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a b s t r a c t

This paper characterizes the dead-center positions of a planar
mechanism in terms of implicit bars, that can be described in their
turn in terms of relative motion centers. Consequently, a graphi-
cal procedure for finding motion centers leads to a geometric de-
scription for dead-point positions. We give a survey of existing ge-
ometric constructions for motion centers, and we illustrate a new
technique that makes use of the ‘‘Baracs construction’’.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is a contribution to the kinematic study of planar mechanisms. Our work space will be
always assumed to be the plane. Most authors define a linkage as a connected construction consisting
of rigid components (links), some of which are attached by means of joints, revolute (turning) or
prismatic (sliding). For most applications we can assume that the links of such a linkage are either
bars or consist of bars (e.g. a triangle), using only revolute joints; under this specification a linkage
is sometimes called a bar framework [2,16]. A linkage might or might not be pinned down to avoid
global displacements. If so, the ‘‘ground’’ will be considered as a link of the linkage, the ground link.
Even if a linkage is not pinned down (‘‘free’’) then it is convenient to factor out global rotations
and translations in its configuration space, because these Euclidean motions are irrelevant for the
mechanical behaviour of the linkage. Also, in counting the degrees of freedom of a free linkage it is
common to subtract 3 (= dimension of the Euclidean group) from the dimension of the configuration
space, yielding the ‘‘internal’’ degrees of freedom.
If a linkage or bar framework does not allow any deformation then it is called a (rigid) structure,

otherwise a mechanism. However, we follow the convention to preserve this name for linkages with
1 dof, allowing but not requiring the presence of a ground link.
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The first order motions of such mechanisms are completely determined by the so-called ‘‘relative
centers of motion’’ Cij for each pair of links {Bi, Bj} [2]. These relative centers are 3-vectors and can
be visualized as ‘‘centers of rotation’’ in the projective plane if we consider them as homogeneous
coordinates, while their magnitude stands for the ‘‘angular velocity’’, thus describing how Bi moves
infinitesimally relative to Bj. This motion might be an infinitesimal translation, in which case the geo-
metric center lies ‘‘at infinity’’ w.r.t. the physical work plane (canonically embedded in the projective
plane). The geometric position of a relative center is commonly referred to as an instant center by
mechanical engineers [11,14].
Of course, if Bi is connected to Bj bymeans of a joint P then for any relativemotion the center Cij has

its position at P . Because a mechanism has only one internal degree of freedom, each Cij corresponds
to a fixed point in the projective plane, depending on the actual position of the mechanism, but inde-
pendent from the applied velocities, also if Bi and Bj are not directly linked together. This observation
has motivated many authors to find the instant centers of a given planar mechanism by a graphical
procedure rather than by analytical computations [17,6,9,10,7,4,13], avoiding the use or knowledge
of the involved velocities. Furthermore, a graphical algorithm leads to a synthetic coordinate-free ex-
pression for the instant centers, yielding a better qualitative understanding of the kinematics of the
mechanism.
This paper has two purposes. First we attempt to synthesize the existing graphical techniques for

constructing the instant centers of a given mechanism (Section 3). Roughly speaking, if a center is not
already available as mechanical joint then one tries to constraint its location by a line.
Often, this line is a consequence of the Aronhold–Kennedy property: the three instant centers

corresponding to three rigid bodies in relative motion are collinear. If two of these three centers are
known (or previously constructed) then the AK-property provides a linear constraint for the third
center. The most commonly used technique for finding instant centers is the intersection of two
different AK-lines for the same center, called the rule of four.
Sometimes, when the number of available AK-lines is not sufficient, another type of linear con-

straint for the relative center Cij is used, the relative center line. By deleting a bar (or link) we can
obtain a 2-underbraced framework (a 2-dof linkage) such that the relative center for Bi and Bjmust lie
on a fixed line lij. This relative center line can be constructed by introducing two separate bracings for
the 2-underbraced framework (different from the given mechanism) in which the center for Bi and Bj
can be found easily, yielding two points of lij. This technique for constructing a relative center line is
called the swap principle.
One can hope that for a given mechanism all instant centers can be constructed from the mechan-

ical joints by intersecting lines belonging to one of these two types (AK-lines or relative center lines).
But at the point of writing this article no justification for this hope has been published. On the other
hand, in [7] it has been proven that AK-lines and relative center lines do suffice if the procedure of
line intersection is generalized by amore general construction, the Baracs construction. The use of this
construction for finding instant centers is illustrated in Section 4.
The second purpose of this paper is to deduce geometric descriptions for the dead-center positions

of a given mechanism. In such a position the ‘‘driving link’’ of the mechanism is ‘‘locked’’, such that
the mechanism loses its mobility. First we introduce in Section 5 the notion of implicit bars in a bar
framework. We show how implicit bars can be characterized in terms of a collinearity condition on
relative centers. Finally, in Section 6 we characterize a dead-center position by the existence of an
implicit bar between a ‘‘free end’’ of the driving link and a ‘‘pinned downvertex’’ of the ground link.We
conclude by illustrating how a graphical procedure for locating instant centers provides a geometric
description of all dead-center positions of a given mechanism.

2. Relative centers of motion

The work space of this paper will be the plane. Viewed as a Euclidean plane it will be modelled as
R2. However, for a geometric treatment of kinematics it will be often more convenient to reason and
calculate in the projective extension RP2. See e.g. [2,15,12] for other references that use projective
geometry in kinematic applications.
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We agree to embed the physical work plane in the projective plane as points with third homoge-
neous coordinate different from zero. We also introduce the vector space V of homogeneous coordi-
nates coordinates, which is isomorphic to R3.
Let us consider an infinitesimal Euclidean motion in the plane, i.e. the first order approximation of

a planar rotation or translation. Then we can always define a (projective) center of motion C , which is
a vector,1 in R3:

1. For a translation with constant velocity v = (v1, v2)we put

C = (−v2, v1, 0).

2. For a rotation about c = (a, b)with angular velocity α we put

C = (αa, αb, α).

We also allow a translation with zero velocity, or a rotation with zero angular velocity, which means
that nothing has been moved at all. For this (zero) motion we define the center C equal to (0, 0, 0).
If this center C 6= (0, 0, 0) then it can be be regarded as a vector of homogeneous coordinates

of a point π(C) in the projective extension of the work plane. Thus, for a rotation with center C =
(αa, αb, α) the corresponding point π(C) is the Euclidean center of rotation (a, b). For a translation
with center C = (−v2, v1, 0), π(C) is the point ‘‘at infinity’’ (in ‘‘direction’’ (−v2, v1), perpendicular
to the constant velocity vector). Note that the geometric pointπ(C) contains less information than the
algebraic center C of motion, since it does not determine the magnitude of velocity, only its direction.
If C = (c1, c2, c3) is a motion center and if P = (p1, p2) is a point in the plane, then the velocity vP

of P can be recovered as the first two coordinates of the cross product (or exterior product):

(c1, c2, c3)× (p1, p2, 1) = (c2 − p2c3, p1c3 − c1, p2c1 − p1c2)
⇒ vP = (c2 − p2c3, p1c3 − c1).

Actually, this cross product gives line coordinates of the line CP , with vP as normal, and with the third
coordinate determined by the fact that this line contains P .
For understanding this projectively geometric treatment of kinematics it helps to compare with

the ‘‘classical’’ Euclidean notations. In the latter setting an infinitesimal rotation about a center (a, b)
assigns a velocity vector vP to each point P:

vP =

[
0 −α
α 0

] [
p1 − a
p2 − b

]
=

[
αb
−αa

]
+

[
0 −α
α 0

] [
p1
p2

]
with angular velocity α. Notice that this motion can be considered as an infinitesimal rotation about
the origin plus a translation. Putting (c1, c2, c3) = (αa, αb, α) shows the equivalence between both
formulas for the velocity vP . But the choice to work in the projective plane yields more elegance.
Indeed, the algebraic computations for motions can be executed by a ‘‘central accountancy’’ in the
projective center, rather than being forced to consider the velocities at point level. For example, the
composition of two motions with centers C1 and C2 is a motion with center C = C1 + C2. It is a
well known property of homogeneous coordinates that the geometric position π(C) of this resulting
center C is on the line that connects π(C1) and π(C2). Another advantage is the uniform treatment for
rotations and translations.
If two rigid bodies in the plane, B1 and B2, are subject to a (separate) infinitesimal motion, with

centers C1 and C2 respectively, then we define the relative center of motion of B2 w.r.t. B1 as:

C12 = C2 − C1 ∈ R3.

If C1 6= C2 then B1 and B2 move relative to each other, and C12 6= (0, 0, 0). In this case, C12 can be
considered as homogeneous coordinates of a point π(C12) in the projective plane. Since C12 = −C21,
these relative centers ‘‘sit at’’ the same geometric point. If the bodies B1 and B2 are attached to each

1 For kinematics in 3 dimensions see [2,15] where centers of relative motion become vectors in R6 .
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other by a common point (hinge or joint) P , and if they move relative to each other, then π(C12)
coincides with this common joint. Indeed,

C1 × (P, 1) = C2 × (P, 1)⇒ C12 × (P, 1) = (0, 0, 0).

For a given joint P , this can be regarded as a system of three homogeneous linear equations with
unknown coordinates of C12. This system of equations has rank two, and will be referred to as the
joint conditions.
Relative centers are important for the study of rigidity or other kinematic properties ofmechanisms

or constructions. We refer e.g. to [2,7,16] for applications in the field of bar frameworks. Also in
textbooks and articles by mechanical engineers relative centers have proven to be very useful, albeit
under a different terminology (e.g. [14,11,4,9,10]). In mechanical engineering one often considers
linkages with one degree of freedom (mechanisms) and the relative motion center for a pair of rigid
components (links) B1 and B2. Here, the point π(C12) is called the instantaneous center of zero velocity,
or briefly the instant center. If the links B1 and B2 are connected to each other (by a joint) in the linkage
then π(C12) is a primary instant center, otherwise it is called secondary. Often, some vertices of a
linkage are ‘‘pinned down’’, and consequently the ‘‘ground’’ can be considered as another link B0 of
the linkage. In this case, the points π(C0i) are equal to π(Ci), and are called absolute instant centers.
It is commonly known in the community of mechanical engineers that for a given position of a

1-dof linkage its instant centers are completely determined, regardless what particular velocities are
used to move it. Of course, this is trivial for primary centers (= joints of the linkage), but it also holds
for the secondary centers, which might be regarded as ‘‘virtual joints’’. For a proof of this property
we refer to [6] (formulated in terms ‘‘almost-planar line diagrams’’) or [7] (formulated in terms of
‘‘1-underbraced planar bar frameworks’’).

Remark. In the sequelwewill often confuse between the (relative) centerC and its geometric position
π(C) for the ease of formulation and notation. However, formally C is a 3-vector, while π(C) is
obtained by intersecting the line through C with the work plane (z = 1).

An immediate but important consequence of the definition of relative centers is the following
classical property (Aronhold–Kennedy):
If three rigid bodies in the plane are subject to an infinitesimal motion, and if none of the three relative

centers is zero, then they correspondent to three collinear points.
Indeed,

C12 + C23 + C31 = 0.

If the position of two of these three relative centers is known (by earlier construction or as primary
instant centers), this AK-property provides a linear constraint for the third center, called the AK-line.
Considering relative centers as 3-vectors, the AK-property merely states that C12, C13, C23 are

coplanar.

3. Graphical methods for locating relative centers

We explained in the introduction that by a mechanism we will always mean a 1-dof linkage or
a 1-underbraced bar framework. As already pointed out in Section 2, the geometric positions π(Cij)
of the relative centers are determined by a given configuration of the mechanism. So, in principle,
they should be obtainable by graphical methods. In this section we distinguish two main classes of
constructions that appear in the recent literature [14,11,4,6]. We will not describe the ‘‘joint-joining
principle’’ of Dijksman [3], because it is a method that is only applicable for ‘‘ternary links’’ (links with
three joints) and is not known to be extendable for general mechanisms. However, to our opinion this
method (reducing ternary into binary links) deserves further research to explore the possibility for
generalization.
We will use the notation P ∨ Q for the line joining the two points P and Q , and the notation a ∧ b

for the point in which the two lines a and bmeet, and both are supposed to operate in the projective
plane.
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Fig. 1. Illustration of the rule of four. For a cycle of 4 bars, the ‘‘secondary’’ relative centers are located by the intersection of
AK-lines.

Fig. 2. By successively applying the rule of four we find first C01 , then C02 and finally C23 .

1. The rule of four.
We observed at the end of Section 2 that the Aronhold–Kennedy property may provide a line that

contains the relative center that we try to locate. If two different AK-lines are available for the same
relative center, the latter can be located as the intersection of these lines. Formally, if the given linkage
contains four links B1, B2, B3, B4 such that the relative centers C12, C23, C34, C41 are known, then the
remaining centers can be constructed by

C13 = (C12 ∨ C23) ∧ (C14 ∨ C43)
C24 = (C21 ∨ C14) ∧ (C23 ∨ C34).

This is called the rule of four. In some references (e.g. [4,9,10]), this principle is identified with the
AK-property. In Fig. 1 the rule of four is illustrated in the basic case of a cycle of 4 bars (four-bar linkage).
This framework has 4 primary centers (joints) and 2 secondary centers.
Of course, once a center has been constructed, it becomes available as a new possible ingredient

for the rule of four, and more centers may be generated. We see an example of this ‘‘domino effect’’
in Fig. 2.
The rule of four does not guarantee to find all the relative centers, even in the case of a (1 dof)-

mechanismwhere their geometric positions are determined. The smallest mechanismwhere the rule
of four fails to provide all instant centers is the double butterfly linkage. Some authors call such linkages
indeterminate [4]. In Fig. 3 we show a ‘‘free framework version’’ of this linkage, where the originally
pinned-down joints have been released and interconnected by three bars to form a rigid component.
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Fig. 3. If we delete the bars of triangle 0 in this framework, and after that pin down the vertices of this triangle then we obtain
the famous ‘‘double butterfly linkage’’.

However, from [6] it follows that for 1-underbraced frameworks that can be built by a sequence of
‘‘2-valent extensions’’ (Henneberg step of type 1) from the four-bar linkage (Fig. 1), the rule of 4 always
succeeds in finding all relative centers.2

2. The swap principle.
Let B1 and B2 be two links in a mechanism F . Let F− be obtained by deleting a bar or link from F

without affecting B1 or B2. Furthermore,we assume that B1 and B2 are not contained in a submechanism
of F− that has only one internal degree of freedom (a submechanism is obtained by deleting one or
more links). Now the relative center C12 has not a fixed position; different velocities for the links of F−
will cause different locations for the relative centers. But the good news is that there exists a fixed line
l12 such that for each infinitesimal motion of F− it holds that C12 ∈ l12. We call l12 the relative center
line for B1 and B2 in F−. Of course, the relative center C12 in the original mechanism F must be located
on l12. To our best knowledge the idea of using a relative center line in a 2-dof sublinkage in order to
locate the instant centers of a given mechanism first appeared in [4], where it was an essential step in
‘‘solving’’ the indeterminate double butterfly linkage. In [7] the general existence of the relative center
line has been proven.
If we break down the givenmechanism F twice and achieve each time a 2-dof linkage, then C12 can

be constructed as the intersection of two relative center lines, assuming that both lines are different.
Alternatively, a center might be located as the intersection of an AK-line and a relative center line. We
refer to [9] for a clear illustration of this last case for the single flier eight-bar linkage.
In [4,9] a relative center line l12 for a pair of links B1 and B2 in a 2-dof linkage has been graphically

obtained by choosing two arbitrary flexings of the linkage. This has been done by selecting two
arbitrary instant centers C ′ij and C

′′

ij for a particular pair {Bi, Bj}, implying respective instant centers
C ′12 and C

′′

12 by applying the rule of four. Finally, l12 = C
′

12 ∨ C
′′

12, and C12 is located by intersecting
l12 by an AK-line. It should be noted that the authors explained this graphical procedure only by few
examples, without claiming that such a pair of links {Bi, Bj} always exists andwithout giving a general
criterion how to select this pair. Furthermore, it is not clear whether two arbitrary choices C ′ij and C

′′

ij
always lead to different C ′12 and C

′′

12, neither how the resulting l12 is guaranteed not to coincide with
the AK-line.
In [7] it is suggested to construct a relative center line l12 by considering ‘‘bracings’’ of F−. Such

a bracing of F− adds a new bar to F− in order to obtain a new 1-dof mechanism F ′, still containing
B1 and B2 as links. One might say that F ′ is obtained from the original mechanism F by ‘‘swapping
a bar’’. The purpose is to arrive at a mechanism F ′ where the relative center C ′12 can be constructed
in a straightforward way (as opposed to C12 in F ). Observe that the point C ′12 necessarily lies on the
center line l12 in F−. So, by considering two appropriate bracings of F−, F ′ and F ′′, we aim to obtain
the relative center line as

l12 = C ′12 ∨ C
′′

12

2 In fact, in the same article a more general result has been obtained, also allowing so-called ‘‘compound extensions’’.
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Fig. 4. The framework of Fig. 3 minus bar 6. The locus of the instant centers C23 for all possible infinitesimal motions is given
by the relative center line l23 .

Fig. 5. If we swap bar 6 in Fig. 3 (→6′′) then we obtain a 1-underbraced framework F ′′ that allows the construction of C ′′23 by
merely using the rule of four: C ′′13 ⇒ C

′′

01 ⇒ C
′′

02 ⇒ C
′′

23 .

which is a linear constraint for C12. The procedure to construct a relative center line in this way is
called the swap principle.
Let us illustrate this technique for the double butterfly linkage, which cannot be tackled by the

rule of four. More precisely, let us locate the relative center C23 for the links (triangles) 2 and 3 (Fig. 3).
Observe that in combination with bar 6 we have an AK-line for C23, namelywx. Next, we delete bar 6
and obtain a 2-underbraced framework F− (Fig. 4).
The center line l23 of the 2-underbraced framework F− in Fig. 4 can be obtained by the swap

principle. For the first bracing F ′ we add bar wd to F−. This causes bar 5 and triangle 3 of F to merge
in one rigid component that will be called link 3 in F ′. Observe that F ′ has the same design as the
framework of Fig. 2. So, as illustrated above, C ′23 can be located by a sequence of applications of the
rule of four.
For the second bracing we add bar vw to F− and call it link 6 of the new mechanism F ′′. In Fig. 5

we see how the rule of four first locates C ′′13, then C
′′

01, after that C
′′

02, and finally C
′′

23.
At the time of writing this article it is still not clear whether all (secondary) relative centers of a 1-

underbraced framework can be found as the intersection of constructible AK-lines or relative center
lines. But we will see in the next section that if we generalize the concept of line intersection by a
more complicated synthetic operation, called the ‘‘Baracs construction’’, the previous question can be
answered affirmatively.

4. The Baracs construction

Using Henneberg sequences it is proven in [7] by induction that AK-lines and relative center lines
suffice to generate all (secondary) instant centers in every 1-dof bar framework. This proof also yields a
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Fig. 6. Three collinear points A, B, C and three non-concurrent lines p, q, r are given. We are asked to construct lines a, b and
c through A, B and C respectively, such that their pairwise intersections lie on the given lines.

general procedure for obtaining the necessary relative center lines bymeans of the swapping principle
(Section 3). If the given mechanism is in a ‘‘sufficiently general’’ position then the constructions of [7]
are guaranteed not to degenerate (always joining different points and intersecting different lines).
However, in order to succeed for all possible mechanisms, one might need a synthetic construction
that is somehow more involved than plain line intersection. In this section we recall this ‘‘classical’’
construction.
Let B1, B2, B3, B4 be four links in some mechanism. Suppose the positions of the relative centers

C12, C13, C23 are known to us. Furthermore, for the three relative centers where B4 is involved we are
given a linear constraint: l14, l24, l34. For finding the remaining three instant centers C14, C24, C34 we
are faced with a challenging problem in descriptive geometry (recall that the AK-property states that
C12, C13, C23 are collinear):
Suppose we are given a drawing of three collinear points in the projective plane: A, B and C .

Furthermore, three arbitrary lines are given in that same plane: p, q and r . Now we are asked to
construct three lines a, b and c with the following properties (Fig. 6):

A ∈ a, B ∈ b, C ∈ c
a ∧ b ∈ r, b ∧ c ∈ p, a ∧ c ∈ q.

The problem does not seem to allow a constructive solution at first sight. Where should we start with
a geometric construction? Of course, if {p, q, r} happen to be concurrent lines, meeting in a point S
say, then we can put a = A∨ S, b = B∨ S, c = C ∨ S, yielding an easy solution. So, let us assume that
p, q and r are not concurrent.
Fortunately, this problem is a classical one, with a known solution (cours de Topologie Structurale,

Université de Montréal, 1978, by Janos Baracs, see also [1].3
We start by adding an auxiliary line z through point A to the given drawing. To solve the problem

we proceed as follows:

1. v = C ∨ (z ∧ q)
2. w = B ∨ (z ∧ r)
3. S = v ∧ w
4. k = S ∨ (q ∧ r)
5. L = k ∧ p
6. b = L ∨ B
7. c = L ∨ C
8. a = (c ∧ q) ∨ A or (b ∧ r) ∨ A.

Of course, as well in the given drawing, as in the construction process, we allow points or lines to
lie at infinity. In the remainder of this paper we refer to this solution as the Baracs construction.
We note that this construction is not intrinsic, meaning that it does not proceed simply by the

successive formation of meets of pairs of lines, and joins of pairs of points, starting from the initial

3 Actually, the solution is based on the dual problem, which is easier to visualize as a 3D construction.
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Fig. 7. A mechanism with 8 links. Using the Baracs construction the relative centers for the first 4 links can be located. The
location of the remaining centers immediately follows by the rule of four.

data of point and line positions. It was essential to introduce an arbitrary line (z) passing through a
given point (A). Since the solution is unique, it does not depend on the choice of z.
In Fig. 7 we show a 1-underbraced framework where the relative centers can be located by the aid

of the Baracs construction. We restrict our analysis to links 1, 2, 3 and 4. The positions of the relative
centers C12, C13, C23 are immediately found as primary centers and by the rule of four. Also, for link
4 we find three AK-lines: l14, l24, l34. This exactly matches the conditions of the Baracs construction,
yielding the location of C14, C24, C34.

5. Implicit bars

Let F be an arbitrary planar bar frameworkwith e bars. Let γ = (C1, . . . , Ce) be a given infinitesimal
motion of F , that is, Ci is the center of motion for the ith bar such that the joint conditions are satisfied
(Section 2). If the ith bar of F connects joints V andW , then C = Ci satisfies simultaneously the joint
conditions in V and inW . So, for each bar P incident to V and for each bar Q incident toW :

(C − CP)× (V , 1) = (C − CQ )× (W , 1) = 0. (1)

Next, suppose that joints V andW are not linked by a bar in F . If for each motion γ of F we can still
find an additional center C such that Eq. (1) holds for each bar P incident to V and each bar Q incident
toW , then we call VW an implicit bar. In this context, ordinary bars are referred to as explicit. We refer
to [5] for details on ‘‘bases’’, ‘‘dependencies’’ and ‘‘closure’’ in the more general setting ofmatroids.

Theorem 1. Let F be a planar frameworkwith non-isolated joints V1 and V2 (V1 6= V2). Then the following
three statements are equivalent:

1. V1V2 is an implicit or explicit bar of F .
2. For each motion γ = (C1, . . . , Ce) of F , there exists a bar P1 incident to V1, and a bar P2 incident to
V2, such that

[(CP1 − CP2)× (V1, 1)] · (V2, 1) = 0.

3. For each motion γ = (C1, . . . , Ce) of F , for each bar P1 incident to V1, and for each bar P2 incident to
V2, it holds that

[(CP1 − CP2)× (V1, 1)] · (V2, 1) = 0.

Proof. 1⇒ 3: Let γ = (CP)P be a motion of the framework F , and let C be the center of motion for
the implicit or explicit bar V1V2. Further, let Pi be a bar incident to joint Vi (i = 1, 2). Then, by
the joint conditions,

[CP1 × (V1, 1)] · (V2, 1) = [C × (V1, 1)] · (V2, 1)
= −[(V1, 1)× C] · (V2, 1)
= −[(V1, 1)× CP2 ] · (V2, 1)
= [CP2 × (V1, 1)] · (V2, 1).

3⇒ 2: Obvious, as we assumed that V1 and V2 are non-isolated.
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2⇒ 1: Because

[(CP1 − CP2)× (V1, 1)] · (V2, 1) = 0

and because V1 6= V2, there exist λ1, λ2 ∈ R such that

CP1 − CP2 = λ2(V2, 1)− λ1(V1, 1).

(If CP1 = CP2 thenwe choose λ1 = λ2 = 0.) Nowwe can define the following center ofmotion
for V1V2:

C = CP1 + λ1(V1, 1) = CP2 + λ2(V2, 1).

Next, let Qi be an arbitrary bar of F that is incident to joint Vi (i = 1, 2). It follows that

(C − CQi)× (Vi, 1) = (CPi + λi(Vi, 1)− CQi)× (Vi, 1)
= (CPi − CQi)× (Vi, 1) = 0

for i = 1, 2, where we applied the joint conditions in Vi. �

In the next sectionwewill use the idea of implicit bars to describe so-called ‘‘dead-point positions’’
in linkages.

6. Dead-center positions

The issue of a dead-center position (or a dead point) is of great importance for linkages, both during
the performance as in the stage of designing. In such a position the linkage loses its mobility. A dead
point might be part of the functionality of the mechanism, but mostly it is an unwanted obstacle. We
refer to [13] formore references to the literature. In this sectionwewill describe dead-center positions
in terms of implicit bars, and hence, due to Theorem 1, in terms of instant centers.
In this section, we restrict to the case of mechanisms that are ‘‘pinned-down to the ground’’ (read

the introduction). The joints that belong to the ground link are called base joints. W.l.o.g. we assume
that each link is a bar or a collection of bars. Furthermore, by introducing bars that connect the base
joints, the given linkage is formally transformed to a bar framework F .
As in Section 5 we represent a motion of a framework F (with e bars) by an ordered tuple

(C1, . . . , Ce) of motion centers for each bar (subject to the joint conditions). Automatically, identical
centers are assigned to bars that belong to the same link. Furthermore, we demand zero centers for
the bars that constitute the ground link.
In practice, the motion of a linkage is controlled by driving a specific link that is attached (joint J0)

to the ground link. This link is called the driving link or input link.
Now we can formally define a dead-center position of F as a position where every possible motion

assigns a zero center to the (bars of the) driving link. Notice that this position is defined w.r.t. the
driving link of the mechanism. This definition of a dead point of a (planar) mechanism is the most
common one in recent publications [13,8]. However, the reader should be aware of the existence of
other definitions (e.g., [17]).
So, in a dead-point position there might still exist mobility, but this cannot be exploited since we

can only realize motions that are caused by the driving link. We could also say that in a dead-point
position the driving link and the ground link merge into one link. Let J1 6= J0 be another base joint,
and let P 6= J0 be another joint that belongs to the driving link, then PJ1 is not a bar in F , because
otherwise the driving link and the ground link would be identical in each position. However, in a
dead-point position of F , it follows from the definition that PJ1 must be an implicit bar. Conversely, if
PJ1 is implicit, and if moreover P, J0, J1 are not collinear then F is in a dead-point position. Indeed, a
(non-degenerated) triangle is infinitesimally rigid, causing the driving link to be locked by the ground
link. We conclude in

Theorem 2. Let F be a pinned-down mechanism, J0 a base joint that is incident to the driving link of F
and and let P be any joint of the driving link different from J0. Then
1. If F is in a dead-center position then PJ1 is an implicit bar for each base joint J1 6= J0.
2. If there exists a base joint J1, not collinear with P and J0, such that PJ1 is an implicit bar then F is in a
dead-center position.
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Fig. 8. A dead-center position for the Stephenson III linkage occurs if BD or CD becomes an implicit bar.

Theorem 2 can always be translated into a geometric condition on instant centers. Indeed, let B be
a link attached to joint P but different from the driving link and let I be the relative center of B w.r.t.
the ground link (= center of zero velocity). According to Theorem 1 the bar PJ1 becomes implicit if I
is collinear with P and J1.
In [17] we found a different approach for finding dead-center positions, alsomaking use of relative

centers. However, care should be taken if one compares both results, because the authors use another
definition for a dead-center position, depending on the choice for the output link as well. In addition
to our convention, in [17] the output link is not allowed to have zero velocity in a dead point. In this
reference, expressed in the previous notation and taking B as output link, the geometric condition for
a dead-center position is the coincidence of I and P . This is a special case of our collinearity condition,
as should be, because the set of dead-center positions in the definition of [17] is a subset of our dead-
center positions.
We illustrate Theorem 2 by verifying the dead-center positions of the Stephenson III linkage [13].

We refer to Fig. 8.
The base joints are denoted by A, B and C . Together they form link 0 (ground link). Link 1 is the

driving link. So, in the formulation of Theorem 2 we put P = D, J0 = A and for J1 we can choose
between B and C . This linkage is in dead-center position if BD is implicit with A, B,D not collinear, or
if CD is implicit with A, C,D not collinear. By Theorem 1, this is implied if the relative center C02 sits
at the line BD or CD. Note that AD is an AK-line for the pair {0, 2}, such that C02 must sit at joint D in a
dead-center position.
Applying the rule of four twice:

C03 = BF ∧ CG
C02 = AD ∧ (E ∨ C03).

Consequently, C02 sits at joint D
⇔ C03 sits at line DE
⇔ ED, BF , CG are concurrent.
This conclusion matches the result of [13] (the other dead-center positions listed by the authors

are special cases of the concurrency condition).
In principle, for applying Theorem 2 it is irrelevant whether the involved instant center has been

located by AK-lines only or by more advanced procedures. But of course, if the instant center has
been obtained by a complex geometric construction, it will be more difficult to have a geometric
understanding of the dead-center position. Take for example the double butterfly linkage (Fig. 3).
With link 0 as ground link and link 4 as input link we can choose J0 = f , P = a and J1 = b in the
terminology of Theorem 2. A necessary and sufficient condition for ab to become an implicit bar is for
example the collinearity of the instant center I13 = π(C13)with a and b. As described in Section 3, I13
can be constructed as the intersection of de (link 5) with the relative center line l23 (Fig. 4). Although
this yields a geometric characterization for all dead-center positions, it is not a simple one, due to
the complex construction for I13. However, simple special cases can be deduced from it easily. For
example, if the mechanism is in a position where a, b, d, e lie on one line then it reaches a dead end,
because I13 ∈ de.
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7. Conclusions and further research

The first order motions of a planar mechanism are determined by the location of the relative
motion centers for each pair of links. Furthermore, a synthetic construction for these centers, rather
than numerical computations, provides qualitative insight for the kinematic behaviour of the design
of the linkage (and not just of a particular realization). During the past decades several graphical
procedures for obtaining the relative centers have been presented, spread over the literature and over
several disciplines. Mathematicians and engineers used each their own terminology, methods and
even environments (projective versus Euclidean plane). This paper presents several techniques from
several disciplines in one uniform framework. Roughly speaking, most of the constructions operate
by means of linear constraints for the relative centers, where we distinguish two types: AK-lines
and relative center lines. It is still an open problem whether there exists an algorithm that for every
mechanism constructs the necessary AK-lines and relative center lines in order to locate the relative
centers by line intersection. Thiswould avoid the Baracs construction, yieldingmuch simpler synthetic
formulas for these centers. An alternative direction of research toward a simple general graphical
procedure for locating relative centers could be to generalize the joint-joining principle of Dijksman
for general mechanisms.
Because the AK-property is equally valid for screwmotion centers in 3D, it would be interesting to

investigate how the previous constructions can be lifted to a higher dimension.
A second contribution of this paper is to characterize implicit bars in special positions of a given

mechanism in terms of relative motion centers. This turns out to be a ‘‘collinearity condition’’,
formulated in Theorem 1, which has never been proved in previous publications. The graphical
procedures for relative centers in the first part of the paper now imply a geometric condition (synthetic
formula) for the existence of implicit bars.
A third contribution of this paper is to provide a new characterization of the dead-center positions

of mechanisms with a given topology (design) in terms of implicit bars (Theorem 2). Combining the
graphical procedures for relative centers with Theorem 1 now yields a geometric condition on dead
points. Consequently, each future simplification in the graphical procedures for relative centers will
facilitate the geometric understanding of these dead-center positions.
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