our implementation of the ReLPM for solving the discrete advection–di$usion equation (2) takes
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into account this problem, and uses both strategies: it computes the divided di$erences in quadruple
precision, and it automatically halves the time-steps when necessary, covering the original time-step
4t according to the time marching process (5).

4. Numerical tests

We have considered several n-dimensional systems of type (2), obtained by spatial discretization
of the advection–di$usion equation (1) with b(x) ≡ 0 by 8nite di$erences (central or upwind
discretization, depending on the value of the grid-Peclet numbers), with constant step-size 1=(n1=p+1)
on 
=(0; 1)p, p=2 (2D) or p=3 (3D), and various instances of the advection coeCcients �=(�i),
source-term g(x) and initial datum u0(x). In particular, u0(x) has been chosen smooth (constant) or
nonsmooth (strongly peaked), so that our tests correspond to the initial vectors y0 = (1; : : : ; 1)T or
y0 = (1; : : : ; 1; 100; 1; : : : ; 1)T in (2).
We have compared the Leja points interpolation method ReLPM for the approximation of ’(4tiB)vi

within the time marching process (5), with the popular Crank–Nicolson method [5] (with variable
step-size hi)(

I − hiB
2

)
ỹi+1 =

(
I +

hiB
2

)
ỹi + hig; i = 0; 1; : : : : (18)

in the numerical solution of the sti$ system (2) up to the steady state. Recall that the matrix
B has eigenvalues with negative real-part, and thus the solution of (2) exhibits the steady-state
limt→∞ y(t) = −B−1g. Although Crank–Nicolson might not be considered the best choice for time
integration of advection–di$usion problems (see, e.g., [13,41]), it is a robust method still widely
used in engineering applications, and a sound baseline benchmark for any advection–di$usion solver
(cf. [29]).

When the steady-state is null (e.g. in the homogeneous case g(x) ≡ 0), we have applied scheme
(5) until

‖yi‖26 �‖y0‖2 (19)

for small �, i.e. a nearly steady-state is reached (we chose � = 10−4). Otherwise, (inhomogeneous
case), we have computed the discrete solution until its “weighted derivative” becomes small

‖yi+1 − yi‖2=4ti
max{‖y0‖2; ‖yi+1‖2} 6 4

say with 4 = 0:1. The same stopping criteria have been applied to the computed solution ỹi of the
Crank–Nicolson scheme.

The Crank–Nicolson time-step hi was chosen in such a way that the local truncation error eCNi+1
(easily estimated by 8nite di$erences involving ỹi+1, ỹi and ỹi−1) be smaller than a given tolerance

eCNi+16 toli+1 = �1 max{‖y0‖2; ‖ỹi+1‖2}; (20)

where �1 was chosen equal to 10−6 to have a local time accuracy at least of the same order as the
spatial accuracy (i.e. O(n−2=p), p being the spatial dimension). When condition (20) is not satis8ed,
the time-step hi is (proportionally) reduced and ỹi+1 recomputed, while when it is strictly satis8ed,
the next time-step hi+1 is (proportionally) enlarged. The linear system in (18) is solved by the
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biconjugate gradient stabilized method (BiCGStab), preconditioned at each step (since the iteration
matrix depends on hi) with the incomplete triangular factor and no 8ll-in (ILU(0), cf. [14,40]),
with a tolerance of toli=10. Recall that each iteration of the preconditioned BiCGStab requires the
equivalent of four-sparse matrix–vector products, along with some scalar products and elementary
vector operations.

As for scheme (5), since it is exact for autonomous linear systems of ODEs, there is no restriction
on the choice of 4ti, and we propose to select the local time-step in such a way that the relative
variation of the solution be smaller than a given percentage, that is

‖yi+1 − yi‖26 5‖yi‖2; 0¡5¡ 1: (21)

The propagator ’(4tiB)vi in (5) is approximated by the algorithm ReLPM described in Table 1,
where the tolerance “tol” is selected similarly to (20), with the same �1. Recall that a subdivision
of 4ti is possible (see Section 3.1), but it is directly managed by the ReLPM. In order to avoid
several (useless) time-steps near the possible null steady-state, we also add an absolute tolerance
related to (19), getting

‖yi+1 − yi‖26 5‖yi‖2 + �2‖y0‖2: (22)

In the numerical tests we have used �2 = 10−3 and four di$erent values of 5, ranging from 0.1 to
0.75: with the smallest one, the solution is approximated at several time-points, in order to track
with accuracy its evolution; with the largest one, only few large time-steps are suCcient to reach
the steady-state (cf. Fig. 2). If condition (22) is not satis8ed, the time step 4ti is halved and yi+1

recomputed; on the other hand, if they are strictly satis8ed (say with 5=2 and �2=2 instead of 5 and
�2), the next time-step 4ti+1 is doubled. In all the following numerical tests, we have chosen the
same initial time-step for both methods, say h0 = 4t0 = 10−5.

4.1. Comments on the numerical results

The experimental results, collected in Tables 2–19 and Figs. 2–6, show that scheme (5), im-
plemented via ReLPM and the marching strategy (22), performs better than the variable step-size
Crank–Nicolson method on several instances of the advection–di$usion problem (1)–(2). The supe-
riority of other polynomial (Krylov and Faber-Chebyshev) methods with respect to Crank–Nicolson

Table 2
2D homogeneous, n=10 000, �1 =100, �2 =100, central discretization (Peclet number ≈ 0:5), smooth initial data, extreme
eigenvalues computed by ARPACK with low tolerance or estimated by Gershgorin’s theorem

5 ARPACK Gershgorin

No. of time-steps CPU (s) No. of time-steps CPU (s)

ReLPM
0.1 95 4.18 95 4.22
0.25 41 2.26 43 2.34
0.5 24 1.95 25 1.81
0.75 18 2.11 19 1.52
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Table 3
2D homogeneous, n= 10 000, �1 = 100, �2 = 100, central discretization (Peclet number ≈ 0:5), smooth initial data

Crank–Nicolson ReLPM Speed-up

No. of time-steps CPU (s) 5 No. of time-steps CPU (s)

0.1 95 4.22 4.2
0.25 43 2.34 7.6

375 17.77 0.5 25 1.81 9.8
0.75 19 1.52 11.7

Table 4
Comparison of absolute and relative errors with respect to the “exact” solution, for the test case described in Table 3, at
the “steady” state t = 0:012 (where ‖y(0:012)‖2 ≈ 10−4‖y(0)‖2)

Crank–Nicolson ReLPM 5= 0:1 ReLPM 5= 0:5

Abs. err. 6:5 · 10−4 1:8 · 10−4 1:8 · 10−4

Rel. err. 3:6 · 10−2 1:0 · 10−2 1:0 · 10−2

Table 5
2D homogeneous, n= 10 000, �1 = 100, �2 = 100, central discretization (Peclet number ≈ 0:5), nonsmooth initial data

Crank–Nicolson ReLPM Speed-up

No. of time-steps CPU (s) 5 No. of time-steps CPU (s)

0.1 106 4.02 5.1
0.25 47 2.45 8.4

449 20.48 0.5 26 1.86 11.0
0.75 18 1.50 13.7

Table 6
2D homogeneous, n= 10 000, �1 = 500, �2 = 500, upwind discretization (Peclet number ≈ 2:48), smooth initial data

Crank–Nicolson ReLPM Speed-up

No. of time-steps CPU (s) 5 No. of time-steps CPU (s)

0.1 92 3.96 4.5
404 17.85 0.25 41 2.04 8.8

0.5 23 1.51 11.8
0.75 14 1.36 13.1
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Table 7
2D homogeneous, n= 10 000, �1 = 500, �2 = 500, upwind discretization (Peclet number ≈ 2:48), nonsmooth initial data

Crank–Nicolson ReLPM Speed-up

No. of time-steps CPU (s) 5 No. of time-steps CPU (s)

0.1 98 3.88 5.6
492 21.84 0.25 46 2.33 9.4

0.5 25 1.70 12.8
0.75 15 1.46 15.0

Table 8
2D homogeneous, n= 10 000, �1 = 500, �2 = 0, upwind discretization (Peclet number ≈ 2:48), smooth initial data

Crank–Nicolson ReLPM Speed-up

No. of time-steps CPU (s) 5 No. of time-steps CPU (s)

0.1 89 3.53 5.3
403 18.88 0.25 39 1.92 9.8

0.5 22 1.42 13.3
0.75 15 1.31 14.4

Table 9
2D homogeneous, n= 10 000, �1 = 500, �2 = 0, upwind discretization (Peclet number ≈ 2:48), nonsmooth initial data

Crank–Nicolson ReLPM Speed-up

No. of time-steps CPU (s) 5 No. of time-steps CPU (s)

0.1 102 3.61 6.0
461 21.48 0.25 46 2.18 9.9

0.5 22 1.47 14.6
0.75 16 1.41 15.2

Table 10
2D homogeneous, n= 40 000, �1 = 100, �2 = 100, central discretization (Peclet number ≈ 0:25), smooth initial data

Crank–Nicolson ReLPM Speed-up

No. of time-steps CPU (s) 5 No. of time-steps CPU (s)

0.1 96 37.68 3.3
405 122.56 0.25 43 26.07 4.7

0.5 25 20.57 6.0
0.75 19 17.60 7.0
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Table 11
2D homogeneous, n= 40 000, �1 = 100, �2 = 100, central discretization (Peclet number ≈ 0:25), nonsmooth initial data

Crank–Nicolson ReLPM Speed-up

No. of time-steps CPU (s) 5 No. of time-steps CPU (s)

0.1 102 39.41 3.5
467 138.46 0.25 45 26.49 5.2

0.5 25 21.01 6.6
0.75 19 17.83 7.8

Table 12
2D inhomogeneous, n = 10 000, �1 = 100, �2 = 100, central discretization (Peclet number ≈ 0:5), smooth initial data,
postive source

Crank–Nicolson ReLPM Speed-up

No. of time-steps CPU (s) 5 No. of time-steps CPU (s)

0.1 41 2.24 8.0
375 17.91 0.25 20 1.86 9.6

0.5 14 1.67 10.7
0.75 13 2.87 6.2

Table 13
2D inhomogeneous, n= 10 000, �1 = 100, �2 = 100, central discretization (Peclet number ≈ 0:5), nonsmooth initial data,
positive source

Crank–Nicolson ReLPM Speed-up

No. of time-steps CPU (s) 5 No. of time-steps CPU (s)

0.1 55 2.61 7.7
450 20.04 0.25 25 2.05 9.8

0.5 15 1.72 11.7
0.75 13 2.85 7.0

Table 14
2D inhomogeneous, n = 10 000, �1 = 100, �2 = 100, central discretization (Peclet number ≈ 0:5), smooth initial data,
negative source

Crank–Nicolson ReLPM Speed-up

No. of time-steps CPU (s) 5 No. of time-steps CPU (s)

0.1 82 3.46 5.1
379 17.67 0.25 34 2.05 8.6

0.5 21 1.90 9.3
0.75 18 1.91 9.3
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Table 15
2D inhomogeneous, n= 10 000, �1 = 100, �2 = 100, central discretization (Peclet number ≈ 0:5), nonsmooth initial data,
negative source

Crank–Nicolson ReLPM Speed-up

No. of time-steps CPU (s) 5 No. of time-steps CPU (s)

0.1 94 3.97 5.3
453 21.21 0.25 38 2.28 9.3

0.5 22 2.04 10.4
0.75 18 2.00 10.6

Table 16
3D homogeneous, n=27 000, �1 = 30, �2 = 30, �3 = 30, central discretization (Peclet number ≈ 0:48), smooth initial data

Crank–Nicolson ReLPM Speed-up

No. of time-steps CPU (s) 5 No. of time-steps CPU (s)

0.1 82 17.38 4.1
238 71.42 0.25 41 10.93 6.5

0.5 25 7.92 9.0
0.75 19 6.80 10.5

Table 17
3D homogeneous, n= 27 000, �1 = 30, �2 = 30, �3 = 30, central discretization (Peclet number ≈ 0:48), nonsmooth initial
data

Crank–Nicolson ReLPM Speed-up

No. of time-steps CPU (s) 5 No. of time-steps CPU (s)

0.1 86 18.22 4.4
288 79.62 0.25 41 10.91 7.3

0.5 25 8.08 9.8
0.75 18 6.70 11.9

Table 18
3D homogeneous, n=125 000, �1 =50, �2 =50, �3 =50, central discretization (Peclet number ≈ 0:49), smooth initial data

Crank–Nicolson ReLPM Speed-up

No. of time-steps CPU (s) 5 No. of time-steps CPU (s)

0.1 83 96.97 3.5
273 339.80 0.25 42 61.79 5.5

0.5 23 41.98 8.1
0.75 18 39.15 8.7
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Table 19
3D homogeneous, n=125 000, �1 = 50, �2 = 50, �3 = 50, central discretization (Peclet number ≈ 0:49), nonsmooth initial
data

Crank–Nicolson ReLPM Speed-up

No. of time-steps CPU (s) 5 No. of time-steps CPU (s)

0.1 85 97.31 4.1
314 402.71 0.25 42 61.66 6.5

0.5 23 42.02 9.6
0.75 18 39.44 10.2
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Fig. 2. Evolution of the norm of the solution computed by the ReLPM at several time-points (5 = 0:1) and at few
time-points (5=0:75), for the test case described in Table 3 (2D, homogeneous, n=10 000, �1 = �2 = 100, smooth initial
data).

for spatially discretized linear parabolic problems has been recognized in the numerical litera-
ture, but comparisons have been made with constant time-step marching for both approaches (see,
e.g., [10,35]).

As already noticed, we have used ReLPM with a rough approximation of the focal interval, given
by the extreme real-parts of the spectrum estimated by Gershgorin’s theorem. Table 2 shows with a
2D example that eCciency of the method is not really a$ected by this choice. In fact, comparison
with the more re8ned estimation of the focal interval adopted in [2] and recalled in Section 3
(extreme eigenvalues estimated by ARPACK → rectangle → optimal circumscribed ellipse → focal
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Fig. 3. Evolution of the norm of the solution computed by the Crank–Nicolson method and the ReLPM (5=0:5), for the
test case described in Table 3 (2D, homogeneous, n= 10 000, �1 = �2 = 100, smooth initial data).
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Fig. 4. Evolution of the norm of the solution computed by the Crank–Nicolson method and the ReLPM (5=0:5), for the
test case described in Table 5 (2D, homogeneous, n= 10 000, �1 = �2 = 100, nonsmooth initial data).
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Fig. 5. Evolution of the norm of the solution computed by the Crank–Nicolson method and the ReLPM (5=0:5), for the
test case described in Table 12 (2D, inhomogeneous, n= 10 000, �1 = �2 = 100, smooth initial data, positive source).
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Fig. 6. Evolution of the norm of the solution computed by the Crank–Nicolson method and the ReLPM (5=0:5), for the
test case described in Table 14 (2D, inhomogeneous, n= 10 000, �1 = �2 = 100, smooth initial data, negative source).
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interval), shows that the number of time-steps and the total CPU time essentially do not depend on
the estimation strategy.

Tables 3–11 refer to the homogeneous 2D case (g ≡ 0) of (1)–(2), where we adopted central
di$erences or the upwind method depending on the Peclet number, and both smooth and nonsmooth
initial data are considered. First, notice that the ReLPM approach is always faster than Crank–
Nicolson, with speed-ups (ratios between CPU times) ranging from 3.3 to 14.4 for smooth, and
from 3.5 to 15.2 for nonsmooth initial data. To this respect, we stress that Crank–Nicolson is more
sensible to the smoothness of initial data, due to the e$ect of truncation errors; compare Tables 3
and 5, 6 and 7, 8 and 9, 10 and 11, and Figs. 3 and 4. Concerning the accuracy of the computed
solutions, in Table 4 we have compared the absolute and relative errors with respect to the “exact”
solution, for the test case described in Table 3, at the “steady” state t=0:012 (where ‖y(0:012)‖2 ≈
10−4 · ‖y(0)‖2). The reference solution has been computed by Crank–Nicolson with �1 = 10−8 in
(20), whereas we recall that the comparison of the errors is made using the same local tolerance for
both methods, corresponding to �1 = 10−6. Note that ReLPM is more accurate than Crank–Nicolson
at the 8nal time.

It is also worth noting that the choice of the spatial discretization scheme (central di$erences or
upwind method) has a relatively small e$ect on the cost of both methods; see Tables 3, 6 and 8,
and Tables 5, 7 and 9. Also an asymmetry in the advection terms does not seem to entail substantial
di$erences at the same Peclet number, compare Tables 6 and 8, and Tables 7 and 9. On the other
hand, comparing Tables 3 and 10 (or Tables 5 and 11), we see that the speed-ups become smaller
when n increases (more accurate spatial discretization). This can be related to the fact that, while
as expected the number of time-steps does not substantially depend on n, ReLPM faces increasing
capacities of the estimated focal interval (cf. the qualitative convergence estimates (14)–(16); in
view of Gershgorin’s theorem, we expect roughly a capacity proportional to n4t).

Similar considerations hold for Tables 12–15 (2D inhomogeneous instances with constant
source-term) and Tables 16–19 (3D homogeneous instances). In particular, comparing Tables 16
and 18 (or Tables 17 and 19) we notice that the 3D speed-ups are less sensible to the increase of n
with respect to 2D instances (indeed, in 3D we expect roughly a capacity proportional to n2=34t).
Observe also that in Tables 12 and 13 the CPU time for 5= 0:75 is substantially greater than that
for the smaller values of 5, even if the number of time-steps is the smallest. This is due to the
fact that the last time-step is too large to allow convergence (see Section 3.1), and the algorithm is
forced to subdivide it, wasting a relatively large number of iterations.

Finally, Figs. 3–6 show that even the choice of the variation percentage 5=0:5 allows to track with
some accuracy the evolution of the solution, with much less steps than Crank–Nicolson, exhibiting
speed-ups ranging from 6.0 to 13.3. Moreover, we stress again that in any case (even with 5=0:75,
which might be still acceptable for a qualitative recovery of the evolution, see Fig. 2) the computed
solution vectors yi at the time instants ti are very accurate, since the time marching scheme (5) is
exact and the tolerance required for ReLPM is small.
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