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Abstract

Let n � 3 and Ω be a C1 bounded domain in R
n with 0 ∈ ∂Ω . Suppose ∂Ω is C2 at 0 and the mean

curvature of ∂Ω at 0 is negative, we prove the existence of positive solutions for the equation:

⎧⎨
⎩�u + λu

n+2
n−2 + u2∗(s)−1

|x|s = 0 in Ω,

u = 0 on ∂Ω,

(0.1)

where λ > 0, 0 < s < 2, 2∗(s) = 2(n−s)
n−2 and n � 4. For n = 3, the existence result holds for 0 < s < 1.

Under the same assumption of the domain Ω , for p � 2∗(s) − 1, we also prove the existence of a positive
solution for the following equation:

⎧⎨
⎩�u − λup + u2∗(s)−1

|x|s = 0 in Ω,

u = 0 on ∂Ω,

(0.2)

where

λ > 0 and 1 � p <
n

n − 2
.
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1. Introduction

The Caffarelli–Kohn–Nirenberg (CKN) inequalities assert that for all u ∈ C∞
0 (Rn), there is a

constant C > 0 such that

C

( ∫
Rn

|x|−bq |u|q dx

) 2
q

�
∫
Rn

|x|−2a |∇u|2 dx, (1.1)

where n � 3,

−∞ < a <
n − 2

2
, 0 � b − a � 1 and q = 2n

n − 2 + 2(b − a)
. (1.2)

See [2] and their generalization [12]. Suppose Ω ⊂ R
n and D

1,2
a (Ω) be the completion of

C∞
0 (Ω) with respect to the norm

‖u‖2
a :=

∫
Ω

|x|−2a |∇u|2 dx,

then inequality (1.1) holds for all functions in D
1,2
a (Ω). The corresponding best constant is de-

fined as

S(a, b;Ω) := inf
u∈D

1,2
a (Ω)\{0}

Ea,b(u), (1.3)

where

Ea,b(u) :=
∫
Ω

|x|−2a |∇u|2 dx

(
∫
Ω

|x|−bq |u|q dx)
2
q

.

It is easy to see that the existence of a minimizer of (1.3) is equivalent to finding a least-energy
solution to the following equation:

{−div
(|x|−2a∇u

) = |x|−bquq−1, u > 0 in Ω,

u = 0 on ∂Ω.
(1.4)

To study Eq. (1.4), one could let w(x) = |x|−au(x). A direct computation shows

∫
Ω

|x|−2a |∇u|2 dx =
∫
Ω

|∇w|2 dx − γ

∫
Ω

w2

|x|2 dx, (1.5)

where

γ = a(n − 2 − a). (1.6)
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Thus, a corollary of (1.5) is that for a < n−2
2 , u ∈ D

1,2
a (Ω) if and only if w ∈ H 1

0 (Ω). Indeed,
u(x) is a solution of (1.4) if and only if w(x) satisfies⎧⎨

⎩�w + γ
w

|x|2 + w2∗(s)−1

|x|s = 0 in Ω,

w = 0 on ∂Ω,

(1.7)

where s = (b − a)q and 2∗(s) = 2(n−s)
n−2 . By (1.2), we see that 0 � s � 2. For the prob-

lem finding minimizers of CKN inequalities and related subjects, we refer the readers to
[3,7–11,13,14,16,17].

Let L2∗(s)(Ω, |x|−s dx) denote the space of L2∗(s)-integrable functions with respect to the
measure |x|−s dx. By the CKN inequality, the embedding of H 1

0 (Ω) in L2∗(s)(Ω, |x|−s dx) is
a family of non-compact embeddings for s ∈ [0,2). In [9], among other things, Ghoussoub and
Kang considered positive solutions of the following equation:⎧⎨

⎩�u + λup + u2∗(s)−1

|x|s = 0, u > 0 in Ω,

u = 0 on ∂Ω,

(1.8)

where λ > 0, 1 < p < n+2
n−2 , and Ω is a bounded domain in R

n with Lipschitz boundary. They
proved the following result:

Theorem A. Suppose 0 ∈ ∂Ω and ∂Ω is C2 at 0. Then for n � 4, λ > 0 and 0 < s < 2, Eq. (1.8)
has positive solutions if one of the following conditions is satisfied:

(i) n
n−2 < p < n+2

n−2 .

(ii) 1 < p < n+2
n−2 and ∂Ω has non-positive principal curvatures in a neighborhood of 0.

The proof of Theorem A in [9] is based on the idea of Brézis and Nirenberg [1] where they
considered the equation: {

�u + λup + u
n+2
n−2 = 0 in Ω,

u > 0 in Ω, u = 0 on ∂Ω,
(1.9)

where 1 < p < n+2
n−2 . To solve Eq. (1.9), one may consider the corresponding nonlinear functional

Φ defined in H 1
0 (Ω):

Φ(u) := 1

2

∫
Ω

|∇u|2 dx − λ

p + 1

∫
Ω

(
u+)p+1

dx − n − 2

2n

∫
Ω

(
u+) 2n

n−2 dx. (1.10)

Set

c∗ := inf
P∈P

max
w∈P

Φ(w), (1.11)

where P denotes the class of continuous paths P connecting 0 and v, where Φ(v) < 0. It is
known that the functional Φ of (1.10) does not satisfy the Palais–Smale condition in H 1(Ω) due
0



C.-H. Hsia et al. / Journal of Functional Analysis 259 (2010) 1816–1849 1819
to the non-compactness of H 1
0 (Ω) in L

2n
n−2 (Ω). However, Brézis and Nirenberg [1] observed that

Φ still satisfies (P − S)c , provided that c < 1
n
S

n
2
n , where Sn is the Sobolev best constant. Thus,

if c∗ < 1
n
S

n
2
n then c∗ is a critical value. Recall that a functional Φ is said to satisfy the Palais–

Smale condition (P − S)c at level c, if any sequence uk ∈ H 1
0 (Ω) that satisfies Φ(uk) → c and

Φ ′(uk) → 0 in H−1(Ω) as k → +∞, is necessarily relatively compact in H 1
0 (Ω).

To solve (1.8), Ghoussoub and Kang [9] considered the functional:

Φs(u) := 1

2

∫
Ω

|∇u|2 dx − λ

p + 1

∫
Ω

(
u+)p+1

dx − 1

2∗(s)

∫
Ω

(u+)2∗(s)

|x|s dx,

and let c∗ be the constant as defined in (1.11) by the minimax method. Similar to (1.9), Φs

satisfies (P − S)c∗ if

c∗ <

(
1

2
− 1

2∗(s)

)
μs(Ω)

2∗(s)
2∗(s)−2 , (1.12)

where μs(Ω) is the best constant of the CKN inequality:

μs(Ω) := inf

{ ∫
Ω

|∇u|2 dx

∣∣∣ u ∈ H 1
0 (Ω) and

∫
Ω

|u|2∗(s)

|x|s dx = 1

}
.

To illustrate how to apply the idea of Brézis and Nirenberg to Eq. (1.8), we would like to
give a very brief account of the proof. Let uk ∈ H 1

0 (Ω) be a sequence such that Φ(uk) → c∗ and
Φ ′(uk) → 0 in H−1(Ω) as k → +∞. From the assumption, it is easy to find ‖uk‖H 1

0 (Ω) � C.

Thus by passing to a subsequence of uk , uk ⇀ u in H 1
0 (Ω). We have to show u 
= 0. Suppose

u ≡ 0, then

c∗ = 1

2
lim

k→∞

∫
Ω

|∇uk|2 dx − 1

2∗(s)
lim

k→∞

∫
Ω

(u+
k )2∗(s)

|x|s dx =
(

1

2
− 1

2∗(s)

)
lim

k→∞

∫
Ω

|∇uk|2 dx.

On the other hand, by the definition of μs(Ω), we see

∫
Ω

|∇uk|2 dx � μs(Ω)

( ∫
Ω

(u+
k )2∗(s)

|x|s dx

) 2
2∗(s)

= μs(Ω)

( ∫
Ω

|∇uk|2 dx

) 2
2∗(s) (

1 + o(1)
)
. (1.13)

Thus we deduce that

c∗ =
(

1

2
− 1

2∗(s)

)
lim

k→∞

∫
Ω

|∇uk|2 dx �
(

1

2
− 1

2∗(s)

)
μs(Ω)

2∗(s)
2∗(s)−2 ,

which violates (1.12).
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This concludes that u is a nontrivial solution to (1.8). Indeed, Ghoussoub and Kang obtained
positive solutions to (1.8) by showing c∗ satisfies (1.12) if one of the conditions of Theorem A
holds. The only difference between (1.8) and (1.9) is that the quantity μs(Ω) might depend on
the domain Ω , but the Sobolev best constant Sn does not.

However, in case the coefficient of up in (1.9) is negative, the equation reads

{
�u − λup + u

n+2
n−2 = 0 in Ω,

u > 0 in Ω and u|∂Ω = 0,
(1.14)

where λ > 0. Let Φ− be the corresponding functional:

Φ−(u) = 1

2

∫
Ω

|∇u|2 dx + λ

p + 1

∫
Ω

(
u+)p+1

dx − n − 2

2n

∫
Ω

(
u+) 2n

n−2 dx,

u ∈ H 1
0 (Ω) and c∗ be the constant of (1.11) defined by the minimax method. Then the inequality

c∗ < 1
n
S

n/2
n does not hold any more. Thus the idea of Brézis and Nirenberg cannot be applied to

Eq. (1.14). This is the reason why there are very few existence results for (1.14).
In this paper, we investigate the case that the coefficient of up in Eq. (1.8) is negative. Namely,

we consider ⎧⎨
⎩�u − λup + u2∗(s)−1

|x|s = 0 in Ω,

u > 0 in Ω and u|∂Ω = 0,

(1.15)

and

Ψs(u) = 1

2

∫
Ω

|∇u|2 dx + λ

p + 1

∫
Ω

(
u+)p+1

dx − 1

2∗(s)

∫
Ω

(u+)2∗(s)

|x|s dx,

where λ > 0 and p satisfies

1 � p � 2∗(s) − 1. (1.16)

We will prove in Section 2 that Ψs satisfies (P − S)c for any c such that

0 < c <

(
1

2
− 1

2∗(s)

)
μs

(
R

n+
) 2∗(s)

2∗(s)−2 ,

where μs(R
n+) is the best constant of the CKN inequalities on the half-space R

n+ = {(x1, x2, . . . ,

xn) | xn > 0}. Note that if 0 ∈ ∂Ω and the mean curvature H(0) < 0, then it was proved in [9]
and [13] that

μs(Ω) < μs

(
R

n+
)
.

Hence, our result is a sharp improvement of the original result of Brézis and Nirenberg for such
a domain. Our first result is the following theorem.
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Theorem 1.1. Let λ > 0 and Ω be a C1 bounded domain in R
n with 0 ∈ ∂Ω . Suppose the mean

curvature of ∂Ω at 0 is negative, 1 � p < n
n−2 and (1.16) holds. Then the equation:

⎧⎨
⎩�u − λup + u2∗(s)−1

|x|s = 0 in Ω,

u = 0 on ∂Ω

(1.17)

has a positive solution.

To see why the condition (1.16) appears, we may consider a sequence uj ∈ H 1
0 (Ω) such that

Ψs(uj ) → c∗ and Ψ ′
s (uj ) → 0 in H−1(Ω), i.e., uj satisfies

1

2

∫
Ω

|∇uj |2 dx + λ

p + 1

∫
Ω

(
u+

j

)p+1
dx − 1

2∗(s)

∫
Ω

(u+
j )2∗(s)

|x|s dx = c∗ + o(1), and

∫
Ω

|∇uj |2 dx + λ

∫
Ω

(
u+

j

)p+1
dx −

∫
Ω

(u+
j )2∗(s)

|x|s dx = o(1)‖∇uj‖L2(Ω).

From the above, it can be deduced that(
1

2
− 1

2∗(s)

)∫
Ω

|∇uj |2 dx +
(

λ

p + 1
− λ

2∗(s)

)∫
Ω

(
u+

j

)p+1
dx = c∗ + o(1)

(‖∇uj‖L2(Ω) + 1
)
.

If p � 2∗(s) − 1, then the above identity implies all quantities ‖∇uj‖L2(Ω), ‖u+
j ‖Lp+1(Ω) and

‖(u+
j )2∗ |x|−s‖L1(Ω) are all uniformly bounded. If p > 2∗(s)−1, then 1

p+1 − 1
2∗(s) < 0 and it fails

to prove the boundedness of those quantities. Thus, we are unable to show Ψs satisfies (P − S)c∗
when (1.16) fails.

At the moment, condition (1.16) seems to be a technical assumption. However, by performing
bubbling analysis, we will see that if (1.16) fails, there might occur a competition between these
two nonlinear terms up and u2∗(s)−1|x|−s . Due to this competition, there might be a new bubbling
phenomenon other than the one related to the entire solutions of

�w + w2∗(s)−1

|x|s = 0 in R
n+ or R

n.

This new phenomenon deserves a further study in a forthcoming paper.
Our next exploration is the case of Sobolev critical exponent of (1.8), i.e.,

⎧⎨
⎩�u + λu

n+2
n−2 + u2∗(s)−1

|x|s = 0 in Ω,

u > 0 in Ω and u|∂Ω = 0.

(1.18)

In this case, there are two dominant terms, since none of
∫
Ω

u
2n

n−2
j dx and

∫
Ω

u
2∗(s)
j

|x|s dx tends to 0

as uj ⇀ 0 in H 1(Ω). Hence, a natural question arises: is there a positive number c0 such that
0
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the corresponding functional Φs of (1.18) satisfies (P − S)c for any 0 < c < c0? If yes, we can
guess this c0 should be related to the least-energy solutions in R

n+:

⎧⎪⎨
⎪⎩

�u + λu
n+2
n−2 + u2∗(s)−1

|x|s = 0 in R
n+,

u > 0 in R
n+ and u|∂R

n+ = 0.

(1.19)

Theorem 1.2. For n � 3 and λ > 0, there exists a least-energy solution of Eq. (1.19) provided
that

{
0 < s < 1 if n = 3,

0 < s < 2 if n � 4.

Furthermore, the least-energy solution v satisfies

∫
R

n+

(
1

2
|∇v|2 − (n − 2)λ

2n
v

2n
n−2 − 1

2∗(s)
v2∗(s)

|x|s
)

dx <
1

n
λ

2−n
2 S

n
2
n . (1.20)

By applying Theorem 1.2, we can answer the above question regarding (1.18). Let u0 be an
entire least-energy solution of (1.19), and set

c0 = 1

2

∫
R

n+

|∇u0|2 dx − (n − 2)λ

2n

∫
R

n+

u
2n

n−2
0 dx − 1

2∗(s)

∫
R

n+

u
2∗(s)
0

|x|s dx > 0. (1.21)

In Section 4, we will prove Φs satisfies (P − S)c whenever c satisfies

c < c0. (1.22)

As an application, we have the following result.

Theorem 1.3. Suppose that Ω is a C1 bounded domain in R
n with 0 ∈ ∂Ω . Assume further that

the mean curvature of ∂Ω at 0 is negative. Then for λ > 0 Eq. (1.18) has a positive solution
provided that one of the following cases holds:

(i) n = 3 and 0 < s < 1.
(ii) n � 4 and 0 < s < 2.

This paper is organized as follows. In Section 2, we will give a proof of Theorem 1.1. The
proof is based on the original idea of Brézis and Nirenberg, together with a blowup analysis. In
Section 3, we again apply the blowup argument to show existence of positive entire solutions of
Eq. (1.19). The inequality (1.20) is interesting itself and is a byproduct of the blowup analysis.
Finally, in Section 4, we deal with the Sobolev critical exponent case of (1.8) for any domain Ω

in R
n satisfying the assumptions of Theorem 1.3.
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2. Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1. For the proof of the main theorems, we will apply
the mountain pass lemma of the following type:

Theorem B. Let Φ be a C1 functional on a Banach space E. Assume that there exist an open set
U ⊂ E and ρ ∈ R such that 0 ∈ U and

{
Φ(u) � ρ for all u ∈ ∂U,

Φ(0) < ρ, Φ(v) < ρ for some v /∈ U.
(2.1)

Set

c∗ := inf
P∈P

max
w∈P

Φ(w),

where P denotes the class of continuous paths P joining 0 to v. Then c∗ � ρ and there exists a
sequence {uj } ⊂ E such that

{
Φ(uj ) → c∗,
Φ ′(uj ) → 0 in E∗.

Now set Ψs to be the functional corresponding to Eq. (1.17):

Ψs(u) :=
∫
Ω

(
1

2
|∇u|2 + λ

p + 1

(
u+)p+1 − 1

2∗(s)
(u+)2∗(s)

|x|s
)

dx for u ∈ H 1
0 (Ω).

As discussed in the introduction, we need the inequality:

c∗ := inf
P∈P

max
w∈P

Ψs(w) <

(
1

2
− 1

2∗(s)

)
μs

(
R

n+
) 2∗(s)

2∗(s)−2 , (2.2)

where P denotes the class of continuous paths joining 0 to some nonnegative function v0 ∈
H 1

0 (Ω)\{0} with Ψs(v0) < 0. To prove (2.2), we use the entire solution of the following equation:

{
�u + u2∗(s)−1

|y|s = 0 in R
n+,

u(y) > 0 in R
n+, u = 0 on ∂R

n+.
(2.3)

Lemma 2.1. Let u ∈ H 1
0 (Rn+) be an entire solution of (2.3). Then the followings hold:

(i) ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u ∈ C2
(
R

n+
)

if s < 1 + 2

n
,

u ∈ C1,β
(
R

n+
)

for all 0 < β < 1 if s = 1 + 2

n
,

u ∈ C1,β
(
R

n+
)

for all 0 < β <
n(2 − s)

n − 2
if s > 1 + 2

n
.
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(ii) There is a constant C such that |u(y)| � C(1 + |y|)1−n and |∇u(y)| � C(1 + |y|)−n.
(iii) u(y′, yn) is axially symmetric with respect to the yn-axis, i.e., u(y′, yn) = u(|y′|, yn).

For the existence of least-energy solutions of (2.3), see Ghoussoub and Robert [10]. Con-
cerning the proof of the assertions (i)–(iii), we refer to Ghoussoub and Robert [10] and Lin and
Wadade [13]. By the same fashion as used in [7], we shall use Lemma 2.1 prove inequality (2.2).

Lemma 2.2. Suppose that Ω is a C1 bounded domain in R
n with 0 ∈ ∂Ω and ∂Ω is C2 at 0.

If the mean curvature of ∂Ω at 0 is negative and 1 � p < n
n−2 , then there exists a nonnegative

function v0 ∈ H 1
0 (Ω) \ {0} such that Ψs(v0) < 0 and

max
0�t�1

Ψs(tv0) <

(
1

2
− 1

2∗(s)

)
μs

(
R

n+
) 2∗(s)

2∗(s)−2 .

Proof. Without loss of generality, we may assume that in a neighborhood of 0, ∂Ω can be rep-
resented by xn = ϕ(x′), where x′ = (x1, . . . , xn−1), ϕ(0) = 0, ∇′ϕ(0) = 0, ∇′ = (∂1, . . . , ∂n−1),
and the outer normal of ∂Ω at 0 is −en = (0,0, . . . ,−1). Define

φ(x) := (
x′, xn − ϕ

(
x′)). (2.4)

We choose a small positive number r0 so that there exists neighborhoods of 0, U and Ũ , such
that φ(U) = Br0(0), φ(U ∩ Ω) = B+

r0
(0), φ(Ũ) = Br0

2
(0) and φ(Ũ ∩ Ω) = B+

r0
2
(0). Here, we

adopt the notation:

B+
r0

(0) = Br0 ∩ R
n+ for any r0 > 0.

Suppose w ∈ H 1
0 (Rn+) is a least-energy solution of (2.3) i.e.,

μs

(
R

n+
) =

∫
R

n+ |∇w|2 dy

(
∫

R
n+

w2∗(s)

|y|s dy)
2

2∗(s)

=
( ∫

R
n+

w2∗(s)

|y|s dy

) 2∗(s)−2
2∗(s)

,

then u(y) := μs(R
n+)

1
2−2∗(s) w(y) is a positive entire solution to the equation:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�u + μs

(
R

n+
)u2∗(s)−1

|y|s = 0 in R
n+,

u = 0 on ∂R
n+ with

∫
R

n+

u2∗(s)

|y|s dy = 1.

Let ε > 0. We define

vε(x) := ε− n−2
2 u

(
φ(x)

)
for x ∈ Ω ∩ U, and v̂ε := ηvε in Ω, (2.5)
ε
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where η ∈ C∞
0 (U) is a positive cut-off function with η ≡ 1 in Ũ . For t � 0, we have

Ψs(t v̂ε) � t2

2

∫
Ω

|∇v̂ε|2 dx + λt p+1

p + 1

∫
Ω

v̂p+1
ε dx − t2∗(s)

2∗(s)

∫
Ω ∩ Ũ

v
2∗(s)
ε

|x|s dx. (2.6)

In what follows, we estimate the order of each integral on the right-hand side of (2.6). By the
change of the variable φ(x)

ε
= y, we get

∫
Ω

|∇v̂ε|2 dx =
∫

Ω∩U

η2|∇vε|2 dx −
∫

Ω∩U

η(�η)v2
ε dx

�
∫

R
n+

∣∣∇u(y)
∣∣2

dy − 2
∫

B+
r0
ε

η
(
φ−1(εy)

)2
∂nu(y)∇′u(y) · (∇′ϕ

)(
εy′)dy

+
∫

B+
r0
ε

η
(
φ−1(εy)

)2(
∂nu(y)

)2∣∣(∇′ϕ
)(

εy′)∣∣2
dy

− ε2
∫

B+
r0
ε

η
(
φ−1(εy)

)
(�η)

(
φ−1(εy)

)
u(y)2 dy.

Note that, by using |∇′φ(y′)| = O(|y′|) and the decay estimate of |∇u| in Lemma 2.1, we see
that ∫

B+
r0
ε

η
(
φ−1(εy)

)2(
∂nu(y)

)2∣∣(∇′ϕ
)(

εy′)∣∣2
dy � Cε2

∫
Rn

(
1 + |y|)−2n|y|2 dy = O

(
ε2).

Hence,

∫
Ω

|∇v̂ε|2 dx =
∫

R
n+

∣∣∇u(y)
∣∣2

dy − 2
∫

B+
r0
ε

η
(
φ−1(εy)

)2
∂nu(y)∇′u(y) · (∇′ϕ

)(
εy′)dy + O

(
ε2).

Using integration by parts and Lemma 2.1, we obtain

I := −2
∫

B+
r0
ε

η
(
φ−1(εy)

)2
∂nu(y)∇′u(y) · (∇′ϕ

)(
εy′)dy

= −2

ε

∫
B+

r0

η
(
φ−1(εy)

)2
∂nu(y)∇′u(y) · ∇′[ϕ(

εy′)]dy
ε
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= 4

ε

∫
B+

r0
ε

η
(
φ−1(εy)

)∇′[η(
φ−1(εy)

)] · ∂nu(y)∇′u(y)ϕ
(
εy′)dy

+ 2

ε

∫
B+

r0
ε

η
(
φ−1(εy)

)2∇′∂nu(y) · ∇′u(y)ϕ
(
εy′)dy

+ 2

ε

∫
B+

r0
ε

η
(
φ−1(εy)

)2
∂nu(y)

n−1∑
i=1

∂iiu(y)ϕ
(
εy′)dy

= 2

ε

∫
B+

r0
ε

η
(
φ−1(εy)

)2
∂nu(y)

n−1∑
i=1

∂iiu(y)ϕ
(
εy′)dy + O

(
εn

)
.

Applying Eq. (2.3) and integration by parts, we have

I ′ := 2

ε

∫
B+

r0
ε

η
(
φ−1(εy)

)2
∂nu(y)

n−1∑
i=1

∂iiu(y)ϕ
(
εy′)dy

= −2μs(R
n+)

2∗(s)ε

∫
B+

r0
ε

η
(
φ−1(εy)

)2 ∂n[u(y)2∗(s)]
|y|s ϕ

(
εy′)dy

− 1

ε

∫
B+

r0
ε

η
(
φ−1(εy)

)2
∂n

[(
∂nu(y)

)2]
ϕ
(
εy′)dy

= −2sμs(R
n+)

2∗(s)ε

∫
B+

r0
ε

η
(
φ−1(εy)

)2 u(y)2∗(s)yn

|y|s+2
ϕ
(
εy′)dy

+ 1

ε

∫
B+

r0
ε

∩∂R
n+

η
(
φ−1(εy)

)2(
∂nu(y)

)2
ϕ
(
εy′)dSy + O

(
εn

) =: J1 + J2 + O
(
εn

)
.

Since ∂Ω is C2 at 0, ϕ can be expanded as

ϕ
(
y′) =

n−1∑
i=1

αiy
2
i + o(1)

(∣∣y′∣∣2)
. (2.7)

Thus we see that



C.-H. Hsia et al. / Journal of Functional Analysis 259 (2010) 1816–1849 1827
J1 = −2sμs(R
n+)

2∗(s)ε

∫
B+

r0
ε

η
(
φ−1(εy)

)2 u(y)2∗(s)yn

|y|s+2
ϕ
(
εy′)dy

= −2sμs(R
n+)

2∗(s)ε

∫
B+

r0
ε

\B+
r0/2

ε

η
(
φ−1(εy)

)2 u(y)2∗(s)yn

|y|s+2
ϕ
(
εy′)dy

− 2sμs(R
n+)

2∗(s)ε

∫
B+

r0/2
ε

u(y)2∗(s)yn

|y|s+2
ϕ
(
εy′)dy =: J1,1 + J1,2, and

|J1,1| � Cε

∫
{ r0

2 �|εy|<r0}
|y|2∗(s)(1−n)+1−s dy = O

(
ε

n(n−s)
n−2

)
.

Notice that

ε

∫
R

n+\B+
r0/2

ε

u(y)2∗(s)|y|1−s dy = O
(
ε

n(n−s)
n−2

)
. (2.8)

Thus by using (2.7) and (2.8), we get

J1,2 = −2sεμs(R
n+)

2∗(s)

n−1∑
i=1

αi

∫
R

n+

u(y)2∗(s)y2
i yn

|y|2+s
dy

(
1 + o(1)

) + O
(
ε

n(n−s)
n−2

)

= − 2sεμs(R
n+)

2∗(s)(n − 1)

∫
R

n+

u(y)2∗(s)|y′|2yn

|y|2+s
dy

(
n−1∑
i=1

αi

)(
1 + o(1)

) + O
(
ε

n(n−s)
n−2

)

= −K1H(0)
(
1 + o(1)

)
ε + O

(
ε2),

where

H(0) := 1

n − 1

n−1∑
i=1

αi and K1 := 2sμs(R
n+)

2∗(s)

∫
R

n+

u(y)2∗(s)|y′|2yn

|y|2+s
dy. (2.9)

In the above estimate, we used the fact u(y′, yn) = u(|y′|, yn). Next, we see that

J2 = 1

ε

∫
B+

r0
ε

∩∂R
n+

η
(
φ−1(εy)

)2(
∂nu(y)

)2
ϕ
(
εy′)dSy

= 1

ε

∫
(B+

r0 \B+
r0/2 )∩∂R

n+

η
(
φ−1(εy)

)2(
∂nu(y)

)2
ϕ
(
εy′)dSy
ε ε
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+ 1

ε

∫
B+

r0/2
ε

∩∂R
n+

(
∂nu(y)

)2
ϕ
(
εy′)dSy =: J2,1 + J2,2, and

|J2,1| � C

ε

∫
{ r0

2 <|εy′|�r0}

∣∣(∂nu)
(
y′,0

)∣∣2∣∣ϕ(
εy′)∣∣dy′

� Cε

∫
{ r0

2 <|εy′|�r0}

∣∣y′∣∣−2n+2
dy′ = O

(
εn

)
.

Note that

ε

∫
{|εy′|> r0

2 }

∣∣(∂nu)
(
y′,0

)∣∣2∣∣y′∣∣2
dy′ = O

(
εn

)
. (2.10)

Thus by using (2.7) and (2.10), we get

J2,2 = ε

n−1∑
i=1

αi

∫
Rn−1

(
(∂nu)

(
y′,0

))2
y2
i dy′(1 + o(1)

) + O
(
εn

)

= ε

n − 1

∫
Rn−1

∣∣(∂nu)
(
y′,0

)∣∣2∣∣y′∣∣2
dy′

n−1∑
i=1

αi + O
(
ε2) = K2H(0)

(
1 + o(1)

)
ε + O

(
εn

)
,

where

K2 :=
∫

Rn−1

∣∣(∂nu)
(
y′,0

)∣∣2∣∣y′∣∣2
dy′. (2.11)

After all, we get

∫
Ω

|∇v̂ε|2 dx = μs

(
R

n+
) − K1H(0)

(
1 + o(1)

)
ε + K2

(
1 + o(1)

)
H(0)ε + O

(
ε2). (2.12)

Next, by changing the variable φ(x)
ε

= y, we have

∫
Ω

v̂p+1
ε dx = ε

n+2
2 − (n−2)p

2

∫
R

n

up+1 dy + O
(
ε

n(p+1)
2

)
. (2.13)
+
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Furthermore, the integral
∫
Ω ∩ Ũ

v
2∗(s)
ε|x|s dx can be estimated as follows. By a change of the variable

φ(x)
ε

= y, we have

∫
Ω∩Ũ

v
2∗(s)
ε

|x|s dx =
∫

B+
r0/2

ε

u2∗(s)

|φ−1(εy)
ε

|s
dy. (2.14)

Since φ−1(y) = (y′, yn + ϕ(y′)), it holds |φ−1(y)|2 = |y|2 + 2ynϕ(y′) + (ϕ(y′))2, and then

1

|φ−1(εy)
ε

|s
= 1

|y|s · 1

(1 + 2ynϕ(εy′)
ε|y|2 + (ϕ(εy′))2

ε2|y|2 )
s
2

= 1

|y|s
(

1 − synϕ(εy′)
ε|y|2 − s(ϕ(εy′))2

2ε2|y|2
)

+ 1

|y|s O

((
2ynϕ(εy′)

ε|y|2 + (ϕ(εy′))2

ε2|y|2
)2)

. (2.15)

Thus from (2.14) and (2.15), we obtain

∫
Ω ∩ Ũ

v
2∗(s)
ε

|x|s dx =
∫

R
n+

u2∗(s)

|y|s dy − s

ε

∫
B+

r0/2
ε

u(y)2∗(s) ynϕ(εy′)
|y|2+s

dy + O
(
ε2)

= 1 − sε

n−1∑
i=1

αi

∫
R

n+

u(y)2∗(s)y2
i yn

|y|2+s
dy

(
1 + o(1)

) + O
(
ε2)

= 1 − sε

n − 1

∫
R

n+

u(y)2∗(s)|y′|2yn

|y|2+s
dy

(
n−1∑
i=1

αi

)(
1 + o(1)

) + O
(
ε2)

= 1 − 2∗(s)K1

2μs(R
n+)

H(0)
(
1 + o(1)

)
ε + O

(
ε2),

where K1 is the same positive constant as in (2.9).
After all, each integral on the right-hand side of (2.6) can be expressed by
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

|∇v̂ε|2 dx = μs

(
R

n+
) − K1H(0)

(
1 + o(1)

)
ε + K2H(0)

(
1 + o(1)

)
ε + O

(
ε2),

∫
Ω

v̂ p+1
ε dx = ε

n+2
2 − (n−2)p

2

∫
R

n+

up+1 dy + O
(
ε

n(p+1)
2

)
,

∫
Ω ∩ Ũ

v
2∗(s)
ε

|x|s dx = 1 − 2∗(s)K1

2μs(R
n+)

H(0)
(
1 + o(1)

)
ε + O

(
ε2).

(2.16)

By (2.6) and (2.16), we have for t � 0,

Ψs(t v̂ε) � t2

2

(
μs

(
R

n+
) − K1H(0)

(
1 + o(1)

)
ε + K2H(0)

(
1 + o(1)

)
ε + O

(
ε2))

+ λtp+1

p + 1

(
ε

n+2
2 − (n−2)p

2

∫
R

n+

up+1 dy + O
(
ε

n(p+1)
2

))

− t2∗(s)

2∗(s)

(
1 − 2∗(s)K1

2μs(R
n+)

H(0)
(
1 + o(1)

)
ε + O

(
ε2)). (2.17)

Since 2∗(s) > 2 and n+2
2 − n−2

2 p > 1, there exists T > (
2∗(s)

2 μs(R
n+))

1
2∗(s)−2 and ε0 > 0, such

that, for all ε with ε0 > ε > 0,

Ψs(T v̂ε) < 0. (2.18)

By (2.17), we have

Ψs(t v̂ε) �
(

μs(R
n+)

2
t2 − t2∗(s)

2∗(s)

)

+
(

(K2 − K1 + o(1))

2
t2 + (K1 + o(1))

2μs(R
n+)

t2∗(s)
)

H(0)ε

+ λtp+1

p + 1

( ∫
R

n+

up+1 dy

)
ε

n+2
2 − n−2

2 p + O
(
ε2)

=: g1(t) + g2(t)H(0)ε + λtp+1

p + 1

( ∫
R

n+

up+1 dy

)
ε

n+2
2 − n−2

2 p + O
(
ε2). (2.19)

Since 2∗(s) > 2, we see that g1(t) has only one maximum value

g1
(
t∗1

) =
(

1 − 1
∗

)
μs

(
R

n+
) 2∗(s)

2∗(s)−2 ,

2 2 (s)
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where at t∗1 = μs(R
n+)

1
2∗(s)−2 . Also, we see that, for ε small,

g2
(
t∗1

) =
(

k2 + o(1)

2

)
μs

(
R

n+
) 2

2∗(s)−2 > 0.

Hence, if n+2
2 − n−2

2 p > 1, i.e., p < n
n−2 , we have Ψs(t v̂ε) < g1(t

∗
1 ) for all 0 � t � T and for

any small ε > 0. Therefore, by taking ε small and v0 = T v̂ε , we obtain

max
0�t�1

Ψs(tv0) <

(
1

2
− 1

2∗(s)

)
μs

(
R

n+
) 2∗(s)

2∗(s)−2 .

This completes the proof of Lemma 2.2. �
We are now in the position to prove Theorem 1.1.

Proof of Theorem 1.1.
Step 1. The subcritical cases

For any fixed small ε > 0, we let

Ψ ε
s (u) :=

∫
Ω

(
1

2
|∇u|2 + λ

p − ε + 1

(
u+)p−ε+1 − 1

2∗(s) − ε

(u+)2∗(s)−ε

|x|s
)

dx for u ∈ H 1
0 (Ω),

where Ψ 0
s = Ψs . It is easy to see, by Lemma 2.2, there exists v0 ∈ H 1

0 (Ω) such that Ψ ε
s (v0) < 0

for 0 < ε � ε0, and there is a constant ρ > 0 such that

ρ � cε∗ := inf
P∈P

max
w∈P

Ψ ε
s (w) � max

0�t�1
Ψ ε

s (tv0) <

(
1

2
− 1

2∗(s)

)
μs

(
R

n+
) 2∗(s)

2∗(s)−2 , (2.20)

provided ε0 is small. By applying the mountain pass lemma, there exists a sequence {uε,k}k∈N ⊂
H 1

0 (Ω) such that

Ψ ε
s (uε,k) → cε∗ and

(
Ψ ε

s

)′
(uε,k) → 0 in H−1(Ω) as k → ∞, i.e.,∫

Ω

(
1

2
|∇uε,k|2 + λ

p − ε + 1

(
u+

ε,k

)p−ε+1 − 1

2∗(s) − ε

(u+
ε,k)

2∗(s)−ε

|x|s
)

dx

= cε∗ + o(1) as k → ∞, (2.21)

and

−�uε,k + λ
(
u+

ε,k

)p−ε − (u+
ε,k)

2∗(s)−1−ε

|x|s =: ζε,k with ζε,k → 0 in H−1(Ω)

as k → ∞. (2.22)
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Multiplying (2.22) by uε,k , we obtain

∫
Ω

(
|∇uε,k|2 + λ

(
u+

ε,k

)p−ε+1 − (u+
ε,k)

2∗(s)−ε

|x|s
)

dx = 〈ζε,k, uε,k〉. (2.23)

From (2.21) and (2.23), we derive

(
1

2
− 1

2∗(s) − ε

)∫
Ω

|∇uε,k|2 dx +
(

λ

p − ε + 1
− λ

2∗(s) − ε

)∫
Ω

(
u+

ε,k

)p−ε+1
dx

= cε∗ + o(1)
(‖uε,k‖H 1

0 (Ω) + 1
)
. (2.24)

Since p � 2∗(s) − 1, we see that 1
p−ε+1 − 1

2∗(s)−ε
� 0. Hence, (2.24) implies

‖uε,k‖H 1
0 (Ω) � C, (2.25)

where C > 0 is independent of k ∈ N and small ε > 0.
Thus, extracting a subsequence, still denoted by uε,k , we see that

⎧⎪⎨
⎪⎩

uε,k ⇀ uε weakly in H 1
0 (Ω),

u+
ε,k → u+

ε strongly in Lp−ε+1(Ω),

u+
ε,k → u+

ε strongly in L2∗(s)−ε
(
Ω, |x|−s dx

)
,

(2.26)

as k → ∞. It is easy to see that uε 
≡ 0 in H 1
0 (Ω). Indeed, if uε ≡ 0 in Ω , then

0 < cε∗ = lim inf
k→+∞

1

2

∫
Ω

|∇uε,k|2 dx, and lim
k→+∞

∫
Ω

|∇uε,k|2 dx = 0,

where the identities follow from (2.21) and (2.23) respectively. Obviously, it yields a contradic-
tion. Passing to the limit k → ∞ in (2.22), uε satisfies

−�uε + λ
(
u+

ε

)p−ε − (u+
ε )2∗(s)−1−ε

|x|s = 0.

By the maximum principle, we obtain uε > 0 in Ω . As a consequence, for any small ε > 0, we
get that cε∗ is a critical value for Ψ ε

s and uε ∈ H 1
0 (Ω) is a positive solution to

�uε − λup−ε
ε + u

2∗(s)−1−ε
ε

s
= 0. (2.27)
|x|
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Thus,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

2

∫
Ω

|∇uε|2 dx + λ

p − ε + 1

∫
Ω

up−ε+1
ε dx − 1

2∗(s) − ε

∫
Ω

u
2∗(s)−ε
ε

|x|s dx = c∗
ε ,

∫
Ω

|∇uε|2 dx + λ

∫
Ω

up−ε+1
ε dx −

∫
Ω

u
2∗(s)−ε
ε

|x|s dx = 0.

(2.28)

Moreover, by (2.25), we have

‖uε‖H 1
0 (Ω) � C,

where C > 0 is independent of ε > 0.
Next, as ε → 0, by extracting a subsequence {uεj

}, we get

⎧⎪⎨
⎪⎩

uεj
⇀ u0 weakly in H 1

0 (Ω),

uεj
→ u0 strongly in Lp+1(Ω),

uεj
⇀ u0 weakly in L2∗(s)(Ω, |x|−s dx

)
.

Then (2.27) yields

�u0 − u
p

0 + u
2∗(s)−1
0

|x|s = 0.

We shall prove u0 
= 0 in H 1
0 (Ω). Suppose u0 ≡ 0 in Ω . Up to a subsequence, we may assume

C1 = lim
j→∞

∫
Ω

|∇uεj
|2 dx and C2 = lim

j→∞

∫
Ω

u
2∗(s)−εj
εj

|x|s dx. (2.29)

Inferring from (2.28), we get

C1

2
− C2

2∗(s)
= c∗ and C1 − C2 = 0, i.e.

(
1

2
− 1

2∗(s)

)
C1 = c∗. (2.30)

By (2.29) and (2.30), we derive

C1 = C2 � μs(Ω)
2∗(s)

2∗(s)−2 and c∗ �
(

1

2
− 1

2∗(s)

)
μs(Ω)

2∗(s)
2∗(s)−2 .

However, this lower bound of c∗ is too weak to obtain a contradiction. In the followings, we shall
apply the bubbling analysis to obtain a sharp lower bound for c∗. This bubbling analysis has been
used for the curvature equations, see [4–6,15]. However, we have to go through for all the details
because |x|−s has singularity at 0.
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We first note uεj
(xεj

) = maxΩ uεj
→ ∞ as j → ∞. Otherwise, uεj

→ 0 strongly in H 1
0 (Ω),

and we get

0 = 1

2
lim

j→∞

∫
Ω

|∇uεj
|dx = c∗,

which is a contradiction. Let

κj := uεj
(xεj

)−
2∗(s)−2−εj

2−s . (2.31)

Step 2. We claim |xεj
| = O(κj ) as j → ∞. Suppose that, up to a subsequence,

limj→∞
|xεj

|
κj

= ∞. By scaling, set

vεj
(y) := uεj

(xεj
+ κjy)

uεj
(xεj

)
for y ∈ Ωj, (2.32)

where

Ωj := {
y ∈ R

n
∣∣ xεj

+ κjy ∈ Ω
}
. (2.33)

By (2.27) and (2.31), vεj
satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�vεj
− λκ2

j uεj
(xεj

)p−εj −1v
p−εj
εj

+
(

κj

|xεj
|
)s v

2∗(s)−1−εj
εj

| xεj

|xεj
| + κj

|xεj
|y|s

= 0 in Ωj,

vεj
= 0 on ∂Ωj .

Furthermore, we have

κ2
j uεj

(xεj
)p−εj −1 = κ

2− (2−s)(p−εj −1)

2∗(s)−2−εj

j → 0 as j → ∞, (2.34)

since κj → 0 and 2 − (2−s)(p−εj −1)

2∗(s)−2−εj
> 0, i.e., p < n+2

n−2 . Thus vεj
converges to some v smoothly

in any compact set, and v satisfies v(0) = 1 and

{
�v = 0 in R

n,

0 � v � v(0) = 1,
(2.35)

provided that Ωj → R
n, or

{
�v = 0 in some half space H,

v � v(0) = 1, and v = 0 on ∂H
(2.36)

provided that up to an affine transformation Ωj → H := {y ∈ R
n | yn > −a} for some a > 0.
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On the other hand, we have

∫
Ωj

v
2n

n−2
εj

dy = κ

nεj

2∗(s)−2−εj

j

∫
Ω

u
2n

n−2
εj

dx � C,

and then
∫

Rn v
2n

n−2 dy is finite. However, in the former case, by the Liouville’s theorem, v(x) ≡ 1

for x ∈ R
n. This contradicts to that

∫
Rn v

2n
n−2 dy is finite. In the latter case, by the boundary

condition on ∂H and the maximum principle, v(x) ≡ 0 for x ∈ H which violates to v(0) = 1.
Therefore we conclude |xεj

| = O(κj ) as j → ∞.
Note that Step 2 implies that the origin is the only blow up point.

Step 3. We claim that, up to a subsequence,
xεj

κj
→ y0 
= 0 as j → ∞.

Suppose that
xεj

κj
→ 0 as j → ∞. As in the proof of Step 2, we define vεj

and Ωj by (2.32)
and (2.33), respectively. Then by (2.27), vεj

satisfies

⎧⎪⎪⎨
⎪⎪⎩

�vεj
− λκ2

j uεj
(xεj

)p−εj −1v
p−εj
εj

+ v
2∗(s)−1−εj
εj

| xεj

κj
+ y|s

= 0 in Ωj,

vεj
= 0 on ∂Ωj .

Since by (2.34) κ2
j uεj

(xεj
)p−εj −1 → 0, vεj

converges to some v smoothly in any compact set

in R
n+, and v satisfies

⎧⎨
⎩�v + v2∗(s)−1

|y|s = 0 in R
n+,

v = 0 on ∂R
n+.

Because 0 ∈ ∂R
n+, we have v(0) = 0 which is a contradiction to v(0) = 1. Thus Step 3 is proved.

Step 4. We complete the proof of Theorem 1.1 in this step. We note after an affine transformation,
vεj

converges to some v smoothly in any compact set in R
n+, and v satisfies

⎧⎨
⎩�v + v2∗(s)−1

|y|s = 0 in R
n+,

v(x) > 0 in R
n+, and v = 0 on ∂R

n+.

(2.37)

By (2.37), we have

μs

(
R

n+
)
�

∫
R

n+ |∇v|2 dy

(
∫

R
n

v2∗(s)

|y|s dy)
2

2∗(s)

=
( ∫

R
n

v2∗(s)

|y|s dy

) 2∗(s)−2
2∗(s)

,

+ +
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and then

∫
R

n+

|∇v|2 dy =
∫

R
n+

v2∗(s)

|y|s dy � μs

(
R

n+
) 2∗(s)

2∗(s)−2 . (2.38)

Furthermore, note that

C1 = lim
j→∞

∫
Ω

|∇uεj
|2 dx = lim

j→∞κ
− (n−2)εj

2∗(s)−2−εj

j

∫
Ωj

|∇vεj
|2 dy

� lim
j→∞

∫
Ωj

|∇vεj
|2 dy �

∫
R

n+

|∇v|2 dy. (2.39)

Then by (2.30), (2.38) and (2.39), we derive

c∗ �
(

1

2
− 1

2∗(s)

)
C1 �

(
1

2
− 1

2∗(s)

)
μs

(
R

n+
) 2∗(s)

2∗(s)−2 ,

which yields a contradiction to (2.20). Thus u0 
= 0 in H 1
0 (Ω), and Theorem 1.1 is proved. �

3. Existence of entire solution in RRR
n+

In this section, we shall prove Theorem 1.2. We note that for some parameter λ > 0, the
existence of least-energy solutions of (1.19) was proved in [13]. In this section, we want to prove
the same result for all λ > 0. To this end, we prepare the following lemma in which the condition
0 ∈ ∂Ω is not necessary. This lemma is also needed for the proof of Theorem 1.3 in the next
section.

Lemma 3.1. Suppose that Ω is a bounded domain in R
n. For λ > 0, if (i) n = 3 and 0 < s < 1

or (ii) n � 4 and 0 < s < 2, there exists a nonnegative function v0 ∈ H 1
0 (Ω) \ {0} such that

Φs(v0) < 0 and

max
t�0

Φs(tv0) <
1

n
λ

2−n
2 S

n
2
n ,

where

Φs(u) :=
∫
Ω

(
1

2
|∇u|2 − (n − 2)λ

2n

(
u+) 2n

n−2 − 1

2∗(s)
(u+)2∗(s)

|x|s
)

dx for u ∈ H 1
0 (Ω)

and

Sn := inf

{ ∫
Ω

|∇u|2 dx

∣∣∣ u ∈ H 1
0 (Ω) and

∫
Ω

|u| 2n
n−2 dx = 1

}
.
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Remark 3.2. It is well known that Sn is independent of Ω and when Ω = R
n, Sn is achieved by

the function

g(x) = C
(
1 + |x|2)−(n−2)

2 ,

where C is a normalization constant.

Proof of Lemma 3.1. The following calculation was basically done in [1]. We include it here for
the sake of completeness. Let x0 be an interior point of Ω such that B3r (x0) ⊂ Ω . Take φ(x) ∈
C∞

0 (B2r (x0)) be a cut off function with φ|Br (x0) ≡ 1. Consider gε(x) := ε− n−2
2 g(

x−x0
ε

)φ(x) ∈
H 1

0 (Ω).
For t � 0, we have

Φs(tgε) = t2

2

∫
Ω

|∇gε|2 dx − (n − 2)λt
2n

n−2

2n

∫
Ω

g
2n

n−2
ε dx − t2∗(s)

2∗(s)

∫
Ω

g
2∗(s)
ε

|x|s dx. (3.1)

Using the integration by parts and a change of the variable y = x−x0
ε

, we get

∫
Ω

|∇gε(x)|2 dx

= ε−n

∫
B2r (x0)

∣∣∣∣(∇g)

(
x − x0

ε

)∣∣∣∣
2

φ2(x) dx − ε2−n

∫
B2r (x0)\Br(x0)

g2
(

x − x0

ε

)
φ�φ dx

=
∫

B 2r
ε

(0)

|∇g(y)|2φ2(x0 + εy)dy − ε2
∫

B 2r
ε

(0)\B r
ε
(0)

g2(y)φ(x0 + εy)�φ dy.

Direct calculation gives

∫
B 2r

ε
(0)

∣∣∇g(y)
∣∣2

dy =
∫
Rn

∣∣∇g(y)
∣∣2

dy + O
(
εn−2),

∫
B 2r

ε
(0)\B r

ε
(0)

g2(y) dy = O
(
εn−4).

Hence,

∫ ∣∣∇gε(x)
∣∣2

dx =
∫
n

∣∣∇g(y)
∣∣2

dy + O
(
εn−2) as ε → 0+.
Ω R
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Next, we have

∫
Ω

gε(x)
2n

n−2 dx =
∫
Rn

g(y)
2n

n−2 + O
(
εn

)
,

and

∫
Ω

gε(x)2∗(s)

|x|s dx = C2∗(s)εs

∫
B 2r

ε
(0)

(1 + |y|2)−n+s

|x0 + εy|s φ(x0 + εy)2∗(s) dy = O
(
εs

)
.

Therefore, as T > 0 is fixed, there exists ε0 > 0 such that

Φs(tgε) = t2

2

∫
Rn

∣∣∇g(y)
∣∣2

dy − (n − 2)λt
2n

n−2

2n

∫
Rn

g(y)
2n

n−2 dy

− t2∗(s)εs

∫
B 2r

ε
(0)

C2∗(s) (1 + |y|2)−n+s

|x0 + εy|s φ(x0 + εy)2∗(s) dy + O
(
εn−2)t2 + O

(
εn

)
t

2n
n−2

<
t2

2

∫
Rn

∣∣∇g(y)
∣∣2

dy − (n − 2)λt
2n

n−2

2n

∫
Rn

g(y)
2n

n−2 dy,

for 0 � t < T and all positive ε � ε0, provided 0 < s < n − 2, i.e., 0 < s < 1 as n = 3 and
0 < s < 2 as n � 4.

Now, by choosing T large, we have Φs(T gε) < 0 for all ε � ε0. Inferring from (3.1), we see
that Φs(tgε) < 0 for t � T and all positive ε � ε0. Hence, for 0 < ε � ε0, elementary calculus
gives

max
t�0

Φs(tgε) < max
t�0

{
t2

2

∫
Rn

∣∣∇g(y)
∣∣2

dy − (n − 2)λt
2n

n−2

2n

∫
Rn

g(y)
2n

n−2 dy

}
= 1

n
λ

2−n
2 S

n
2
n .

By choosing v0 = T gε0 , we obtain

max
t�0

Φs(tv0) <
1

n
λ

2−n
2 S

n
2
n and Φs(v0) < 0,

provided either (i) n = 3 and 0 < s < 1 or (ii) n � 4 and 0 < s < 2. This completes the proof. �
Next, we explore the following lemma:

Lemma 3.3. Let Ω be a bounded domain in R
n with n � 3, λ > 0, 0 < s < 2 and 2∗(s) = 2(n−s)

n−2 .
If Ω is star-shaped about the origin, then Eq. (1.18) has no positive solution.
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Proof. As usual, Lemma 3.3 is a consequence of Pohozaev’s identity. Multiplying (1.18) by
x · ∇u and ∇u respectively and taking integrations, we obtain

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−1

2

∫
∂Ω

(x · ν)

(
∂u

∂ν

)2

dSx + 2 − n

2

∫
Ω

|∇u|2 dx = 2 − n

2

(
λ

∫
Ω

u
2n

n−2 dx +
∫
Ω

u2∗(s)

|x|s dx

)
,

∫
Ω

|∇u|2 dx = λ

∫
Ω

u
2n

n−2 dx +
∫
Ω

u2∗(s)

|x|s dx,

where ν denotes the outward normal to ∂Ω . Here, we derive the following Pohozaev’s identity

∫
∂Ω

(x · ν)

(
∂u

∂ν

)2

dSx = 0.

Since Ω is star-shaped about the origin, we deduce that ∂u
∂ν

= 0 a.e. on ∂Ω . Hence,

λ

∫
Ω

u
n+2
n−2 dx +

∫
Ω

u2∗(s)−1

|x|s dx = −
∫
Ω

�udx = 0,

which implies u ≡ 0. �
By using Lemma 3.1 and Lemma 3.3, we shall prove Theorem 1.2 in the following.

Proof of Theorem 1.2. We shall apply the blowing up argument to show the existence of positive
solutions of Eq. (1.19). To do it, we let Ω be a star-shaped domain with respect to 0 and 0 ∈ ∂Ω .
For any ε > 0, by applying Theorem B and Lemma 3.1, we can find a positive solution of

⎧⎪⎨
⎪⎩�uε + λu

pε−1
ε + u

2∗(s)−1−ε
ε

|x|s = 0 in Ω,

uε > 0 in Ω and uε|∂Ω = 0,

(3.2)

which satisfies

∫
Ω

(
1

2
|∇uε|2 − λ

pε

upε
ε − 1

2∗(s) − ε

u
2∗(s)−ε
ε

|x|s
)

dx = cε∗ <
1

n
λ

2−n
2 S

n
2
n , (3.3)

where

pε := 2n

n − 2
− 2ε

2 − s
.

By applying Lemma 3.1, the proof of the above statement is the same as in [1]. Since it is standard
now, the details of the proof is omitted.
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Multiplying (3.2) by uε , we obtain

∫
Ω

|∇uε|2 dx − λ

∫
Ω

upε
ε dx −

∫
Ω

u
2∗(s)−ε
ε

|x|s dx = 0. (3.4)

Note that by (3.3) and (3.4), one can readily derive that

‖uε‖H 1
0 (Ω) � C,

where C is some constant independent of small ε > 0. Thus, by extracting a subsequence
{uj := uεj

}j∈N with εj → 0 as j → ∞, there exists a function u ∈ H 1
0 (Ω) such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uj ⇀ u weakly in H 1
0 (Ω),

uj ⇀ u weakly in L
2n

n−2 (Ω),

uj ⇀ u weakly in L2∗(s)
(

Ω,
dx

|x|s
)

.

Now, passing to the limit j → ∞ yields that

�u + λu
n+2
n−2 + u2∗(s)−1

|x|s = 0 in Ω.

However, by Lemma 3.3, the above equation has no positive solution provided that Ω is a star-
shaped domain. Thus we conclude that u ≡ 0 in Ω . But by (3.3),

1

2

∫
Ω

|∇uj |dx > c∗ > 0, for j large.

Therefore, uj must blow up somewhere in Ω .
Let

mj := uj (xj ) = max
Ω

uj (x) → ∞ as j → ∞.

We consider the scaling:

vj (y) := m−1
j uj (xj + kjy) for y ∈ Ωj := {

z ∈ R
n

∣∣ xj + kj z ∈ Ω
}
,

where kj = m
− pj −2

2
j and pj = 2n

n−2 − 2εj

2−s
. By (3.2), vj satisfies

⎧⎪⎪⎨
⎪⎪⎩

�vj + λv
pj −1
j + v

2∗(s)−1−εj

j

| xj

kj
+ y|s = 0 in Ωj, (3.5)
vj = 0 on ∂Ωj .



C.-H. Hsia et al. / Journal of Functional Analysis 259 (2010) 1816–1849 1841
We claim

0 < lim inf
j→∞

|xj |
kj

� lim sup
j→∞

|xj |
kj

< +∞. (3.6)

Suppose that, up to a subsequence,
|xj |
kj

→ ∞. Then Ωj → R
n as j → +∞ and vj (y) converges

to some v(y) uniformly in every compact subset of R
n. It is easy to see v(0) = 1 and v is the

solution of the equation:

�v + λv
n+2
n−2 = 0 in R

n.

It is readily checked that

C1 := lim
j→∞

∫
Ω

|∇uj |2 dx = lim
j→∞

(
m

( n−2
2−s

)εj

j

∫
Ωj

|∇vj |2 dy

)
�

∫
Rn

|∇v|2 dy =: A1, (3.7)

C2 := lim
j→∞

∫
Ω

u
pj

j dx = lim
j→∞

(
m

( n−2
2−s

)εj

j

∫
Ωj

v
pj

j dy

)
�

∫
Rn

v
2n

n−2 dy =: A2, (3.8)

C3 := lim
j→∞

∫
Ω

u
2∗(s)−εj

j

|x|s dx = lim
j→∞

(
m

( n−2
2−s

)εj

j

∫
Ωj

v
2∗(s)−εj

j

| xj

kj
+ y|s dy

)
. (3.9)

Note that

C1

2
− (n − 2)λ

2n
C2 − C3

2∗(s)
= c∗, (3.10)

C1 − λC2 − C3 = 0, (3.11)

A1 = λA2. (3.12)

By (3.7)–(3.12), we have

c∗ =
(

1

2
− 1

2∗(s)

)
C1 + λ

(
1

2∗(s)
− n − 2

2n

)
C2

�
(

1

2
− 1

2∗(s)

)
A1 + λ

(
1

2∗(s)
− n − 2

2n

)
A2

= λ

n
A2.

On the other hand, by the Sobolev inequality, we see that

SnA
n−2
n � A1.
2
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This leads to

A2 � λ− n
2 S

n
2
n .

Hence,

c∗ � λ

n
A2 � 1

n
λ

2−n
2 S

n
2
n ,

which contradicts to

c∗ � max
0�t�1

Φs(tv0) <
1

n
λ

2−n
2 S

n
2
n .

Hence, we have proved

lim sup
j→∞

|xj |
kj

< +∞.

Next, we want to prove

lim inf
j→∞

|xj |
kj

> 0.

Suppose not. Then, up to a subsequence, limj→∞
|xj |
kj

= 0. In this case, up to a rotation,

Ωj → R
n+ and vj converges to some v uniformly in any compact subset of R

n+, where v is
the solution of the equation:

⎧⎨
⎩�v + λv

n+2
n−2 + v2∗(s)−1

|y|s = 0 in R
n+,

v = 0 on ∂R
n+,

(3.13)

with v(0) = 1, which is a contradiction. Hence (3.6) holds true.
Now we may pick up a subsequence

xj

kj
→ y0 
= 0, then up to an affine transformation

Ωj → R
n+. Therefore, vj converges to some v uniformly in any compact subset of R

n+, where v

is the solution of Eq. (3.13) with v(y1) = 1 for some y1 ∈ R
n+.

By (3.3) and (3.4), we have

cε∗ = λ

(
1

2
− 1

pε

)∫
Ω

upε
ε dx +

(
1

2
− 1

2∗(s) − ε

)∫
Ω

u2∗(s)−ε
ε dx.

Notice that

∫
R

n

v
2n

n−2 dy � lim
j→+∞

∫
Ω

u
pεj
εj

dx, and
∫

R
n

v2∗(s)

|y|s dy � lim
j→+∞

∫
Ω

u
2∗(s)−εj
εj

|x|s dx.
+ +
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Thus, by (3.13) and the above observation, we have

Φs(v) =
∫

R
n+

(
1

2
|∇v|2 − (n − 2)λ

2n
v

2n
n−2 − 1

2∗(s)
v2∗(s)

|x|s
)

dx

= λ

(
1

2
− n − 2

2n

) ∫
R

n+

v
2n

n−2 dx +
(

1

2
− 1

2∗(s)

) ∫
R

n+

v2∗(s)

|x|s dx

� lim
εj →0

c
εj∗ <

1

n
λ

2−n
2 S

n
2
n .

This proves (1.20).
To complete the proof of Theorem 1.2, we need the following lemma:

Lemma 3.4. Let λ > 0 and u ∈ H 1
0 (Rn+) be an entire positive solution of Eq. (1.19). Then the

followings hold:

(i) ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u ∈ C2
(
R

n+
)

if s < 1 + 2

n
,

u ∈ C1,β
(
R

n+
)

for all 0 < β < 1 if s = 1 + 2

n
,

u ∈ C1,β
(
R

n+
)

for all 0 < β <
n(2 − s)

n − 2
if s > 1 + 2

n
.

(ii) There is a constant C such that |u(y)| � C(1 + |y|)1−n and |∇u(y)| � C(1 + |y|)−n.
(iii) u(y′, yn) is axially symmetric with respect to the yn-axis, i.e., u(y′, yn) = u(|y′|, yn).
(iv) There exists a ξ > 0 such that

u(x) =
(

ξ

|x|
)n−2

u

(
ξ2x

|x|2
)

.

For some λ ∈ R
+, Lemma 3.4 has been proved in [13]. The proof there can work for Eq. (1.19)

for all λ > 0. So we omit the proof here. We refer Lin and Wadade [13] for the details of the proof.
Now we come back to the proof of Theorem 1.2. Let

c0 = inf
{
Φs(v)

∣∣ v is a positive solution of (1.19) and Φs(v) > 0
}
.

It is easy to see c0 > 0. Now suppose vj is a sequence of solutions of (1.19) with Φs(vj ) → c0.
By scaling and Lemma 3.4, we may assume vj satisfies

vj (x) =
(

1
)n−2

vj

(
x

2

)
, x ∈ R

n+. (3.14)
|x| |x|
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If vj is uniformly bounded, then vj → v where v is a positive solution to (1.19) with Φs(v) = c0,
and the proof is done. So we may assume maxvj = vj (xj ) → +∞. By (3.14), we may assume
|xj | � 1. By using the inequality (1.20),

Φs(vj ) <
1

n
λ

2−n
2 S

n
2
n ,

and applying the same argument as before, we can prove the rescaling v̂j ,

v̂j (y) = vj (xj + kjy)

vj (xj )
,

where kj = vj (xj )
− 2

n−2 , converges to v̂ uniformly in any compact set of R
n+ where v̂ is a positive

solution of

�v̂ + λv̂
n+2
n−2 + v̂2∗(s)−1

|y|s in R
n+, v̂|∂R

n+ = 0,

and Φs(v̂) � c0. Then Φs(v̂) = c0 and Theorem 1.2 is completely proved. �
For the case n = 3 and 1 � s < 2, we can obtain the entire solution to (1.19) if λ is small.

To see this, we can take the positive function v0 ∈ H 1
0 (Ω) \ {0} which achieves the best constant

μs(Ω), i.e.,

μs(Ω) =
∫
Ω

|∇v0|2 dx

(
∫
Ω

v
2∗(s)
0|x|s dx)

2
2∗(s)

,

so that for t � 0,

max
t�0

Φs(tv0) � max
t�0

{
t2

2

∫
Ω

|∇v0|2 dx − t2∗(s)

2∗(s)

∫
Ω

v
2∗(s)
0

|x|s dx

}

=
(

1

2
− 1

2∗(s)

)( ∫
Ω

|∇v0|2 dx

) 2∗(s)
2∗(s)−2

( ∫
Ω

v
2∗(s)
0

|x|s dx

) −2
2∗(s)−2

=
(

1

2
− 1

2∗(s)

)
μs(Ω)

2∗(s)
2∗(s)−2

<
1

n
λ

2−n
2 S

n
2
n , (3.15)

if λ < (n
2 − n

2∗(s) )
2

2−n S
n

n−2
n μs(Ω)

2∗(s)2
(n−2)(2−2∗(s)) . Once the inequality (3.15) holds, then by the same

proof of Theorem 1.2, we can establish the following result.
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Theorem 3.5. For n = 3 and 1 � s < 2, there exists a least-energy solution of Eq. (1.19) provided
that

0 < λ <

(
n

2
− n

2∗(s)

) 2
2−n

S
n

n−2
n μs(Ω)

2∗(s)2
(n−2)(2−2∗(s)) .

4. Proof of Theorem 1.3

In this section, we shall prove Theorem 1.3. To this end, we need the following lemma.

Lemma 4.1. Suppose that Ω is a C1 bounded domain in R
n with 0 ∈ ∂Ω and the mean curvature

of ∂Ω at 0 is negative. Then, for λ > 0, there exists a nonnegative function v0 ∈ H 1
0 (Ω) \ {0}

such that Φs(v0) < 0 and

max
t�0

Φs(tv0) < c0 :=
∫

R
n+

(
1

2
|∇v|2 − (n − 2)λ

2n
v

2n
n−2 − 1

2∗(s)
v2∗(s)

|x|s
)

dx,

where

Φs(u) :=
∫
Ω

(
1

2
|∇u|2 − (n − 2)λ

2n

(
u+) 2n

n−2 − 1

2∗(s)
(u+)2∗(s)

|x|s
)

dx for u ∈ H 1
0 (Ω), (4.1)

and v ∈ H 1
0 (Rn+) is a least-energy solution of Eq. (1.19).

Proof. As in the proof of Lemma 2.2, we take v̂ε(x) := ε− n−2
2 η(x)v(

φ(x)
ε

), where φ(x) is as
defined in (2.4) and η(x) is a cut-off function. From the estimates (2.16) with p = n+2

n−2 , we get
for t � 0,

Φs(tv̂ε) � t2

2

∫
Ω

|∇v̂ε|2 dx − (n − 2)λ t
2n

n−2

2n

∫
Ω ∩ Ũ

v
2n

n−2
ε dx − t2∗(s)

2∗(s)

∫
Ω ∩ Ũ

v
2∗(s)
ε

|x|s dx

� t2

2

( ∫
R

n+

|∇v|2 dy − K ′
1H(0)

(
1 + o(1)

)
ε + K ′

2H(0)
(
1 + o(1)

)
ε + O

(
ε2))

− (n − 2)λ t
2n

n−2

2n

( ∫
R

n+

v
2n

n−2 dy + O
(
ε

n2
n−2

))

− t2∗(s)

2∗(s)

( ∫
R

n+

v2∗(s)

|y|s dy − 2∗(s)K ′
1

2
H(0)

(
1 + o(1)

)
ε + O

(
ε2))

= t2

2

∫
R

n

|∇v|2 dy − (n − 2)λt
2n

n−2

2n

∫
R

n

v
2n

n−2 dy − t2∗(s)

2∗(s)

∫
R

n

v2∗(s)

|y|s dy
+ + +
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+ H(0)

2

((
K ′

2 − K ′
1 + o(1)

)
t2 + (

K ′
1 + o(1)

)
t2∗(s))ε + O

(
ε2)

:= f1(t) + H(0)ε

2
f2(t) + O

(
ε2), (4.2)

where

K ′
1 := 2s

2∗(s)

∫
R

n+

v2∗(s)|y′|2yn

|y|2+s
dy,

K ′
2 :=

∫
Rn−1

∣∣(∂nv)
(
y′,0

)∣∣2∣∣y′∣∣2
dy′ + (n − 2)λ

n

∫
Rn−1

v
(
y′,0

) 2n
n−2

∣∣y′∣∣2
dy′.

Since 2∗(s) > 2, 2n
n−2 > 2 and

∫
R

n+

|∇v|2 dy = λ

∫
R

n+

vp+1 dy +
∫

R
n+

v2∗(s)

|y|s dy,

we find

max
t�0

f1(t) = f1(1) = c0,

and

f2(1) = K ′
2 + o(1) > 0,

provided ε is small.
Hence, in case H(0) < 0 and ε small, we conclude for all t � 0,

Φs(tv̂ε) < f1(1) = c0.

Finally, we take v0 := t0v̂ε where t0 is large enough so that Φs(v0) < 0. The lemma is proved. �
Now we shall show Theorem 1.3.

Proof of Theorem 1.3. Under the assumption of Theorem 1.3, for small ε > 0, by applying
Theorem B, Theorem 1.2 and Lemma 4.1, we can find a positive solution of⎧⎨

⎩�uε + λu
pε−1
ε + u

2∗(s)−1−ε
ε

|x|s = 0 in Ω,

uε > 0 in Ω and uε|∂Ω = 0,

(4.3)

which satisfies

∫ (
1

2
|∇uε|2 − λ

pε

upε
ε − 1

2∗(s) − ε

u
2∗(s)−ε
ε

|x|s
)

dx = cε∗ < c0, (4.4)
Ω
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where c0 is as defined in Lemma 4.1 and

pε := 2n

n − 2
− 2ε

2 − s
.

Similar to the proof of Theorem 1.2, by extracting a subsequence, uj has a weak limit u ∈
H 1

0 (Ω) that satisfies

�u + λu
n+2
n−2 + u2∗(s)−1

|x|s = 0 in Ω. (4.5)

In what follows, we shall prove that u is a nontrivial solution. If u ≡ 0, the same as the proof
of Theorem 1.2, we may assume

mj := uj (xj ) = max
Ω

uj (x) → ∞ as j → ∞,

and consider the scaling:

vj (y) := m−1
j uj (xj + kjy) for y ∈ Ωj := {

z ∈ R
n

∣∣ xj + kj z ∈ Ω
}
,

where kj = m
− pj −2

2
j and pj = 2n

n−2 − 2εj

2−s
. Then vj satisfies

⎧⎪⎪⎨
⎪⎪⎩

�vj + λv
pj −1
j + v

2∗(s)−1−εj

j

| xj

kj
+ y|s = 0 in Ωj,

vj = 0 on ∂Ωj .

(4.6)

Noting that by the inequality (1.20), we see that cε∗ < c0 < 1
n
λ

2−n
2 S

n
2
n . Hence, we may apply the

blowing up argument in the proof of Theorem 1.2 to obtain

0 < lim inf
j→∞

|xj |
kj

� lim sup
j→∞

|xj |
kj

< +∞. (4.7)

Now we may pick up a subsequence
xj

kj
→ y0 
= 0 and assume, up to an affine transformation,

Ωj → R
n+. Therefore, vj converges to some v uniformly in any compact set of R

n+, where v ∈
H 1

0 (Rn+) is a nontrivial solution of the equation

⎧⎨
⎩�v + λv

n+2
n−2 + v2∗(s)−1

|z|s = 0 in R
n+,

v = 0 on ∂R
n+.

(4.8)

Direct calculation shows
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C1 := lim
j→∞

∫
Ω

|∇uj |2 dx = lim
j→∞

(
m

( n−2
2−s

)εj

j

∫
Ωj

|∇vj |2 dy

)
�

∫
R

n+

|∇v|2 dz =: B1, (4.9)

C2 := lim
j→∞

∫
Ω

u
pj

j dx = lim
j→∞

(
m

( n−2
2−s

)εj

j

∫
Ωj

v
pj

j dy

)
�

∫
R

n+

v
2n

n−2 dz =: B2, (4.10)

C3 := lim
j→∞

∫
Ω

u
2∗(s)−εj

j

|x|s dx = lim
j→∞

(
m

( n−2
2−s

)εj

j

∫
Ωj

v
2∗(s)−εj

j

| xj

kj
+ y|s dy

)
�

∫
R

n+

v2∗(s)

|z|s dz =: B3. (4.11)

Inferring from (4.4) and (4.8), we deduce

⎧⎪⎪⎨
⎪⎪⎩

C1 − λC2 − C3 = 0,

B1 − λB2 − B3 = 0,

c∗ = C1

2
− (n − 2)λ

2n
C2 − 1

2∗(s)
C3.

By the definition of c0, see (1.21), we have

B1

2
− (n − 2)λ

2n
B2 − 1

2∗(s)
B3 � c0.

To sum up, we see

c∗ =
(

1

2
− 1

2∗(s)

)
C1 +

(
1

2∗(s)
− n − 2

2n

)
λC2

�
(

1

2
− 1

2∗(s)

)
B1 +

(
1

2∗(s)
− n − 2

2n

)
λB2

= B1

2
− (n − 2)λ

2n
B2 − 1

2∗(s)
B3

� c0.

This contradicts to c∗ < c0. Hence, we have proved u 
= 0 in H 1
0 (Ω) and the proof of Theorem 1.3

is complete. �
Notice that for the case n = 3 and 1 � s < 2, the above arguments also work if λ is small,

because by Theorem 3.5, Lemma 4.1 still holds for n = 3 and 1 � s < 2 provided that λ is small.
Therefore, we have the following theorem.

Theorem 4.2. Suppose that Ω is a C1 bounded domain in R
3 with 0 ∈ ∂Ω . Assume further that

the mean curvature of ∂Ω at 0 is negative. Then for 1 � s < 2, Eq. (1.18) has a positive solution
if

0 < λ <

(
n

2
− n

2∗(s)

) 2
2−n

S
n

n−2
n μs(Ω)

2∗(s)2
(n−2)(2−2∗(s)) .
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