=

brought to you by I CORE

View metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com

ScienceDirect

e S
ELSEVIER Nuclear and Particle Physics Proceedings 273-275 (2016) 268-274

www.elsevier.com/locate/nppp

Flavour Covariant Formalism for Resonant Leptogenesis

P. S. Bhupal Dev®!, Peter Millingtona'b, Apostolos Pilaftsis®, Daniele Teresi®

@ Consortium for Fundamental Physics, School of Physics and Astronomy,
University of Manchester, Manchester M13 9PL, United Kingdom.

b Institute for Particle Physics Phenomenology, Durham University, Durham DHI 3LE, United Kingdom.

Abstract

We present a fully flavour-covariant formalism for transport phenomena and apply it to study the flavour-dynamics
of Resonant Leptogenesis (RL). We show that this formalism provides a complete and unified description of RL,
consistently accounting for three distinct physical phenomena: (i) resonant mixing and (ii) coherent oscillations be-
tween different heavy-neutrino flavours, as well as (iii) quantum decoherence effects in the charged-lepton sector. We
describe the necessary emergence of higher-rank tensors in flavour space, arising from the unitarity cuts of partial
self-energies. Finally, we illustrate the importance of this formalism within a minimal Resonant 7-Genesis model by
showing that, with the inclusion of all flavour effects in a consistent way, the final lepton asymmetry can be enhanced

by up to an order of magnitude, when compared to previous partially flavour-dependent treatments.
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1. Introduction

Leptogenesis [1] is an elegant framework for dynam-
ically generating the observed matter-antimatter asym-
metry in our Universe through out-of-equilibrium de-
cays of heavy Majorana neutrinos, whilst simultane-
ously explaining the smallness of the light neutrino
masses by the seesaw mechanism [2]. Resonant Lep-
togenesis (RL) [3, 4] offers the possibility of realizing
this beautiful idea at energy scales accessible to labora-
tory experiments. In RL, the heavy Majorana neutrino
self-energy effects on the leptonic CP-asymmetry be-
come dominant [5] and get resonantly enhanced, when
at least two of the heavy neutrinos have a small mass
difference comparable to their decay widths [3].

Flavour effects in both heavy-neutrino and charged-
lepton sectors, as well as the interplay between them,
play an important role in determining the final lep-
ton asymmetry in low-scale leptogenesis models [6,
7]. These intrinsically quantum effects can be consis-
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tently accounted for by extending the classical flavour-
diagonal Boltzmann equations for the number densities
of individual flavour species to a semi-classical evolu-
tion equation for a matrix of number densities [8]. Using
this general technique, we present in Section 2 a fully
flavour-covariant formalism for transport phenomena in
the Markovian regime. As an application of this general
formalism, we derive a set of flavour-covariant trans-
port equations for lepton and heavy-neutrino number
densities with arbitrary flavour content in a quantum-
statistical ensemble. We demonstrate the necessary ap-
pearance of rank-4 tensor rates in flavour space that
properly account for the statistical evolution of off-
diagonal flavour coherences. As shown in Section 3,
this manifestly flavour-covariant formalism enables us
to capture three important flavour effects pertinent to
RL: (i) the resonant mixing of heavy neutrinos, (ii) the
coherent oscillations between heavy neutrino flavours
and (iii) quantum (de)coherence effects in the charged-
lepton sector. In Section 4, we present a numerical ex-
ample to illustrate the importance of these flavour off-
diagonal effects on the final lepton asymmetry. Our con-
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clusions are given in Section 5. For a detailed discussion
of the topics presented here, we refer the reader to [9].

2. Flavour-Covariant Formalism

Let us begin with an arbitrary flavour content for the
lepton doublet field operators L; (withl =1, 2, ..., N1)
and the right-handed Majorana neutrino field operators
Nro = PrRN, (witha =1, 2, ..., Ny), where P =
(14 + y5)/2 is the right-chiral projection operator. The
field operators transform as follows in the fundamental
representations of U(Np) and U(Ny):

L—L=V"L,, L's@L) L=V L" (a)

Nro = Nio = U Npp,  Ni = N = U%Ng, (1b)

where V" € U(NL) and Uf € U(Ny). In the flavour
basis, the relevant neutrino Lagrangian is given by

_— 1 —
— Ly = hoL DNy + ENE,G[MN]”BNM +He., (2)

where @ = io,®"* is the isospin conjugate of the Higgs
doublet ®. The Lagrangian (2) transforms covariantly
under U(N) ® U(Ny), provided the heavy-neutrino
Yukawa and mass matrices transform as

he - B = VU R, (3a)
[My]F — My = U®, U [MyT° . (3b)

The field operators in (2) can be expanded in flavour-
covariant plane-wave decompositions, e.g.

L@ = 3, fp [(2EL(p))*%];

X ([e_ip'x]ij[u(p, s)]jk bk(p’ s, 0)
+ [ (p. 91 d{(p.5.0) . (4)

where we have suppressed the isospin indices. In (4),
3

fp = [ (‘2171)’3 s is the helicity index and [EZ(p)]" =

pzél’” + [MZML] l’”. Notice that the Dirac four-spinors

[u(p, s)]jk and [v(p, 5)] jk transform as rank-2 tensors in

flavour space. The lepton creation and annihilation op-
erators b* = b,t and by, and the anti-lepton creation and

annihilation operators d"* = dj and di, satisfy the fol-
lowing equal-time anti-commutation relations

{bu(p, s, 1), "0, 5", D} = {d""(p, s, D), d](p', 5, D)}
= 2’69 (p-p) b 6" (5)

Note that for the Dirac field, the lepton annihilation
operator by(p, s,7) and the anti-lepton creation opera-
tor dZ(p, s, T) transform under the same representation
of UNL).

For the heavy Majorana neutrino creation and annihi-
lation operators a®(k, r, f) and a,(K, r, 7), with helicities
r = %, it is necessary to introduce the flavour-covariant
Majorana constraint

d™(k,—r1) = GPhyk,r,i) = GPagk,r,i), (6)
where G = [U*U']% are the elements of a unitary
matrix G, which transforms as a contravariant rank-
2 tensor under U(Ny). Similar flavour rotations are
forced by the flavour-covariance of the formalism, when
we derive the transformation properties of the discrete
symmetries C, P and T. This necessarily leads to the
generalized discrete transformations

b, 5. D¢ = G b(p.s.DC = —id"(p,s.D), (Ta)

bl(pa S, i)P = _Sb](_p’ _S,i) ) (7b)
bl(p’ s»i)f glm bm(pa s»i)T = bl(_p7 S, _i) ) (70)

where G = [V*VT]" is the lepton analogue of the
heavy-neutrino tensor G.

Using a flavour-covariant canonical quantization [9],
we may define the matrix number densities of the lep-
tons and heavy neutrinos, as follows:

[nh (. D1 = V30" (D, 52, DD, 51, D), (8)
[k (01" = V3d (P, 51, Dd™™ (P, 52,D),  (8b)
(1Y, (&, D1 = ViUPK, ra, Dagk, 1, D), (8¢)

rnra

where V5 = (27)36?(0) is the coordinate three-volume
and the macroscopic time ¢ = 7 — f;, equal to the inter-
val of microscopic time between specification of initial
conditions (#;) and subsequent observation of the system
(©) [10]. Note the relative reversed ordering of indices
in the lepton and anti-lepton number densities, which
ensures that the two quantities transform in the same
representation, so that they can be combined to form a
flavour-covariant lepton asymmetry. For the Majorana
neutrinos, nY and 7" are not independent quantities and
are related by the generalized Majorana condition

_N
(72,1,

& DL = G [0, &1 FG¥ . (9)

nr

The number density matrices defined above have simple
generalized-C transformation properties:

n*(p.0I€ = @ .01, (10)
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where T denotes the matrix transpose acting on both
flavour and helicity indices. The total number densities
n*X () are obtained by tracing over helicity and isospin
indices and integrating over the three-momenta.

Using the E—transfgrmation relations (10), we can de-
fine the generalized CP-“odd” lepton asymmetry

ont = nt - 7w, (11)

Ill addition, for the heavy neutrinos, we may define the
CP-“even” and -“odd” quantities

N:l(N_{_ﬁN),

5 on =iV -7 . (12)

IS

We will use these quantities, having definite cp-
transformation properties, to write down the flavour-
covariant rate equations.

First we derive a Markovian master equation govern-
ing the time evolution of the matrix number densities
n*(p,t). These are defined in terms of the quantum-
mechanical number-density operator Xk, 7;f;) and
density operator p(7; f;), as follows:

i (k,1) = G, B T)) = Te{p@ i) it (kB 1)), (13)

where the trace is over the Fock space. Differentiating
(13) with respect to the macroscopic time ¢ = 7 — 7;, and
using the Liouville-von Neumann and Heisenberg equa-
tions of motion, we proceed via a Wigner-Weisskopf ap-
proximation to obtain the leading order Markovian mas-
ter equation [9]

%nx(k, 0 = i([HY, ik, 0)]),

+00
-5 [ A . o, # o a4)
where H(’)( and Hj, are the free and interaction Hamilto-
nians, respectively. The first term on the RHS of (14),
involving the free Hamiltonian, generates flavour oscil-
lations in vacuum, whereas the second term in (14), in-
volving the interaction Hamiltonian, generates the col-
lision terms in the generalized Boltzmann equations.
For the system of lepton and Higgs doublets and
heavy-neutrino singlets under consideration, we have

H = Y, [ 1E@ (65D bip. 5D
s p
+ d](p,s.5)d""(p, 5.7)) . (15a)
HY = ) f [En(0l," a (k1,7 ao(k, 7). (15)
— Jk
Hypy = f d*xh? ' ® Ng, + Hec. . (15¢)

Using these expressions in (14), we obtain the following
evolution equations for the lepton and heavy-neutrino
number densities [9]:

d m
3 15 @.0)" = ~i[Ecp). ;,.0],
+ [CL, (.01, (16a)

Ly dnld = —i[Evo. nl, k0]

dr 2 riry
N

+ [CN. kD1 + G [C,., k01, G*, (16b)

rr
where, for instance, the lepton collision terms may be
written in the form

1 m
@.0]" = —5[77-1"+FT~7:] V)

S[Sz,[

[ck

5182

Here, we have suppressed the overall momentum de-
pendence and used a compact notation

[T'r]slsz,lm = Zfl; [ffl‘mrz(p’q’kvt)]lnaﬁ
»q

8,11,
X [FS S (p’ q’ k)]nmﬁa M (18)

In (18), there are two new rank-4 tensors in flavour
space, as required by flavour-covariance: (i) the statisti-
cal number density tensors

Fp.a.k1 = n’@nn"Ene[1-n"k1]
— [1+n%@.0][1-n"(p.0)| @ n"Kk,1), (19)
and (ii) the absorptive rate tensors

o0 @01 = 1, bt Q0 6k = p -9V ,f

1 p1i 1]
e U M TN )

< |eexen | (et Trfluk, )/

x [ak, )]y Py [u(p, s2)1," [a(p, s)1, PR} - (20)

The rate tensor (20) describes heavy neutrino decays
and inverse decays, and its off-diagonal components are
responsible for the evolution of flavour-coherences in
the system. The necessary emergence of these higher-
rank tensors in flavour space may be understood in
terms of the unitarity cuts of the partial self-energies [9].
This is illustrated diagrammatically in Figure 1 for the
in-medium heavy-neutrino production LO — N (Fig-
ures la and 1b) and AL = 0 scattering L® — L® (Fig-
ures 1c and 1d) in a spatially-homogeneous statistical
background of lepton and Higgs doublets. In Figures la
and Ic, the cut, across which positive energy flows from
unshaded to shaded regions, is associated with produc-
tion rates in the thermal plasma, as described by a gen-
eralization of the optical theorem [9].
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Lk, r)

\\7 Nu(p, s)

G
/

n®(q)[nk(k)]*

@(q) ®(a)
(b) Heavy-neutrino production, n®[nt] /‘ [y(LD® — N)] klf

N — LD — N.

L"(kz,72) Ly (k1,71) Li(ky,r1) Ly (ka,72)
ﬁwﬂ L D@ (k)lF [ﬁé]la, \flm,"
A T z s SR N
P (q2) @(q1) ®(a1) @(q2)

(c) Charged-lepton self-energy, with
AL = 0 internally.

(d) AL = 0 scattering, n®[n!1}[y(L® — LO)]/ "

Figure 1: Generalized unitarity cut of the partial heavy-neutrino and lepton self-energies, giving rise to the rank-4
tensor rates for heavy-neutrino production and AL = 0 scattering processes. The explicit forms of the thermally-

averaged rank-4 rates can be found in [9].

3. Rate Equations for Resonant Leptogenesis

As already mentioned in Section 1, in the limit when
two (or more) heavy Majorana neutrinos become de-
generate, the e-type CP-violation due to the interfer-
ence between the tree-level and absorptive part of the
self-energy graphs in the heavy-neutrino decay can be
resonantly enhanced, even up to order one [3]. In this
regime, finite-order perturbation theory breaks down
and one needs a consistent field-theoretic resummation
of the self-energy corrections. Neglecting thermal loop
effects [11], we perform such resummation along the
lines of [4] and replace the tree-level neutrino Yukawa
couplings by their resummed counterparts in the trans-
port equations given in Section 2. Specifically, for the
processes N — L® and L°®° — N, we have ,* — h,*
and, for N - L°®° and LO — N, we have h', —
[h¢ ]’a, where ¢ denotes the 5P-conjugate. The algebraic
form of the resummed neutrino Yukawa couplings in the
heavy-neutrino mass eigenbasis can be found in [4] and
the corresponding form in a general flavour basis may
be obtained by the appropriate flavour transformation,
ie. h* = vy" U‘%hmﬁ , where hmﬁ = h,; in the mass
eigenbasis [9].

In order to obtain the rate equations relevant for RL
from the general transport equations (16a) and (16b), we
perform the following standard approximations:

(i) assume kinetic equilibrium, since elastic scattering
processes rapidly equilibrate the momentum distri-

butions for all the relevant particle species on time-
scales much smaller than their statistical evolution.

(i) neglect the mass splittings between different
heavy-neutrino flavours inside thermal integrals,
and use an average mass my and energy Ey(k) =
(kP + m,zv)l/ 2 since the average momentum scale
Kl ~T > ImNn - mNﬁ|.

(iii) take the classical statistical limit of (19).
(iv) neglect thermal and chemical potential effects [12].

With the above approximations, we integrate both
sides of (16a) and (16b), and their generalized CP-
conjugates, over the phase space and sum over the de-
generate isospin and helicity degrees of freedom. The
resulting rate equations account for the decay and in-
verse decay of the heavy neutrinos in a flavour-covariant
way [9]. However, in order to guarantee the correct
equilibrium behaviour, we must include the washout
terms induced by the AL = 0 and AL = 2 scattering
processes, with proper real intermediate state (RIS) sub-
traction [13, 4, 9] (see e.g., Figure 1d). As illustrated
in [9], it is necessary to account for thermal corrections
in the RIS contributions, when considering off-diagonal
flavour correlations.

In addition to the 2 < 2 scatterings, it is also impor-
tant to include the effect of the charged-lepton Yukawa
couplings, which are responsible for the decoherence of
the charged leptons towards their would-be mass eigen-
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basis, as opposed to the interactions with the heavy neu-
trinos [cf. (2)], which tend to create a coherence be-
tween the charged-lepton flavours. Note that, while cal-
culating the reaction rates for the processes involving
the charged-lepton Yukawa couplings, it is important to
take into account their thermal masses, which control
the phase space suppression for the decay and inverse
decay of the Higgs boson [14].

Taking into account all these contributions, as well
as the expansion of the Universe, we derive the follow-
ing manifestly flavour-covariant rate equations for the
normalized CP-“even” number density matrix 7" and

CP-“0dd” number density matrices 65" and 67]L_(Where

X = n* /n?, n” being the photon number density) [9]:

B
Hy v A1 n 5 g
NZ o = ~i [&n. 6n"] "+ [Re(riy)],
st B
- — " Rei)} " (21a)
2neq - ¢
Hyn d[6nV1,°
N2 —[Z b i |en, ]’
Z Z — la
Y B l N 1 N B
+ 2i[Im(y)y)], - n—N{Q ,Im(y)y)}
eq
—~ B
- —{on". Rerip)} " (21b)
217eq @
N1 @
Hy n” d[5TIL]lm N qm [77 ]ﬁ m B
—L = s + =[5
Z dz [6Yre]; 77@(; [ Vijcb]z @
[5TIN]ﬁa 1 m
N qm B L LD LD
+ 277% [7111)]] a 5 {677 > Ve +7L¢u}l
2 n km
-3 6n") Ivizar — vial,
2 m
=3 {ont v, + 10V (2lc)

Here z = my/T, Hy is the Hubble parameter at z =
1 and &y is the thermally-averaged effective heavy-
neutrino energy matrix. yY, and &y}, are respectively

the CP-“even” and -“odd” thermally-averaged rate ten-
sors governing the decay and inverse decay of the heavy
neutrinos. In (21¢), the rates yg.. and 6y5°* govern the
charged-lepton decoherence, whereas ;g and y1% . de-
scribe the washout due to AL = 0 and AL = 2 resonant
scattering, respectively. In obtaining (21a) and (21b),
we have defined, for a given Hermitian matrix A = AT,

its generalized real and imaginary parts, as follows:

~ 1
[Re)),” = 5 (A + Gua,'G¥).  (@29)
—~ 1
[m@)]," = 5- (4 - Gua,'¢¥). @)

In addition, we have used the relations
Re(n") = n",  iIm(n") = on" . (23)

The flavour-covariant rate equations (21a)—(21c) pro-
vide a complete and unified description of the RL phe-
nomenon, consistently capturing the following physi-
cally distinct effects in a single framework, applicable
for any temperature regime:

(i) Lepton asymmetry due to the resonant mixing be-
tween heavy neutrinos, as described by the re-
summed Yukawa couplings in 67/12'@, appearing in
the first two terms on the RHS of (21c¢). This pro-
vides a flavour-covariant generalization of the mix-
ing effects discussed earlier in [4].

(i) Generation of the lepton asymmetry via coherent
heavy-neutrino oscillations. Even starting with an
incoherent diagonal heavy-neutrino number den-
sity matrix, off-diagonal CP-“even” number den-
sities will be generated at O(h?) due to the CP-
conserving part of the coherent inverse decay rate
ylLV(D in the last two terms on the RHS of (21a).
Heavy-neutrino oscillations will transfer these co-
herences to the CP-“odd” number densities [on" ]f
due to the commutator terms in (21a)) and (21b)).
Finally, a lepton asymmetry is generated at O(h*)
by the CP-“even” coherent off-diagonal decay rates
in the first term on the second line of (21c). Notice
that the novel rank-4 rate tensor [yIL\'(D] lmaﬁ , required
by flavour covariance, plays an important role in
this mechanism, along with the CP-“0dd” num-
ber density [6nV],”, which is purely off-diagonal
in the heavy-neutrino mass eigenbasis. We stress
here that this phenomenon of coherent oscillations
is an O(h*) effect on the fotal lepton asymmetry,
and so differs from the O(h®) mechanism proposed
in [15]. The difference is due to the fact that the
latter typically takes place at temperatures much
higher than the sterile neutrino masses in the model
(see e.g. [16]), where the total lepton number is not
violated at leading order. On the other hand, the
O(h*) effect identified here is enhanced in the same
regime as the resonant 7 = 0 e-type CP violation,
namely, for z = 1 and Amy ~ I'y, [9].

(iii)) Decoherence effects due to charged-lepton Yukawa
couplings, described by the last two terms on the
RHS of (21c). Our description of these effects is
similar to the one of [6], which has been general-
ized here to an arbitrary flavour basis.
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4. A Numerical Example

To illustrate the importance of the flavour effects cap-
tured only by the flavour-covariant rate equations (21a) -
(21c), we consider a minimal Resonant £-Genesis (RL;)
scenario in which the final lepton asymmetry is dom-
inantly generated and stored in a single lepton flavour
¢ [17]. In this case, the heavy neutrino masses could
be as low as the electroweak scale [12], still with siz-
able couplings to other charged-lepton flavours £’ # ¢,
whilst being consistent with all current experimental
constraints [18]. This enables the modelling of minimal
RL, scenarios [19] with electroweak-scale heavy Ma-
jorana neutrinos that could be tested during the run-II
phase of the LHC [20].

The basic assumption underlying the minimal RL,
model is an O(Ny)-symmetric heavy-neutrino sector at
some high scale uy, with degenerate heavy neutrinos
of mass my. At the phenomenologically-relevant low-
energy scale, small mass splittings between them, as re-
quired by the RL mechanism, may be naturally induced
by the RG evolution. In the heavy-neutrino mass eigen-
basis, the RG effects consistently break the degenera-
cies of the O(Ny)-symmetric heavy-neutrino parameter
space, thereby justifying the definition of the resummed
Yukawa couplings in this basis [9].

As an explicit example of RL,, we consider an RL,
model with O(3) symmetry at the grand unification
scale, ux ~ 2 x 10'® GeV, which is explicitly broken to
the U(1)p,+1, X U(1), subgroup of lepton-flavour sym-
metries by a neutrino Yukawa coupling matrix [19]

0 ae—in/4 aeilr/4

h =|0 be™* pen
0 0 0

+ 0h, 24)

where a,b are arbitrary complex parameters, and
the perturbation matrix 6k vanishes in the flavour-
symmetric limit, thereby making the light neutrinos
massless to all orders in perturbation theory [21]. In
order to be consistent with the observed neutrino os-
cillation data, we consider a minimal deviation of the
following form from the flavour-symmetric limit [19]:

€ 0 0
6h = | € 0 0 , (25)

€ Kke @A) g pitn/d—y)

where |e. ;. <], k12 < |al,|b], and y > are arbitrary phases.
A choice of benchmark values for these parameters, sat-
isfying all the current experimental constraints, is given
in Figure 2b. The corresponding numerical solution
for the total lepton asymmetry én* = Tr(é5") in our
flavour-covariant formalism is shown in Figure 2a. Here

the horizontal dotted line shows the value of dn" re-
quired to explain the observed baryon asymmetry in
our Universe, whereas the vertical line shows the crit-
ical temperature z. = my/T., beyond which the elec-
troweak sphaleron processes become ineffective in con-
verting lepton asymmetry to baryon asymmetry. The
thick solid lines show the evolution of 6" for three dif-
ferent initial conditions, to which the final lepton asym-
metry 6n-(z > 1) is shown to be insensitive. This is a
general consequence of the RL mechanism in the strong
washout regime [12].

For comparison, we also show in Figure 2a various
partially flavour-dependent limits, i.e. when either the
heavy-neutrino (dashed line) or the lepton (dash-dotted
line) number density or both (dotted line) are diagonal
in flavour space. Also shown is the approximate ana-
lytic solution obtained in [9] for the case of a diagonal
heavy-neutrino number density (thin solid line). The en-
hanced lepton asymmetry in the fully flavour-covariant
formalism is mainly due to (i) coherent oscillations be-
tween the heavy-neutrino flavours, leading to an en-
hancement by a factor of two, and (ii) flavour coher-
ences in the charged-lepton sector, generated through
the heavy-neutrino Yukawa couplings and destroyed
through the charged-lepton Yukawa couplings. The lat-
ter gives rise to an distinctive ‘plateau’ at intermediate
z values, which happens to occur before z. for the cho-
sen model parameters, and hence, leads to an additional
enhancement of a factor ~ 5 in the lepton asymmetry.

5. Conclusions

We have presented a fully flavour-covariant formal-
ism for transport phenomena by deriving Markovian
master equations that describe the time-evolution of par-
ticle number densities in a quantum-statistical ensemble
with arbitrary flavour content. As an application, we
have studied the flavour effects in RL and have obtained
manifestly flavour-covariant rate equations for heavy-
neutrino and lepton number densities. This provides a
complete and unified description of RL, capturing three
distinct physical phenomena: (i) resonant mixing be-
tween the heavy-neutrino states, (ii) coherent oscilla-
tions between different heavy-neutrino flavours and (iii)
quantum decoherence effects in the charged-lepton sec-
tor. The quantitative importance of this formalism is
illustrated for a minimal RL, model, where the total
lepton asymmetry obtained by solving the fully flavour-
covariant rate equations is enhanced by up to an order
of magnitude, as compared to the predictions from par-
tially flavour-dependent limits.
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1075 = T T T T T T T 1T I T T T T T 1T I T =
E my = 400 GeV total, p =0, 67k =1 E
- total, =0, ok =0 ]
- I total, iy =1ltq: 811, =0 1 Parameter Value
10~k +61y" o _
2 — — Ndiag.. gy=nl. onf,=0 3 iy 300 GV
E — N diag., analytic ] i 71_/3
r L diag., iy =nig. $1,=0 - V2 0
(g 10—7 - . «.. N,Ldiag, q;\ilzl]‘:;l, onl=0 K 24x107°
0k E & 6x 107
L " § a (4.93-232)x 1073
S el ot ] b (8.04 —3.79i) x 1073
1078 - & 5.73% 1078
3 3 €, 43 %1077
C ] € 6.39 x 1077
1077
0.2 20
z=my/T
@ (b)

Figure 2: (a) Total lepton asymmetry as predicted by the minimal RL, model with benchmark parameters given in
(b). We show the comparison between the total asymmetry obtained using the fully flavour-covariant formalism (thick
solid lines, with different initial conditions) with those obtained using the flavour-diagonal formalism (dashed lines).
Also shown (thin solid line) is an approximate analytic result discussed in [9].
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