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Abstract

Let n >3 and £2 be a C! bounded domain in R" with 0 € 952. Suppose 952 is €2 at 0 and the mean
curvature of 92 at 0 is negative, we prove the existence of positive solutions for the equation:

23,2 e
Au +)xbl” =+ T = mn , (01)
u=0 onas2,

where A > 0,0 <5 <2, 2%(s) = % and n > 4. For n = 3, the existence result holds for 0 < s < 1.
Under the same assumption of the domain £2, for p < 2*(s) — 1, we also prove the existence of a positive
solution for the following equation:

W2 -1
_ P A — i
Au — luP + o 0 in £2, 0.2)
u=0 onds?,
where
n
A>0 and 1<p< .
n—2

© 2010 Elsevier Inc. All rights reserved.

Keywords: Nonlinear elliptic equation; Caffarelli-Kohn-Nirenberg inequality; Hardy—Sobolev critical exponent

¥ Corresponding author.
E-mail address: cslin@math.ntu.edu.tw (C.-S. Lin).

0022-1236/$ — see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jfa.2010.05.004


https://core.ac.uk/display/81190414?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

C.-H. Hsia et al. / Journal of Functional Analysis 259 (2010) 1816—1849 1817

1. Introduction

The Caffarelli-Kohn-Nirenberg (CKN) inequalities assert that for all u € C5°(IR"), there is a

constant C > 0 such that
2
q
C(/|x|_bq|u|qu> <f|x|—2“|w|2dx, (1.1)
Rn

R}l
where n > 3,

n—2 2n
—o0<a< , 0<b—a<l and g=————.
2 n—2+20b—a)

(1.2)

See [2] and their generalization [12]. Suppose §2 C R" and Dg,’z(.Q) be the completion of
Cg°(82) with respect to the norm

2. —2, 2
2 .=/|x| “Vul dx,
2

then inequality (1.1) holds for all functions in Dal’z(.Q). The corresponding best constant is de-
fined as

S(a,b; 2) := inf  E,pu), (1.3)
ueDy*(2)\{0}

where

Jo 11724 Vu|* dx

=
(Jo IxI7P4uld dx)4

Ea,b(”) =

It is easy to see that the existence of a minimizer of (1.3) is equivalent to finding a least-energy
solution to the following equation:

{ —div(|x|’2“Vu) =|x|""u9"', u>0 ing2, (1.4)
u=0 onas2.
To study Eq. (1.4), one could let w(x) = |x|"“u(x). A direct computation shows
w2
f|x|*2“|Vu|2dx=/|Vw|2dx—y/de, (1.5)
X
Q 2 Q

where

y=an—-2-a). (1.6)
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Thus, a corollary of (1.5) is that for a < % 2 , U € Da (Q) if and only if w € H (£2). Indeed,
u(x) is a solution of (1.4) if and only if w(x) satisfies

. w w2 -1 0 o
YRR TR 0 a7
w=0 onads2,
where s = (b — a)g and 2*(s) = 2(" S) . By (1.2), we see that 0 < s < 2. For the prob-

lem finding minimizers of CKN 1nequa11t1es and related subjects, we refer the readers to
[3,7-11,13,14,16,17].

Let L2*®) (82, |x|~* dx) denote the space of L2 ®)-integrable functions with respect to the
measure |x|~* dx. By the CKN inequality, the embedding of H& (2) in LT¥O) (2, |x|™ dx) is
a family of non-compact embeddings for s € [0, 2). In [9], among other things, Ghoussoub and
Kang considered positive solutions of the following equation:

MZ*(S)—I
p = i
Au + AuP + M 0, u>0 1in$2, (1.8)

u=0 onads2,

where A > 0,1 < p < M , and £2 is a bounded domain in R" with Lipschitz boundary. They

proved the following result

Theorem A. Suppose 0 € 382 and 352 is C* at 0. Then forn >4, > 0and 0 < s <2, Eq. (1.8)
has positive solutions if one of the following conditions is satisfied:

n+2
=2

(ii) 1 <p< "+2 and 052 has non-positive principal curvatures in a neighborhood of 0.

The proof of Theorem A in [9] is based on the idea of Brézis and Nirenberg [1] where they
considered the equation:

u>0 inf2, u=0 onas2,

where | < p < "+2 . To solve Eq. (1.9), one may consider the corresponding nonlinear functional

@ defined in H (.Q).

—2 2
D) = /qu| dx—— ( +)”“dx—”2 /(u+)"‘2 dx.  (1.10)
n
2
Set
¢y = inf max @ (w), (1.11)
PeP weP

where P denotes the class of continuous paths P connecting 0 and v, where @ (v) < 0. It is
known that the functional @ of (1.10) does not satisfy the Palais—Smale condition in H(} (£2) due
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to the non-compactness of H, L2)inL i (£2). However, Brézis and Nirenberg [1] observed that
@ still satisfies (P — §)., provided that ¢ < = Sn2 , where S, is the Sobolev best constant. Thus,

if ¢y < ZSnZ then c, is a critical value. Recall that a functional @ is said to satisfy the Palais—
Smale condition (P — §). at level c, if any sequence uy € HO1 (£2) that satisfies @ (u;) — ¢ and
@' (uy) — 0in H~'(£2) as k — 400, is necessarily relatively compact in HO1 (£2).

To solve (1.8), Ghoussoub and Kang [9] considered the functional:

1 A +32% (s)
D)=~ [ |VulPdx — —— [ ()" ax @)
2 p+1 2*(5) |x]$
2 2

and let ¢, be the constant as defined in (1.11) by the minimax method. Similar to (1.9), &,
satisfies (P — S)., if

1 _2%()

e < (5 - 2*1( ))u ()72, (1.12)

where 115(£2) is the best constant of the CKN inequality:

Jul )
115 (£2) ::inf{/|Vu|2dx‘ueHol(.Q) and/ o dle}.
ot
2 2

To illustrate how to apply the idea of Brézis and Nirenberg to Eq. (1.8), we would like to
give a very brief account of the proof. Let uy € Hé (£2) be a sequence such that @ (1) — ¢, and

@' (uy) — 0in H~'(£2) as k — +o0. From the assumption, it is easy to find ||Mk||H(; @ SC.

Thus by passing to a subsequence of ug, uy — u in H(} (£2). We have to show u # 0. Suppose
u =0, then

(M+)2 (s) 1
== hm /quk| dx — / dx=|-— /|Vuk| dx.
2*(s) k oo |x]’ 2 2*(s)

On the other hand, by the definition of u,(£2), we see

(u} +H)256) D)
/IVukI dx > Ms(9)</ i )

o)
=Ms(9)<f|Vuk|2dX> T(14 o). (1.13)
2

Thus we deduce that

LI f|v Pax> (Lo L \u@Fon
cx=|=— im u x> ’ DESI
*T\2 7 25(s) J i k 2 ey )

2

which violates (1.12).
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This concludes that u is a nontrivial solution to (1.8). Indeed, Ghoussoub and Kang obtained
positive solutions to (1.8) by showing c, satisfies (1.12) if one of the conditions of Theorem A
holds. The only difference between (1.8) and (1.9) is that the quantity ., (£2) might depend on
the domain 2, but the Sobolev best constant S,, does not.

However, in case the coefficient of #” in (1.9) is negative, the equation reads

{Au_mzuruﬁ*%:o in £, (1.14)

u>0 in & andulyp =0,

where A > 0. Let @~ be the corresponding functional:
1 A -2 20
Q" (u)= 3 / \Vul? dx + P /(u+)p+ldx _ n2n /(u+)”‘2 dx.
2 Q Q

ue H(} (£2) and c, be the constant of (1.11) defined by the minimax method. Then the inequality

Cx < %SZ /2 does not hold any more. Thus the idea of Brézis and Nirenberg cannot be applied to
Eq. (1.14). This is the reason why there are very few existence results for (1.14).

In this paper, we investigate the case that the coefficient of u” in Eq. (1.8) is negative. Namely,
we consider

u2*(s)71
_ oyl — i
Au — AuP + P 0 1in £2, (1.15)

u>0 in 2 andulyp =0,

and

w2 <s)
W (u) = = /|W| dx + —— +1 ()" dx 2*(S)/ X,

|x]*

where A > 0 and p satisfies
1< p<2fs) - 1. (1.16)

We will prove in Section 2 that W satisfies (P — ). for any c¢ such that

0 1 1 (R” ) 232‘<;>2
<c<|=-— s
GRS L

where 11 (R} ) is the best constant of the CKN inequalities on the half-space R, = {(x1, x2, ...,
Xn) | x, > 0}. Note that if O € 9§2 and the mean curvature H(0) < 0, then it was proved in [9]
and [13] that

Ws(§2) < s (Ri)

Hence, our result is a sharp improvement of the original result of Brézis and Nirenberg for such
a domain. Our first result is the following theorem.
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Theorem 1.1. Let A > 0 and 2 be a C! bounded domain in R" with 0 € 982. Suppose the mean
curvature of 952 at 0 is negative, 1 < p < .25 and (1.16) holds. Then the equation:

MZ*(S)—I
— p — 1
Au AU + |x|s —0 in Q, (117)
u=0 onadf2

has a positive solution.

To see why the condition (1.16) appears, we may consider a sequence u j € H(} (£2) such that
Wy (u;) — cx and ¥/ (u;) — 0in H~1(£2), i.e., u; satisfies

+32*(s)
f|w 2 dx+ ( TP+ dx /(u - dx=c, +o(1), and
! i 2%(s) |x|*
g [T
|Vu]| dx + X\ ( ) dx P dx =o()IVujlr20)-
2 2

From the above, it can be deduced that

1 A A
<§ - 2*(s))/|Vu]| dx + <p+1 2*(s))/(uj)pﬂdx:c*+0(1)(||Vuj||L2(g)+1).
2

If p <2*(s) — 1, then the above identity implies all quantities ||V ; ||Lz(_Q), ||u | Lr+1(e) and

||(u+)2 X175 | L1 g2y are all uniformly bounded. If p > 2*(s) — 1, then p+1 %) < 0 and it fails
to prove the boundedness of those quantities. Thus, we are unable to show ¥ satisfies (P — S).,
when (1.16) fails.

At the moment, condition (1.16) seems to be a technical assumption. However, by performing
bubbling analysis, we will see that if (1.16) fails, there might occur a competition between these
two nonlinear terms u? and 1" ®)~1|x| 5. Due to this competition, there might be a new bubbling
phenomenon other than the one related to the entire solutions of

w2 ®-1
Aw+ — =0 inR? or R".
o -
This new phenomenon deserves a further study in a forthcoming paper.
Our next exploration is the case of Sobolev critical exponent of (1.8), i.e.,

w2y -1

) = i
Au + Au + I 0 1in £2, (1.18)

u>0 in £ and ulyp =0.

2 2*(3)
In this case, there are two dominant terms, since none of f olU "2 dx and f o ‘ B dx tends to 0

asuj — 0in H (£2). Hence, a natural question arises: is there a positive number cq such that
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the corresponding functional @; of (1.18) satisfies (P — S). for any 0 < ¢ < ¢o? If yes, we can
guess this co should be related to the least-energy solutions in R’} :

n+2 Mz* ()1

Au+Aun=2 +

=0 inRY,

|x[*

(1.19)
u>0 inR’} and ulyrr =0.

Theorem 1.2. For n > 3 and A > 0, there exists a least-energy solution of Eq. (1.19) provided
that

O<s<1 ifn=3,
O<s<2 ifn=>4

Furthermore, the least-energy solution v satisfies

1 — A 1 v¥® 1. 20 2
Lgpp B=Dr 2 v dx < -2 82, (1.20)
2 2n 2%(s) |x|® n

KL

By applying Theorem 1.2, we can answer the above question regarding (1.18). Let u#( be an
entire least-energy solution of (1.19), and set

2 (s)

2))\‘ 2n
|Vu0| dx u('; > 0. (1.21)
2*(S) IXIS
Rl‘l Rll
In Section 4, we will prove @ satisfies (P — §). whenever c satisfies
c < cp. (1.22)

As an application, we have the following result.

Theorem 1.3. Suppose that 2 is a C' bounded domain in R" with 0 € 382. Assume further that
the mean curvature of 352 at 0 is negative. Then for . > 0 Eq. (1.18) has a positive solution
provided that one of the following cases holds:

(i) n=3and0<s < 1.
i) n>4and0<s < 2.

This paper is organized as follows. In Section 2, we will give a proof of Theorem 1.1. The
proof is based on the original idea of Brézis and Nirenberg, together with a blowup analysis. In
Section 3, we again apply the blowup argument to show existence of positive entire solutions of
Eq. (1.19). The inequality (1.20) is interesting itself and is a byproduct of the blowup analysis.
Finally, in Section 4, we deal with the Sobolev critical exponent case of (1.8) for any domain £2
in R” satisfying the assumptions of Theorem 1.3.
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2. Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1. For the proof of the main theorems, we will apply
the mountain pass lemma of the following type:

Theorem B. Let & be a C! functional on a Banach space E. Assume that there exist an open set
U CE and p € R such that 0 € U and

{(b(u)>p foralluedU, @1

P0)<p, @PWw)<p forsomevg¢U.
Set

¢y ;= inf max @ (w),
PeP weP

where P denotes the class of continuous paths P joining 0 to v. Then c > p and there exists a
sequence {u;} C E such that

D(uj)— cx,
@' (uj) >0 inE*

Now set ¥ to be the functional corresponding to Eq. (1.17):

. 1 ) A o+l 1 (u+)2*(x) |
2

As discussed in the introduction, we need the inequality:

| ! 2o
Cy 1= gggrur}ee%( v (w) < (E - 2*(S))MS (R’jr)z ®-2, (2.2)

where P denotes the class of continuous paths joining 0 to some nonnegative function vy €
H(} (£2)\ {0} with ¥ (vo) < 0. To prove (2.2), we use the entire solution of the following equation:

2% (s)—1
u — 1 n
{Au—i——lylj =0 inR%,

u(y)>0 inR%, u=0 ondR}.

(2.3)

Lemma 2.1. Lefu € H(; (R) be an entire solution of (2.3). Then the followings hold:

i — 2
® ueCz(Ri) ifs <14 —,
n

_ 2
ueCYP(RL) forall0<p<1 ifs=1 +
n2-—s)

_ 2
ueCl*ﬂ(Ri) forall0 < B < ifs>1+;.
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(ii) There is a constant C such that lu(y)| < C(1 + |yD'™" and |Vu(y)| < C(1 + |y ™.
(iii) u(y’, yn) is axially symmetric with respect to the yy-axis, i.e., u(y', yu) = u(|y’|, yn).

For the existence of least-energy solutions of (2.3), see Ghoussoub and Robert [10]. Con-
cerning the proof of the assertions (i)—(iii), we refer to Ghoussoub and Robert [10] and Lin and
Wadade [13]. By the same fashion as used in [7], we shall use Lemma 2.1 prove inequality (2.2).

Lemma 2.2. Suppose that 2 is a C' bounded domain in R" with 0 € 982 and 952 is C* at 0.
If the mean curvature of 352 at 0 is negative and 1 < p < %5, then there exists a nonnegative

function vy € HO1 (82) \ {0} such that ¥s(vo) < 0 and

W) < (2 - ! (L) Tz
max « (T < —- - — ; S)==,
ogigr PSS T o gy )

Proof. Without loss of generality, we may assume that in a neighborhood of 0, 352 can be rep-
resented by x,, = ¢ (x’), where x’ = (x1, ..., x,-1), (0) =0, V'9(0) =0, V' = (31, ..., 0n_1),
and the outer normal of 02 at 0is —e;, = (0,0, ..., —1). Define

¢(x):= (x', Xn — (p(x/)). 2.4)

We choose a small positive number rg so that there exists neighborhoods of 0, U and U, such
that ¢(U) = B,,(0), (U N 2) = B;E(O), dWU) = B%o (0) and ¢ (U N 22) = B} (0). Here, we
2z

adopt the notation:
B;:(O) =B, ,NR’, foranyro > 0.

Suppose w € H& (R%) is a least-energy solution of (2.3) i.e.,

2%(5)=2

Jen IVw|?dy 2%(s) &)
s (RY) = —— 3 =<fw dy>2(),

w2k )

w- 7 *(s |y|s
(Jpr 5 d9)TO R

1
then u(y) := s (R ) 226 w(y) is a positive entire solution to the equation:

p2 -1 .
——— =0 inR],

Au + R”
ot s (B

2%(s)
u=0 ondR" With/ BE dy=1.
v
R}
Let ¢ > 0. We define
R Ye)) - .
Ve(x):=¢" 2 u forx e 2NU, and v,:=nve in$2, 2.5)
e
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where n € C3°(U) is a positive cut-off function with n =1 in U.Fort >0, we have

1256 vg*(s)

t2 2 )»lp_H
lI/V(tﬁS)g_/|V’ﬁg| dx+—/f)5+ldx_

2 p+1 2*(5) P
@ $2 2nU

dx. (2.6)

In what follows, we estimate the order of each integral on the right-hand side of (2.6). By the

change of the variable @ =y, we get

/lVﬁg|2dx: / 02| Vue|? dx — / n(An)vfdx
Q nu enu

</|Vu(y)|2dy—2 / (™" (e9) 0, V'uly) - (V'¢) (e)') dy

n
R BE

€

+ / n(6~ e9) (Bau )| (Vo) (e') | dy
—&? / (6~ () (An) (¢ (e3))u(y)?* dy.

Note that, by using |V'¢(y")| = O(]y’|) and the decay estimate of |Vu| in Lemma 2.1, we see

that
/ (67" 9)* (Bnu()*|(V'e) (&) dy < Ce? / (1+1y) "y dy = O(e?).
B‘é R
Hence,
[vakax= [IvuePay =2 [ @ @) aumvum) - (Ve)(ey)dy + o),
2 R" 55,

Using integration by parts and Lemma 2.1, we obtain

I1:=-2 / (™" () 0, Vuly) - (V'9) (ey') dy

2
= - / (6™ () 0NV uly) - V'[0(ey) ] dy

)
By
&
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4
= - / n(@ V) V' [n(e ™" )] - dauy) Vu(y)e(ey') dy

).
By

€

2
+- / (@~ (e0)*V3uu(y) - Vu(y)g(ey') dy

+
B,

) n—1
- / (6~ () 9 Y driu(y)g(ey’) dy

i=1
By

+

2 -1 2 (S .. ! n
g / 77(¢ (Sy)) 3nu()’)23ubt(y)<ﬂ(8)’)dY-i-O(e )

i=1
By

Applying Eq. (2.3) and integration by parts, we have

n—1

/._% —1 2 B /
I':==- / (¢~ (6) 0uu () D du(y)p(ey’) dy

3+ i=1

_ 2MS<R>/ (61 )23[M(y)2 ©

2 (s)e p )

-/ 6 e Pl e

B}y
2sps(RY) L au(MF Oy,
A v 7 IR d
()6 (o~ (e)) NS o(ey')dy

f
B,
&

1
+o / (67" (e0)* (0uu () 0 (e)') dS, + O(6") = J1 + Jo + O(&").

+
B, NoR!,
&€

Since 342 is C? at 0, ¢ can be expanded as

n—1

= @iy +o()y]). 2.7)

i=1

Thus we see that
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2u(y)¥ @y,

251, (R ) ,
2ot () n(¢~" () Ww(sy)dy

2%(s)e
B,

2515 (R™) _ 2u(M* Oy,
i [ e ele

\Br0/2

 2sp(RY) u()*®y,
2%(s)e ly|s+2

r0/2

p(ey)dy=:J11+ 12, and

nn—s)

|J1’1| < Ce f |y|2*(s)(l—n)+l—s dy= 0(8 s )

{2<leyl<ro}

Notice that

% _ n(n—s)
e [ POy = o). 38)

RZ—\B)O/Z

Thus by using (2.7) and (2.8), we get

2565 (RY) § u(»)* O y2y, nn—s)
2=="9 Z / |y|2+vl dy(1+o(1) +0(e =)

)

. -1

ZSSMA(R ) Lt(y (A)|y/|2yn 1 n(n—s)
= d : 1 l 0 n—2
Tow-n)  pee e )lread)roE)
R =

+

=—K{H©O)(1 +o(1))e + 0(?),

where

n—1 *
2 R” 2%(s) 14,12
Zai and Ky = spes(R) - u(y)™ 1y "yn

H():= —— ) NES

dy. (2.9)

In the above estimate, we used the fact u(y’, y,) = u(|y’|, y»). Next, we see that

&
+ A
B} NOR!,
£

1
J=- f n(6~" ) (0.1 () 0 (ey') dS,

1
=- / (67" (e9)* (0uu () 0 (ey') dS,

\Bro/z)maw+
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1
+- / (0.u(»))’0(ey) dSy =: Jo1 + 112, and

B} ,NoR"

)0/

C
2l < — / @) (', 0)[*o(e3") | 4y’
{2 <ley'|<ro)
<Ce / |y’|_2"+2dy’=0(8”).
{9 <ley'I<ro}

Note that

e / |@u) (", 0) [y dy = 0(&"). (2.10)

{ley'|>2}

Thus by using (2.7) and (2.10), we get

Jzz—eza,/ @) (v 0)) 32 dy (1 + o(1) + O (e")
RA—

n—1
Y+ 0(%) = K2HO)(1+0(D)e + O(e"),

where

ko= [l (s 0|y Pay @1
Rn—1

After all, we get

/|Vﬁg|2dx=m(m)—KIH(O)(l+o(1))g+1<2(1+o(1))H(0)e+0(82). (2.12)

Next, by changing the variable ‘P(X) =y, we have

n n—2)p n
/ﬁf*‘dx—e ERN /ul’+‘dy+0( ). (2.13)
2 R",
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*

. 2(s) ) .
Furthermore, the integral ond ”fx# dx can be estimated as follows. By a change of the variable

@ =y, we have

2%(s) 2%(s)
Ve u
2n0 B} ;2 €

Since 71 (y) = (', yu + @ (1)), it holds [p =1 ()? = |y1> + 2y,9(y") + (¢(y"))?, and then

1 1 1
@ s P (] 4 e | @E))?)s
| 5€y IS [y (1+ }gflﬂ |€y + Wezgli’ )2
_ L smeley)  sleey))?
lyls elyl? 2¢2|y|?
1 ) oy v/ 2\ 2
0(( Yn‘P(ZY) n ((p(zy )2) ) ) (2.15)
B gly| &=yl

Thus from (2.14) and (2.15), we obtain

2%(s) 2%(s) 2%(s) ’
vs u s u(y)= " ynp(ey’) 2
dx = / dy — — f dy+ Ole
/~ |x[* Joy € |2t =)
onU RY Bjoi
n—1 2%(s)
u(y)= ¥ yiyn ’
=1—S£Zai/7|y|2+sl dy(1+o(1)) + 0(&”)

R}

s [uFON Ry, (&
:l_n—I/ e > ai |(1+o(h) +0(e?)

i=1
Ry

__ZTOK 2
=1- 2y L )H(O)(1+0(1))8+0(8 ),

where K is the same positive constant as in (2.9).
After all, each integral on the right-hand side of (2.6) can be expressed by
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f |Voe]? dx = s (R) — K1 H©O) (1 4 0(1))e + K2 H(O)(1 +o(1))e + O (&),
2

R n42 _ (1=2)p n(pt)
/.ng+1d.x:82 2 /up+]dy+0( )9

2.16
J o (2.16)

Ug*(v) *( ) i
/~ [x|® dx=1- 215 (R )H(O)(1+0(1))8+0(8 )
2NU

By (2.6) and (2.16), we have for ¢ > 0,

2
W (10,) < (,M (R%) — K H(0)(1 4+ 0(1))e + Ko HO)(1 +o(1))e + O(e?))

)\.tp—‘r] nt+2 _ (n=2)p n(p+1)
+ g2 2 uPtldy+0(e™ 2 )
p+ 1( / y+0( )
RL
2*(s) *
1 2*(5)K ) )
- HO)(14+o0(1))e+0(e7) ). (2.17)
2*(S)< 2ps(R7) ( ) (=)

Since 2*(s) > 2 and # e
that, for all ¢ with gg > & > O

12 > 1, there exists T > Z (S)u R ))2*<S> =2 and gg > 0, such

W, (Td,) <O. (2.18)

By (2.17), we have

A //LS(Ri) 2 >
v (t < °—
5 (10;) ( ) 2%(s)

(K> = Ki o) 5 (Ki+o()
+( 2 L@ HOe

APt 2 e
+ ) <fup+ldy)s%2_72p+ 0(&?)
p
R’l

+

)"tp+1 +1 M_”_
=igl(l)+g2(t)H(0)8+p+1</u1’ dy) 2 40(2). @19
2

Since 2*(s) > 2, we see that g (¢) has only one maximum value

2%(s)

1 1 2*(s)
(35
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J
where at ¢ = s (R} ) 7©-2. Also, we see that, for & small,

o= (5o

fn+2 _ h—
2

Hence, i sz > 1,ie., p < 75, we have W (tv,) < g1(¢]) for all 0 <z < T and for

any small ¢ > 0. Therefore, by taking ¢ small and vo = T'0,, we obtain

1 1 2% (s)
max1 U (tvg) < <2 G )>Ms(R” )2*(v) 2

0\\

This completes the proof of Lemma 2.2. 0O
We are now in the position to prove Theorem 1.1.

Proof of Theorem 1.1.
Step 1. The subcritical cases
For any fixed small ¢ > 0, we let

1 A —etl 1 (M+)2*(S)—S
V()= —\Vu+ — ()P - dx f € Hl(£2),
() f(z' ul +p_8+1(u) O s T x foru e Hy(£2)
2

where lI/SO = Y. It is easy to see, by Lemma 2.2, there exists vy € HO1 (£2) such that ¥ (vg) <0
for 0 < ¢ < g, and there is a constant p > 0 such that

1 1 26
<cf = inf we wE(t R%)Z0-2,  (2.20
p<clim o mag ) < g viem) < (5= 35 Jw (RO, a0

provided ¢ is small. By applying the mountain pass lemma, there exists a sequence {us x }ren C
H, (£2) such that

WE(upp) — ¢ and  (¥F) (ue) -0 inH'(2) ask— oo, ie.,

- 1 wfyre
/ —|Vuak|2 (u+ )p e+l e,k dx
8+1 2%(s) —¢ x|®

2

=cf +o(l) ask— oo, (2.21)
and

(u+k)2*(s)—1—8
—Aug “F)L(M:’k)p_s - ST =:Cek with Lok —> 0 in H_l(.Q)

as k — oo. (2.22)
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Multiplying (2.22) by u, x, we obtain

(u+k)2*(s)—8

—e+1
/(|wg,k|2+,\(u;fk)" et €|T> dx = (Lo, Ue k). (2.23)
2

From (2.21) and (2.23), we derive

l )\' p S+1
(3- W)/'V”“" (a0

2

= ci + oM (luekll i (o) +1)- (2.24)

Since p < 2*(s) — 1, we see that > 0. Hence, (2.24) implies

p— g+l 2*(5) e =

”us,k”HOl (£2) <C, (2.25)

where C > 0 is independent of k € N and small ¢ > 0.
Thus, extracting a subsequence, still denoted by u, ;, we see that

uek — us  weakly in HJ (£2),
”;,k — uf strongly in LP~¢1(2), (2.26)
u, — ub strongly in L¥'©=¢(2, x|~ dx),

as k — oo. It is easy to see that u, £ 0 in H& (£2). Indeed, if u, =0 in £2, then

1
0<ct=liminf= | |Vuei*dx, and lim [ |Vuer|*dx =0,
k—+o00 2 ’ k—+00 ’

2 2

where the identities follow from (2.21) and (2.23) respectively. Obviously, it yields a contradic-
tion. Passing to the limit k — oo in (2.22), u, satisfies

e (u+)2*(s)—1—s
— g 1) = 0.
X

By the maximum principle, we obtain u, > 0 in §2. As a consequence, for any small ¢ > 0, we
get that ¢ is a critical value for ¥¢ and u, € HO1 (£2) is a positive solution to

Aug —  uP ¢ +

&

=0. (2.27)
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Thus,

A 1 ur ¢
/|Vu8| dx + ——— /uf_”] dx — f £ dx =c,
p—e+1 2%(s) — ¢ [x|®
Q
2%(s)—e

/‘|Vug|2dx+)u/uffe+ldx—/u8| 5 dx =0.
Xk
2

2 2

(2.28)

Moreover, by (2.25), we have
””8”1{01(9) <C,

where C > 0 is independent of ¢ > 0.
Next, as ¢ — 0, by extracting a subsequence {usj }, we get

—up weakly in H(} (£2),
ug; — ug strongly in LPTH($2),
ug; = uog weakly in Lz*(s)(.Q, [x]|~S dx).

Ug;

Then (2.27) yields

2% (s)—1

Aug — ug + O|x|s =0.

We shall prove up # 0 in Hé (£2). Suppose up =0 in £2. Up to a subsequence, we may assume

2%(s)—¢;
Ci= lim [ |Vu, |?dx and Cr= lim | —Z dx. (2.29)
j—o0 J j—oo |x|*
Inferring from (2.28), we get
C C 1 1
Lo 22 e, and € —Cr=0, e (=— Ci=c,. (2.30)
2 2%(s) 2 2%(s)

By (2.29) and (2.30), we derive

26 1 1 2w
Ci=Cr> s (2)T®2  and ¢y > 3 > 05) s (§2)76-2

However, this lower bound of ¢, is too weak to obtain a contradiction. In the followings, we shall
apply the bubbling analysis to obtain a sharp lower bound for c,. This bubbling analysis has been
used for the curvature equations, see [4—6,15]. However, we have to go through for all the details
because |x| ™% has singularity at 0.
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We first note Ug; (xgl.) =maxg ug; — 00 as Jj — oo. Otherwise, Ug; — 0 strongly in HOl (£2),
and we get

1
0= - lim |VuE |dx = cy,

]4)00
2
which is a contradiction. Let
_2*()-2-¢;
K :=usj(x8j) 2=, (2.31)
Step 2. We claim |x;;| = O(k;j) as j — oo. Suppose that, up to a subsequence,

Ixe; | .
lim_, oo - = 00. By scaling, set
Ky

Ug. (Xg. +K;
ve, (7) 2t TGN e g 2.32)
uej(xaj)

where
Qj:={yeR" | x;; +xjyec R} (2.33)

By (2.27) and (2.31), Vg, satisfies

s UZ*(S)flfsj
L e Kj € .
Avg; — A2 Tue; (g, )P 8 1v8, ’+( J ) ’ =0 in£j,
e,/ 1 ol
ve; =0 ondf2;.
Furthermore, we have
e )
e T T 2F(s)—2—¢; .
/cjz- we; (xe, )P ! =K; =0 asj— oo, (2.34)

since k; — 0 and 2 — % >0,1e., p< ”+2 . Thus v,; converges to some v smoothly
in any compact set, and v satisﬁes v(0) =1 and
Av=0 inR"?
v=eom (2.35)
0<v<v0) =1,
provided that £2; — R", or
Av =0 in some half space H,
P (2.36)
v<v0)=1,,andv=0 ondH

provided that up to an affine transformation £2; — H :={y e R" | y, > —a} for some a > 0.
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On the other hand, we have

ne

2n S 2n
o3 2%(s)—2—¢; o3
/vg’jzdyzlcj ’fugljzdxgc,

2; 2

2n
and then fR" vn-2 dy is finite. However, in the former case, by the Liouville’s theorem, v(x) = 1

for x € R". This contradicts to that fR” vnzTn2 dy is finite. In the latter case, by the boundary
condition on d H and the maximum principle, v(x) = 0 for x € H which violates to v(0) = 1.
Therefore we conclude |xsj| =0O(kj)as j — oo.

Note that Step 2 implies that the origin is the only blow up point.

. Xe; .
Step 3. We claim that, up to a subsequence, K—JJ — yo#0as j — oo.

Suppose that );i — 0 as j — o0. As in the proof of Step 2, we define v,; and £2; by (2.32)
J
and (2.33), respectively. Then by (2.27), Vg, satisfies

2% (s)—1—¢;

Avg; — AK? e, (xs_l.)l’—sj—lvg;gj + 1117 =0 in$2;,
I +oP

ve; =0 ondsf2;.

Since by (2.34) szugj (xgj)/’_{"-/_1 — 0, vg; converges to some v smoothly in any compact set

in R, and v satisfies

Because 0 € dR'} , we have v(0) = 0 which is a contradiction to v(0) = 1. Thus Step 3 is proved.

Step 4. We complete the proof of Theorem 1.1 in this step. We note after an affine transformation,
Vg; converges to some v smoothly in any compact set in R, and v satisfies

p2H (-1

Av + =0 inR%,

Iyl® (2.37)

v(x)>0 inR%, andv=0 ondR].

By (2.37), we have

2%(s)—=2

Jan V2 dy 2%(s) i
MS(R1)< R7 =</‘v dy)Z(),

2% ()

2
L *(s |Y|v
(.[Ri |y[® dy)2 ® R’i
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and then

Furthermore, note that
(n— 2)3

Ci = lim [ [Vug,[? dx = lim ; ), O /|va/| dy

]*)OO

> lim /|va/| dy > /|Vv| dy.
Jj—>00
R}l

Then by (2.30), (2.38) and (2.39), we derive

> (L " Ve, (! ! (R”)zf?ff)z
Cyx =2 ) 2*(5) 12 2 2*() Ms

(2.38)

(2.39)

which yields a contradiction to (2.20). Thus ug # 0 in H& (£2), and Theorem 1.1 is proved. O

3. Existence of entire solution in ]Rf’l_

In this section, we shall prove Theorem 1.2. We note that for some parameter A > 0, the
existence of least-energy solutions of (1.19) was proved in [13]. In this section, we want to prove
the same result for all A > 0. To this end, we prepare the following lemma in which the condition
0 € 052 is not necessary. This lemma is also needed for the proof of Theorem 1.3 in the next

section.

Lemma 3.1. Suppose that $2 is a bounded domain in R". For . >0, if () n=3and 0 <s < 1
or (i) n 24 and 0 < s < 2, there exists a nonnegative function vo € Hé (82) \ {0} such that

D, (vg) < 0 and

1
max D, (tvg) < k Snz,
120

tz

where

_ \ 24 s)
®, (i) ::f(%wmz — ("zj(;ﬁ)ff2 _ &> dx forue HM()

n 2%(s) x|
22

S, :=inf{ / [Vu|?dx

2 2

and

ue H.(2) and /|u|ff"zdx= 1}.
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Remark 3.2. It is well known that S, is independent of £2 and when £2 = R", S, is achieved by
the function

=(n=2)

g)=C(1+x]*)" 7,
where C is a normalization constant.

Proof of Lemma 3.1. The following calculation was basically done in [1]. We include it here for
the sake of completeness. Let xo be an interior point of §2 such that B3, (xp) C §2. Take ¢ (x) €
C3¥(Bar(x0)) be a cut off function with ¢|p, (x,) = 1. Consider g.(x) := 8’}12;2g("_5i)¢(x) €
H}(£2).

For t > 0, we have

2 — ZTn n 2*(s) 2%(s)
t (n —2)Atn—2 / 2 t ge
Dy(1ge) = — [ |Vgel>dx — ————— ' dx — dx. 3.1
s (18¢) 3 /| 8e|"dx n € 2*(5) X X (3.1
Q Q 2
Using the integration by parts and a change of the variable y = *=¢_ we get

&

/ |Vge(x)|* dx
2

2
-~ / '(Vg)(x;x())’d)z(x)dx—az_" / g2<x;x0>¢A¢)dx

Bor (x0) Boy (x0)\ By (x0)

= f Ve ¢ (xo +ey) dy — &* / 2 (M (xo + ey)Ad dy.
Bzgl 0) Bzgl (0)\Bg 0)

Direct calculation gives

f Ve[ dy = /!Vg(y)!zdy +0(e"72),

B, (0) R"
&€

g2 (y)dy=0(""1).
sz_r(O)\Bg(O)

Hence,

/|Vge(x)|2dx=/|Vg(y)|2dy+ 0(8"‘2) as s — 0t.
2 R~
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Next, we have
2 2 n
ge(x)2dx= [ g(y)»2 4+ O(¢"),
Q R”

and

X 2*(s) . 1+ 2\—n+s .
/%d}c =C2 (S)SS / %Q&(XO +£y)2 (s)dy _ O(SS).

Bzé_;(O)

Therefore, as T > 0 is fixed, there exists &g > 0 such that

2 (n — 2t o
@, (tgs)— IVey)|*dy — —, | s dy
R’l R’l
2\—n+s
2%(s) o8 2%(s) (I+1yl9) 2%(s) 2n
— Ty CTOT  p(xgte dy+ 0 24+ 0(e")ri2
/ g0+ a0 O dy+ 0(" )+ O()
B2 )
12 ) (n — DAri2 o
< —f|Vg(y)| dy——/g(y)mdy,
2 2n
R7 R7

for 0 <t < T and all positive ¢ < gp, provided 0 <s <n —2,1ie,0<s <1 asn =23 and
O<s<22asn>4.

Now, by choosing T large, we have @5(Tg.) < 0 for all ¢ < g¢. Inferring from (3.1), we see
that @, (tg.) < 0 for t > T and all positive ¢ < g9. Hence, for 0 < ¢ < gp, elementary calculus
gives

2 2n_
t 2 (n—Z)M'H/ 20 1 20 2
&4t —[|v dy — —— 2% ° Iyt = )T S7.
max s(gs)<rp§g{2/| g| dy > g2 dy 5
R7 R7

S

By choosing vy = T'g,, we obtain

1
m>a(>)§<15 s(tvg) < A 52 and @, (vg) <O,

provided either i) n =3 and 0 < s < 1 or (ii) n > 4 and 0 < s < 2. This completes the proof. O
Next, we explore the following lemma:

Lemma 3.3. Let 2 be a bounded domain in R* withn >3, 1 > 0,0 <s < 2 and 2*(s) = 2(" S)
If 2 is star-shaped about the origin, then Eq. (1.18) has no positive solution.
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Proof. As usual, Lemma 3.3 is a consequence of Pohozaev’s identity. Multiplying (1.18) by
x - Vu and Vu respectively and taking integrations, we obtain

1 du\? 2—n 2 2—n 2 u?®
—E/(x'v)(a> de+T/|VM| dx=T<X/un—2 dx + I dx),
EY) Q 2 Q
5 o u2'®
|Vul“dx =X | un—2dx + dx,
x|
Q

2 2

where v denotes the outward normal to 9£2. Here, we derive the following Pohozaev’s identity

au\>
/(x~v)<—> ds, =0.
ov
082

Since £2 is star-shaped about the origin, we deduce that g—l’f =0a.e. on 052. Hence,

w2 u2*(s)71
)\/u”ﬂdx—i—/ | |€ dx:—/Abtdx:O,
x|

2 2 2

which impliesu =0. O
By using Lemma 3.1 and Lemma 3.3, we shall prove Theorem 1.2 in the following.

Proof of Theorem 1.2. We shall apply the blowing up argument to show the existence of positive
solutions of Eq. (1.19). To do it, we let §2 be a star-shaped domain with respect to 0 and 0 € 952.
For any ¢ > 0, by applying Theorem B and Lemma 3.1, we can find a positive solution of

2%(s)—1—¢
Au +Aup5—1+%7—0 in £2
& & Ix[* = , (3.2)

ue >0 1in £ and ug|yn =0,

which satisfies

2*(s)—e¢
l 2 A 1 Ug 1 2-n 12
—|V — Zype — dx=ct <=-17 S2, 33
f(z' v T~ P >x SRt G-
2
where
. 2n 2¢e
pa'_n—Z 2—s’

By applying Lemma 3.1, the proof of the above statement is the same as in [1]. Since it is standard
now, the details of the proof is omitted.
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Multiplying (3.2) by u., we obtain

2%(s)—e

f|Vu8|2dx—A/u£8dx—[u8| —dx=0. (3.4)
X
2

2 ko)

Note that by (3.3) and (3.4), one can readily derive that
llue ”HOI(Q) <C,

where C is some constant independent of small ¢ > 0. Thus, by extracting a subsequence
{uj = ug/.}jeN with ¢; — 0 as j — oo, there exists a function u € HO1 (£2) such that

uj —u weakly in HJ(£2),

2n
uj —~u weaklyin Ln-2(82),

*(s d
uj—u weaklyin L? (‘)(.{2 al )

Clxls
Now, passing to the limit j — oo yields that

., 2%(s)—1
Au+ i + 2 =0 ingQ.

|x|*

However, by Lemma 3.3, the above equation has no positive solution provided that 2 is a star-
shaped domain. Thus we conclude that u = 0 in §2. But by (3.3),

1
§f|Vuj|dx>c*>0, for j large.
2

Therefore, 1 ; must blow up somewhere in Q.
Let

mj :=uj(xj)=m§axuj(x)—> 0o as j— oo.

We consider the scaling:

vi(y) :=m;1uj(xj +kjy) foryeRj:={zeR"|x;+kjze 2},

_pi=? .
where kj =m; * and pj = nZT”Q - % By (3.2), v; satisfies
v2*(s)—l—£j
] pj—l1 J _ : .
Avj—i—kvj + =0 ingy, 3.5)

7+
v;=0 ondf;.
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We claim

] |x;
0 <liminf —— < lim

J—0o0  Kj Jj—>00 J

x|

Suppose that, up to a subsequence, #

sup—| < +o00.

1841

(3.6)

— 00. Then £2; — R" as j — 400 and v;(y) converges

to some v(y) uniformly in every compact subset of R”. It is easy to see v(0) = 1 and v is the

solution of the equation:
n+2
Av+rv—2 =0

It is readily checked that

Ci:= lim
j—o0o
Q
Cy:= lim
/—)OO
2;
uz.*(s)_sj (J)
Ci:=1lim | L——dx= lim (m>
j—oo | x]$ j—oo\
Note that
Ci m—2x C3
-1 _ Cy —
2 2n 2*(s)
C1—ACy—C3=0,
Al =AAj.

By (3.7)—(3.12), we have

1 c N 1
- 2*(s>) e (2*<s)

< 1
A
2*(s)

On the other hand, by the Sobolev inequality, we see that

n=2

SpiA," <A

in R”.

V| dx—jhm( (3= ”’f|w,| dy) /|VU| dy = A,

. n=2y.. ) 2n
u” dx = lim m(.z_’r e e dy) > | vi2dy=: A,,
J Jj—o0 J J

Rn

2% (S)—é‘j

f—vj d)
. v).
Xj K
— +

& |k]- yl

= Cx,

n—2 c
2n 2

n—2 A
2n 2

3.7

(3.8)

(3.9)

(3.10)

(3.11)
(3.12)
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This leads to

Hence,

which contradicts to

Hence, we have proved

Next, we want to prove

X
ll_mlnfu > 0.

Suppose not. Then, up to a subsequence, lim;_, z—fl = 0. In this case, up to a rotation,
J

£2; — R% and v; converges to some v uniformly in any compact subset of R", where v is
the solution of the equation:
2(s)—1

n+2
n=2

Av+ Av +

— 1 n
FER (3.13)

v=0 ondR},

with v(0) = 1, which is a contradiction. Hence (3.6) holds true.
Now we may pick up a subsequence i—; — yo # 0, then up to an affine transformation

£2; — R Therefore, v; converges to some v uniformly in any compact subset of R”, where v
is the solution of Eq. (3.13) with v(y;) = 1 for some y; e R}..
By (3.3) and (3.4), we have

1 1 1 1 *
=rM5—— /ug’edx+ - /ug(”—adx.
2 pe 2 2%(s)—¢
2 2

Notice that

2*(S) 2*(5)—8/'
2n_ . paj v . ué‘j

vi—2dy < lim ug.” dx, and dy < lim —dx.

j—+o0 / |y|S j—+o0 |x|$

Q

R 2 R
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Thus, by (3.13) and the above observation, we have

1 —2)A 1 02
@S(v)=/ Lwop = 222 2 ) dx
2 2n 2%(s) |x|®

R}
1 -2 " 1 1 25(s)
—afz-" /vnzjdx—i— - — /v dx
2 2n 2 2%(s) |x|*

R R"
& 1 220 2
< lim ¢ < -177 S}
e;—0

This proves (1.20).
To complete the proof of Theorem 1.2, we need the following lemma:

Lemma 3.4. Let A > 0 and u € HO1 (R%) be an entire positive solution of Eq. (1.19). Then the
followings hold.:

i __ 2
O fyccr@®) iFs<1+2,
n

__ 2
ueCYP(RY) forall0<B<1 ifs=1+=,
n

n2—s)

— 2
ueCYP(RL) forall0<p< ifs>1+~.

(ii) There is a constant C such that lu(y)| < C(1 + |yD' ™" and |Vu(y)| < C(1 + |y])™".
(iii) u(y’, yn) is axially symmetric with respect to the yy-axis, i.e., u(y', yu) = u(|y’|, yn).

(iv) There exists a & > 0 such that
(£ (&
e = <|x|) i)

For some A € R, Lemma 3.4 has been proved in [13]. The proof there can work for Eq. (1.19)
for all A > 0. So we omit the proof here. We refer Lin and Wadade [13] for the details of the proof.
Now we come back to the proof of Theorem 1.2. Let

co = inf{ @, (v) | v is a positive solution of (1.19) and @, (v) > 0}.

It is easy to see cp > 0. Now suppose v; is a sequence of solutions of (1.19) with &;(v;) — co.
By scaling and Lemma 3.4, we may assume v; satisfies

n—2
vj(x) = <L> v,~<i>, xeR". (3.14)
| x| |x|?
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If v; is uniformly bounded, then v; — v where v is a positive solution to (1.19) with @, (v) = o,
and the proof is done. So we may assume maxv; = v;(x;) — +o00. By (3.14), we may assume
|xj] < 1. By using the inequality (1.20),

1 20 2
By (v)) < —1 7S,
n

and applying the same argument as before, we can prove the rescaling 7,

_2 a . — A o
where kj = v;(x;)” "2, converges to v uniformly in any compact set of R, where v is a positive
solution of

n+2 i\)z* (5)-1

AD+ A2 +

. n N _
G in R/}, U|8R'jr =0,

and & (D) < ¢g. Then & (D) = ¢ and Theorem 1.2 is completely proved. O

For the case n =3 and 1 < s < 2, we can obtain the entire solution to (1.19) if A is small.
To see this, we can take the positive function vy € HOl (£2) \ {0} which achieves the best constant

ws(£2), ie.,

Jo |Vuo|dx

ws($2) = — e a2

o 07

so that for ¢t > 0,

25 US*(S)
2%(s) |x|*
2

Lo 2% (s) =2
1 1 ()2 v ()2
- /le0|2dx / 0 dx
2 2% |x[*
2 2

2
t
max @, (tvg) < max —/|Vv0|2dx—
>0 >0 2
Q2

AES? (3.15)

_n_ 2%(5)2
if A <(5— Z*L(S))%S,?’2 s (§2) @=22-2%¢) | Once the inequality (3.15) holds, then by the same
proof of Theorem 1.2, we can establish the following result.
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Theorem 3.5. Forn =3 and 1 < s < 2, there exists a least-energy solution of Eq. (1.19) provided
that

P B e -
=27 e s (2)

4. Proof of Theorem 1.3
In this section, we shall prove Theorem 1.3. To this end, we need the following lemma.
Lemma 4.1. Suppose that $2 is a C' bounded domain in R" with 0 € 352 and the mean curvature

of 082 at O is negative. Then, for A > 0, there exists a nonnegative function vy € HO1 (£2)\ {0}
such that @5 (vg) < 0 and

1 —2)r 1 e
max @, (tvg) < co ::/ —|Vv]® = (=2 vnzTZ — v dx,
>0 2 2n

> 24(s) |xP
Ry

where

_ n +12%(s)
®, (i) ;=f<%|v14|2 - %(Iﬁ)f?2 - 2*1(s) %) dx forue Hi(Q), (@1
2

andv € H (RY) is a least-energy solution of Eq. (1.19).

Proof. As in the proof of Lemma 2.2, we take 0. (x) := 8_#77()5)1)(@), where ¢ (x) is as

defined in (2.4) and 5(x) is a cut-off function. From the estimates (2.16) with p = %, we get

fort >0,

; Z)Mn s R O RS
By (td,) < f|v B2 dx / i dn = o -
nu onv
2
t
S E( / IVol* dy — K{H(O)(1 +0(1))e + K3 H(O) (1 +0(1)e + 0(82))
RY
2n
— 2D Atn-2 " 2
- %( / v"2T2 dy + O(gnTz))
RY
2%(s) 2%(s) * /
t v 2(5)K| .
N 2*(5)(/ BB dy — ) HO)(1+0(1))e + O(e?)
-2 )L[n ) " lz*(s) 2*(s)
/|V|d ) /U"Zjdy— _dy
25(s) J Iyl

R} R’ R’
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+ @((1{5 — K|+ o) + (K| + o)) O)e + 0(e?)

H(0)e

= fi(t) + H(t) + 0(e?),

where

K / v Oy 2y,
L= 2*<s) e

—2)A 2n_
/y@ (0Pl Pay + P25 [ oy 0y Pay,

Rrn— Rr—1

Since 2*(s) > 2, -2 ~=5 >2and

we find
= 1 =
I}g‘é(fl(t) fi(1) =co,
and
A =K} +o(1) >0,

provided ¢ is small.
Hence, in case H(0) < 0 and ¢ small, we conclude for all ¢t > 0,

D, (1) < f1(1) =co.

4.2)

Finally, we take vg := fo0, wWhere f is large enough so that @;(vg) < 0. The lemma is proved. O

Now we shall show Theorem 1.3.

Proof of Theorem 1.3. Under the assumption of Theorem 1.3, for small ¢ > 0, by applying

Theorem B, Theorem 1.2 and Lemma 4.1, we can find a positive solution of

S -1

Aug 4+ rule™ 1WLT:O in 2,
X

ue >0 in 2 and ug|30 =0,

which satisfies

| O

1 A

/ —|Vu£|2——ufs— £ dx = ¢ < co,
2 Pe 2%(s) —¢e  |x|®

Q2

(4.3)

(4.4)
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where c is as defined in Lemma 4.1 and

2n 2¢e

n—2 2—s

De ‘=

Similar to the proof of Theorem 1.2, by extracting a subsequence, u; has a weak limit u €
HOl (£2) that satisfies

i w21 '
Au + Aun-—2 + =0 in$2. 4.5)

|x[*

In what follows, we shall prove that u is a nontrivial solution. If # = 0, the same as the proof
of Theorem 1.2, we may assume

mj :=uj(xj)=m£xuj(x)—> 00 as j — oo,

and consider the scaling:
vi(y) i=muj(xj+kjy) forye;:={zeR"|x;+kjze 2},

pPj—2

where kj=m; 7 and p; = ;25 — 20 Then v satisfies
2 (s)—1—g;
Avi T h 0 g
J J |;<Q + oy - 7’ (4.6)
J
V= 0 on 3.{2./'.

Noting that by the inequality (1.20), we see that ¢ < ¢ < %)\z%n S, . Hence, we may apply the
blowing up argument in the proof of Theorem 1.2 to obtain

NS - 71 R x|
0 <liminf —— < limsup —— < +o0. 4.7)
J—00 j j—o00o J

Now we may pick up a subsequence i—j — yo # 0 and assume, up to an affine transformation,

R2; — R'}.. Therefore, v; converges to some v uniformly in any compact set of R", where v €
HO1 (R%) is a nontrivial solution of the equation

TSN AORS
Av+Arvn-2 4

=0 inR“,
EE =y 4.8)

v=0 ondR}.

Direct calculation shows
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n=2
Cri= lim [ |Vu,[Pdx = hm( (- m/w vj] dy) /lel dz=:B,, (49
/—)
2
. n=2 . "
Cy:= lim uf’ dx = lim (mi2 $ /vf’ dy) = / viE dz = By, (4.10)
j—00 j—>00 Y
J R}
2*(S)—8_,‘ 5 v2*(s)—8_,' 2*(,?)
. n—=Z2yo. ; v
Ci:=lim | L——dx= lim (m(~2_“)£j/;—dy> 2/ dz=:B3. (4.11)
j—o0 lx|® j=oo\ |2+l |zI*
2 2; 7 R

Inferring from (4.4) and (4.8), we deduce

Ci—ACy—C3=0,
By —AB, — B3 =0,
Cq (n—2)A 1

S - s
<=5 m P 2 °

By the definition of ¢, see (1.21), we have

Bl (n—2)r L,
2 2n 2%(s)

(1 1)\, L _n-2y,.
C*_<5_2*(s>> l’L<2*_<s>_7) ’

(! L\, I =2\,
/<§_2*(s)> lJF(z*(s)_ n ) 2

B —2)A 1
B =) By — B3
2 2n 2*(s)

To sum up, we see

This contradicts to ¢, < co. Hence, we have proved u # 0 in HO1 (£2) and the proof of Theorem 1.3
is complete. O

Notice that for the case n =3 and 1 < s < 2, the above arguments also work if A is small,
because by Theorem 3.5, Lemma 4.1 still holds for » =3 and 1 < s < 2 provided that A is small.
Therefore, we have the following theorem.

Theorem 4.2. Suppose that 2 is a C' bounded domain in R3 with 0 € 382. Assume further that
the mean curvature of 082 at 0 is negative. Then for 1 <s < 2, Eq. (1.18) has a positive solution

if

2% (5)2

2
0<r<(= " 2_ 2 (2) D26y,
27 2%(s) s
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