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SUMMARY

Chronic viral infections often result in T cell ex-
haustion. To determine the molecular signature
of exhaustion, we compared the gene-expres-
sion profiles of dysfunctional lymphocytic cho-
riomeningitis virus (LCMV)-specific CD8* T cells
from chronic infection to functional LCMV-spe-
cific effector and memory CD8* T cells gener-
ated after acute infection. These data showed
that exhausted CD8* T cells: (1) overexpressed
several inhibitory receptors, including PD-1, (2)
had major changes in T cell receptor and cyto-
kine signaling pathways, (3) displayed altered
expression of genes involved in chemotaxis, ad-
hesion, and migration, (4) expressed a distinct
set of transcription factors, and (5) had profound
metabolic and bioenergetic deficiencies. T cell
exhaustion was progressive, and gene-expres-
sion profiling indicated that T cell exhaustion
and anergy were distinct processes. Thus, func-
tional exhaustion is probably due to both active
suppression and passive defects in signaling
and metabolism. These results provide a frame-
work for designing rational immunotherapies
during chronic infections.

INTRODUCTION

After acute infection, naive antigen-specific CD8" T cells
become activated, proliferate, acquire effector functions,
and differentiate into effector CD8" T cells. Most effector
CD8* T cells die by apoptosis, but ~5%-10% survive
and differentiate into memory CD8* T cells. These memory
CD8" T cells downregulate some properties of effector
CD8" T cells but retain the capacity to rapidly reactivate
effector functions upon antigen encounter (Wherry and
Ahmed, 2004). Memory T cells also undergo rapid prolifer-
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ation upon re-exposure to antigen. In addition, memory
T cells can survive and persist long term in the absence
of antigen and acquire the ability of “self-renewal” by un-
dergoing homeostatic proliferation in response to IL-7 and
IL-15 (Surh et al., 2006; Wherry and Ahmed, 2004). This
combination of antigen-independent persistence and
the ability to rapidly reactivate effector functions allows
memory CD8* T cells to confer robust long-term protec-
tive immunity.

During many chronic infections, in contrast, severe de-
fects in CD8™ T cell responses develop, and virus-specific
CD8" T cells often fail to differentiate into memory CD8" T
cells (Shin and Wherry, 2007). CD8" T cell exhaustion was
first described with chronic LCMV infection of mice during
which virus-specific CD8" T cells persist but lack effector
function (Zajac et al., 1998). During chronic LCMV infec-
tion, virus-specific CD8" T cells initially develop the ability
to perform effector functions. These functions are lost,
however, in a hierarchical manner during chronic infection
with some functions that are exhausted early (e.g., IL-2,
cytotoxicity, and proliferation), whereas others (e.g., IFN-
v) persist longer (Wherry et al., 2003). Eventually, espe-
cially if viral load is high and CD4* help is lacking, virus-
specific CD8* T cells fully lacking effector functions are
found (Fuller and Zajac, 2003; Ou et al., 2001; Wherry
et al., 2003). Similar types of dysfunction have also been
described in other experimental models of viral infection,
during human chronic infections and during cancer (Shin
and Wherry, 2007).

CD8" T cell exhaustion during persisting infection is
likely to have an important impact on viral control, and
some of the underlying mechanisms for this dysfunction
are beginning to be elucidated. Recently, we have found
that the inhibitory receptor PD-1 is an important pathway
regulating CD8" T cell exhaustion during chronic LCMV
infection in mice (Barber et al., 2006). Blockade of the
PD-1:PD-L pathway during chronic LCMV infection leads
to recovery of T cell function and reduced viral load
(Barber et al., 2006). These results have been extended
to primates and humans in which the PD-I:PD-L1 pathway
also regulates function of SIV-, HIV-, and HCV-specific T


mailto:jwherry@wistar.org
mailto:ra@microbio.emory.edu

Immunity

Molecular Signature of T Cell Exhaustion

cells in vitro (Day et al., 2006; Petrovas et al., 2006; Petro-
vas et al., 2007; Radziewicz et al., 2006; Trautmann et al.,
2006; Urbani et al., 2006; Velu et al., 2007; Zhang et al.,
2007). Our previous studies identified the importance of
the PD-1:PD-L pathway during chronic infection by using
a gene-expression profiling approach (Barber et al., 2006).
IL-10 has also been recently implicated in CD8* T cell dys-
function during chronic viral infection (Brooks et al., 2006;
Ejrnaes et al., 2006). It is likely, however, that pathways in
addition to PD-1 and IL-10 influence CD8* T cell function
and differentiation during persisting infections. In this
study, we report the analysis of global gene-expression
profiles for virus-specific exhausted CD8" T cells.

We have examined the molecular signature of CD8* T
cell exhaustion by using the well-characterized model of
chronic LCMV infection. We have compared the gene-ex-
pression profiles of exhausted LCMV-specific CD8* T
cells to those of functional LCMV-specific effector and
memory CD8* T cells generated after acute infection.
This approach revealed key insights into the biology of
CD8* T cell dysfunction during chronic infection. First, ex-
hausted CD8* T cells overexpressed multiple cell-surface
inhibitory receptors, in addition to PD-1. Second, the fact
that transcription of genes encoding molecules involved in
signaling from TCR and cytokine receptors was downre-
gulated probably compromised the efficiency of these
pathways. Third, many genes for chemotaxis, migration,
and adhesion were changed in exhausted CD8"* T cells.
Fourth, exhausted CD8" T cells displayed a dramatically
altered pattern of differentiation compared to effector
and memory CD8" T cells including a distinct expression
pattern of transcription factors. Fifth, CD8" T cell exhaus-
tion was associated with profound translational, meta-
bolic, and bioenergetic deficiencies. Finally, exhausted
CD8" T cells possessed a gene-expression profile distinct
from that reported for anergic T cells. It is likely that the
defects in effector functions in exhausted CD8"* T cells
are due to both active suppression, for example by inhib-
itory receptors, and passive defects in signaling and
metabolism. The defects and altered pathways identified
in exhausted CD8* T cells provide an important framework
from which to begin dissecting the control of CD8" T cell
differentiation when pathogens persist and suggest novel
potential targets of therapeutic intervention during chronic
infections.

RESULTS

Function and Phenotype of Exhausted CD8*

T Cells

To address the molecular mechanisms of CD8" T cell
exhaustion, we compared the gene-expression profiles
of exhausted LCMV-specific CD8* T cells from chronic
infection to fully functional LCMV-specific effector and
memory CD8" T cells generated after acute LCMV infec-
tion. Infection with the Armstrong strain (Arm) of LCMV
causes an acute infection that is cleared by day 8-10
p.i., resulting in the generation of functional effector and
memory CD8* T cells (Ahmed et al., 1984). In contrast,

the clone 13 strain of LCMV causes a chronic infection
with loss of effector functions (exhaustion) and ineffective
viral control (Ahmed et al., 1984; Wherry et al., 2003; Zajac
et al., 1998). In the present study, we have used chronic
LCMV infection of CD4* T cell-depleted mice because
these conditions result in the most profound CD8* T cell
exhaustion and we wanted to gain an understanding of
the molecular pathways involved in highly dysfunctional
virus-specific CD8" T cells. The main features of exhaus-
tion, however, are preserved in CD4* T cell-sufficient
mice (Wherry et al., 2003; Zajac et al., 1998). LCMV Arm
infection or clone 13 infection resulted in similar viral rep-
lication in the spleen 3 days p.i. (Figure 1). LCMV Arm is
completely cleared by day 8-10 p.i., whereas replication
of clone 13 continues at a high level for life in CD4* T
cell-deficient mice ([Figure 1] and Zajac et al. [1998]). In
contrast to functional effector and memory CD8" T cells
generated after Arm infection, exhausted CD8* T cells
during clone 13 infection were nonfunctional and unable
to produce substantial levels of IFN-y and TNF-a upon
peptide stimulation (Figures 1B-1D). It is important to
point out that the studies of gene-expression profiling
described below were performed on antigen-specific
effector, memory, and exhausted CD8" T cells of the
same antigen specificity (e.g., the DbGP33 LCMV epitope).

Patterns of Gene Expression

To define the molecular signature of CD8* T cell dysfunc-
tion during chronic viral infection, we profiled the gene-
expression patterns of effector, memory, and exhausted
CD8" T cells by using Affymetrix U74A microarrays con-
taining ~12,500 mouse genes. The gene-expression pro-
files of sorted effector, memory, and exhausted CD8* T
cells were each compared to naive CD8"* T cells so that
direct comparisons between all three groups could be
facilitated. An example of presort and postsort analysis
of exhausted CD8" T cells is shown in Figure 2A. A total
of 490 genes was upregulated or downregulated by at
least 2-fold in the exhausted CD8" T cells (Figure 2B).
The vast majority of genes (338) were differentially ex-
pressed only in the exhausted CD8" T cells.

There was more similarity in gene expression between
exhausted and effector CD8" T cells compared to ex-
hausted and memory CD8* T cells as revealed by both nu-
merical representation of genes differentially expressed
(Figure 2B) and gene clustering analyses (Figures 2C
and 2D and Figure S1 in the Supplemental Data available
online). This clustering analysis, however, also reveals
a number of genes uniquely upregulated (n = 123) or
downregulated (n = 135) in exhausted CD8* T cells, indi-
cating that CD8" T cell exhaustion reflects a unique state
of gene expression compared to that of naive, effector,
and memory CD8" T cells.

A gene-expression signature could also be identified
that uniquely defined naive, effector, memory, and ex-
hausted CD8* T cells (Figure 2E). Some expression of
the genes found in the effector signature was noted in
the exhausted CD8" T cells. The panel of genes that iden-
tified exhausted CD8* T cells, however, was not present in
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Figure 1. Characterization of Effector, Memory, and Exhausted LCMV-Specific CD8" T Cells

(A) LCMV in the spleen was quantified by plaque assay at the indicated time points after LCMV Arm and clone 13 infections. A similar pattern of viral
load was also seen in other tissues (data not shown and Wherry et al. [2003]).

(B) DbGP33 tetramer staining was performed at effector and memory time points after Arm infection or clone 13 infection. ICS was performed for IFN-
v and TNF-a production. (Note that the higher frequency of cytokine producing effector and memory CD8* T cells is accounted for by the KbGP34
response that is deleted during chronic LCMV infection [Wherry et al., 2003].)

(C and D) Effector, memory, and exhausted CD8" T cells were stimulated for 5 hr, supernatants were collected, and IFN-y (C) or TNF-. (D) concen-
trations were determined by ELISA. The amount of cytokine produced per 10* GP33-specific (both DbGP33 and KbGP34) CD8* T cells was calcu-
lated. Data are representative of five or more (A and B) experiments or two (C and D) independent experiments. Error bars represent SD.

any of the other three cell types, supporting the notion that
exhaustion is a unique state of CD8" T cell differentiation.
An advantage of the approach used in Figure 2E is that we
isolated LCMV-specific CD8* T cells at multiple time
points after acute infection to gain a kinetic portrait of
gene expression during memory CD8* T cell differentia-
tion similar to previous studies (Kaech et al., 2002). With
this analysis, it is clear that the similarities between ex-
hausted and effector CD8" T cells do not persist after
day 8 of acute infection, suggesting that the patterns of
memory T cell differentiation and exhaustion diverge or
differ substantially as functional CD8" T cells differentiate
into memory CD8* T cells.

Gene-Expression Signatures of CD8*

T Cell Exhaustion

To begin to identify the molecular pathways associated
with CD8" T cell exhaustion, we identified genes that dif-
fered in expression by more than 2-fold by microarray
analysis. (Table 1 and Tables S2-S5). The gene-expres-
sion profiles of exhausted CD8"* T cells were also com-
pared directly to that of effector (Table S2) and memory
(Table S3) CD8* T cells. A subset of samples was also
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hybridized to the U74Bv2 and U74Cv2 Affymetrix microar-
rays containing an additional ~25,000 mouse genes and
ESTs (Table S4). The major findings from the data shown
in Table 1 and Tables S2-S5 are outlined below.

Overexpression of Inhibitory Receptor Genes
during Exhaustion

One of the more striking results from the gene-expression
profiles was the overexpression of mRNA for cell-surface
molecules known or suspected to have inhibitory activity.
We have recently identified PD-1 as a major cell-surface
inhibitory receptor capable of regulating CD8" T cell
exhaustion (Barber et al., 2006). In the current analysis,
in addition to PD-1, 13 other potentially inhibitory cell-
surface pathways were identified, and most of these
molecules were specifically overexpressed in exhausted
CD8"* T cells (Table 1 and Tables S2, S3, and S5). These
inhibitory receptors included those with well-described
inhibitory function such as 2B4 (Assarsson et al., 2005),
Ly49 family members (Klra7 also known as Ly49D-GE,
Klra3 also known as Ly49c) (Lanier, 1998), and GP49B
(Katz et al., 1996; Rojo et al., 1997). Molecules with less
well-characterized but potential inhibitory capacity were
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Figure 2. Gene-Expression Profiles of Effector, Memory, and Exhausted CD8* T Cells Compared to Naive CD8* T Cells

(A) Presort and postsort analysis of exhausted LCMV-specific CD8"* T cells. The upper panel indicates the percentage of CD8" T cells presort.

(B) The number of genes differentially expressed by the different LCMV-specific CD8* T cell populations on the basis of Affymetrix U74A microarrays
is shown.

(C) K means-cluster analysis of the gene-expression profiles of naive, effector, memory, and exhausted CD8" T cells indicating the relatedness of the
populations.

(D) K means-clustering identifying individual clusters of gene expression for the exhausted, effector, memory gene-expression profiles. Examples of
five such clusters out of 15 are shown. Additional clustering data is provided in Figure S1 and a full list of genes in each cluster is given in Table S1.
(E) Clustering analysis for a panel of genes that identifies each CD8" T cell population. Naive (acute infection day 0; n = 4), effector (acute infection day
8; n =4), and memory (acute infection day 60, n = 4) are indicated. In addition, day 15 (n = 2) and day 22 (n = 3) time points from acute infection are also
included. The cluster of genes from exhausted CD8* T cells (n = 4 samples) is also shown.

also overexpressed by exhausted CD8" T cells including The CD28:CTLA-4 family contains three related inhibi-
CD160 (Maeda et al., 2005), Ptger4 (Kabashima et al., tory receptors that can be expressed by T cells: CTLA-4,
2002), and LAG-3 (Workman et al., 2002). PD-1 and BTLA (Greenwald et al., 2005). PD-1 was
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Table 1. Gene-Expression Profiles of Exhausted, Effector,

and Memory T Cells compared to Naive CD8 T Cells
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identified in the current analysis as one of the most over-
expressed inhibitory receptors by exhausted CD8* T cells
(Table 1 and Tables S2 and S3) consistent with our previ-
ous studies (Barber et al., 2006). CTLA-4 mRNA was also
overexpressed by exhausted CD8" T cells, but it is worth
pointing out that blockade of CTLA-4 during chronic
LCMV infection had little impact on viral load or CD8" T
cell responses (Barber et al., 2006). It is interesting that
the inhibitory molecule BTLA (Watanabe et al., 2003) did
not appear to be upregulated by exhausted CD8" T cells
(Table S5). Thus, within the CD28:CTLA-4 family there
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appears to be selective expression or utilization of inhibi-
tory receptors on CD8* T cells during chronic viral infection.

Many of these molecules contain immunotyrosine inhib-
itory motifs ITIM, immunotyrosine switch motifs (ITSMs), or
both, that can deliver negative signals. For others, the
mechanism of signaling is less clear and, in some cases,
the available data are conflicting on whether the receptor
is activating or inhibitory (e.g., CD160 and 2B4). Of the
inhibitory receptors identified by gene-expression profil-
ing, all but two, KLRG1 and KLRA9, are strongly biased
or uniquely expressed by exhausted CD8* T cells
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compared to effector and memory CD8* T cells. It will be
important to determine whether these inhibitory receptors
impact specific and distinct CD8* T cell functions or to
what extent the inhibitory signals from the pathways might
overlap.

Changes in Signaling Potential during Exhaustion
Several genes-encoding key signaling molecules were
also differentially expressed by exhausted CD8* T cells.
Lck and NFATc were transcriptionally downregulated in
exhausted CD8"* T cells, whereas Fyn was upregulated
in both exhausted and effector CD8" T cells (Table 1 and
Tables S2 and S3). In addition, Dgka was downregulated,
whereas the related Dgky was upregulated (Table 1 and
Tables S2, S3, and S5). Genes involved in calcium binding
(up: s100a6, s100a4, s100a11, and s100a13) and Map ki-
nase signaling (up: Map3k4; down: Map4k4 and Mapk8)
were also modulated in exhausted CD8" T cells. The
phosphatase Shp1 was transcriptionally reduced in ex-
hausted CD8* T cells, and this observation might be rele-
vant for the function of some inhibitory receptors or atten-
uation of TCR signaling.

A number of genes involved in cytokine signaling were
also altered in exhausted CD8" T cells. Cytokine receptor
transcripts were altered including both chains of the TNFR
(P55 and p75), the IL-4Ra (CD124), and IL-17R. When
compared directly to effector or memory CD8* T cells,
IL-18R1 was also downregulated in exhausted CD8* T
cells as were signaling components of the IL-18 and IL-6
receptors pathways (IL-18Rap and IL-6st). It is also worth
noting that IL-10 and IL-10R1 mRNA expression was not
different among effector, memory, and exhausted CD8"
T cells (data not shown).

A major defect in CD8" T cells during chronic viral infec-
tions is the failure to develop self-renewal and optimal re-
sponsiveness to the homeostatic cytokines IL-7 and IL-15
(Shin and Wherry, 2007). Previous studies demonstrated
a defect in expression of IL-7 and IL-15 receptors during
chronic viral infections, but it was unclear whether recep-
tor expression was the only deficiency in IL-7 and IL-15 re-
sponsiveness in these virus-specific CD8* T cells. IL-7, IL-
15, and other gamma-chain cytokine signals in T cells are
mediated predominantly by the kinases Jak1, Jak3, and
Stat5. The gene-expression profiles of exhausted CD8*
T cells confirmed the low expression of CD127 during ex-
haustion (Table 1 and Table S3) but also indicated that the
deficiencies in cytokine signaling are probably not con-
fined to expression of cell-surface receptors. Although
Jak3 message was increased in exhausted CD8* T cells
compared to effector or memory CD8" T cells (Tables
S2 and S3), both Jak1 and Statbb transcription were re-
duced (Tables S2 and S5). Indeed, we have recently found
that virus-specific CD8* T cells generated during chronic
infection are dependent on viral antigen rather than IL-7
and IL-15 for persistence (Shin et al., 2007). The observa-
tions from the gene-expression profiles might provide
additional insights into the mechanism behind the poor re-
sponsiveness of virus-specific CD8" T cells to IL-7 and IL-
15 during chronic viral infections. These data suggest that

CD8™" T cell exhaustion is accompanied by perturbations
in the signaling apparatus available to communicate
extracellular information via both the TCR and cytokine
receptors to the nucleus.

Effector Function

Exhausted CD8" T cells have a severe defect in cytokine
production including IFN-vy (see Figure 1). It was, therefore
somewhat surprising that exhausted CD8" T cells contin-
ued to express IFN-y mRNA in amounts that were inter-
mediate between effector and memory CD8" T cells (Ta-
ble 1). Exhausted CD8" T cells are also poorly cytotoxic
ex vivo (Wherry et al., 2003; Zajac et al., 1998), but gran-
zyme B mRNA remains expressed by exhausted CD8* T
cells (Table 1). Perforin mRNA is upregulated in effector
and memory CD8* T cells compared to naive CD8" T cells,
but not in exhausted CD8* T cells (Table 1). This observa-
tion suggests that a deficiency in perforin expression
could underlie poor ex vivo cytotoxicity by exhausted
CD8* T cells. In addition, the expression of several genes
involved in vesicle transport (down: Snx4, Snx10, and Ra-
bac1) and/or regulation of cytoskeleton (down: Tubbb5,
Actn1, Macf1, and Actb) was altered in exhausted CD8*
T cells (Table 1 and Tables S2 and S3). It is possible that
changes in vesicle trafficking or cytoskeletal rearrange-
ments impact the generation or release of properly formed
lytic granules. In contrast, FasL mRNA expression was
substantially elevated by exhausted CD8" T cells com-
pared to naive, effector, and memory CD8" T cells, and
this pathway might provide an alternate cytolytic mecha-
nism during chronic infection. Together, however, poor
IFN-y production and cytotoxicity by exhausted CD8* T
cells cannot be solely attributed to lack of IFN-y or gran-
zyme B gene expression.

Chemokines and Migration

Exhausted CD8* T cells displayed upregulation of several
chemokine genes including Ccl3 (Mip1a), Ccl4 (Mip1p),
and Cxcl10 (IP-10) compared to effector and memory T
cells. Ccl5 (Rantes) expression was similar in exhausted
and memory CD8* T cells, both of which expressed
slightly lower amounts of this mMRNA compared to effector
cells. Thus, even in the absence of robust effector func-
tion, exhausted CD8"* T cells might retain the ability to
“sound the alarm” in an attempt to recruit more effective
antiviral T cells to the sites of active viral replication. Future
studies will be necessary for determining the importance
of these elevated chemokine mRNA levels in the in vivo
response of exhausted CD8* T cells.

Exhausted CD8* T cells also have altered expression of
molecules involved in cell adhesion (up: Itgax [CD11c],
neuropilin, ltga4 [CD49d], Itgb1 [CD29], CD166, ltgb2
[CD18], and ltgaV [CD51]; down: Icam2, ltgae, Sema4a,
and ltgb7) and migration and chemotaxis (up: Ccr5,
Cxcr3, Ccrl2; down: Edg6, Ccr7, CD62L), suggesting pos-
sible changes in migratory properties in vivo. Indeed, sev-
eral studies have documented altered tissue distribution
of virus-specific CD8* T cells during chronic infections
(He et al., 1999; Wherry et al., 2003).
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Transcription Factors in CD8* T Cell Exhaustion
Transcription factors and genes involved in transcriptional
regulation was another group of mRNAs substantially al-
tered by exhausted CD8* T cells. This set of genes included
at least 15 mRNAs that were uniquely or selectively upregu-
lated and 11 that were dowregulated in exhausted CD8* T
cells. These observations are consistent with the notion
that exhausted CD8" T cells arise from an altered pattern
of differentiation compared to functional effector and mem-
ory T cells.

PBX3 was the most differentially expressed transcrip-
tion factor in exhausted CD8* T cells (Table 1 and Tables
S2 and S3). PBX3 is a TALE class homeodomain tran-
scription factor implicated in developmental regulation
(Sagerstrom, 2004), but the role of PBX3 in CD8" T cell dif-
ferentiation has not been explored.

A second transcription factor that was of considerable
interest and that was revealed by the gene-expression
profiles is Blimp-1 (Prdm1). The increased expression of
Blimp-1 in virus-specific effector and exhausted CD8* T
cells is intriguing, given the role of this transcription factor
in regulating terminal differentiation in germinal center B
cells (Calame, 2006). Recent studies have revealed an
important role for Blimp-1 in regulating T cell responses
(Kallies et al., 2006; Martins et al., 2006), but precisely
how this transcriptional repressor controls T cell differen-
tiation remains unclear. It will be of considerable interest to
investigate how Blimp-1 regulates virus-specific CD8" T
cell differentiation during chronic viral infection.

Several additional transcription factors were also re-
vealed by the gene-expression profiles of exhausted
CD8" T cells including several upregulated (e.g., Eomes,
NFaTc1, Jak3, nurr1, and Maf) and downregulated (e.g.,
Fos, Fosb, junb, myb, and Myc) molecules of potential
immunological interest. Eomes is of note given the influ-
ence of this molecule on the transcriptional regulation of
effector genes (e.g., granzyme B and IFN-y) and cd122
(Intlekofer et al., 2005; Pearce et al., 2003). Several KIf
family members are also downregulated in exhausted
CD8™" T cells including Klif2, KIf3, KIf4, and KIf13. In partic-
ular, changes in KIf2 expression might be important in the
exhausted CD8" T cells because KIf2 can regulate T cell
quiescence and migration (Carlson et al., 2006; Kuo
et al., 1997). Together, these findings show that the ex-
pression of genes involved in regulating transcription in
exhausted CD8* T cells highlights the altered pattern of
differentiation in these T cells.

Metabolic Defects in Exhausted CD8* T Cells
Metabolic and bioenergetic deficiencies in exhausted
CD8* T cells were among the most striking patterns that
emerged from the gene-expression profiles. A large num-
ber of ribosomal subunits were transcriptionally downregu-
lated in exhausted CD8" T cells compared to naive,
effector, and memory T cells (Table 1 and Tables S2, S3,
and S5). Up to 17 ribosomal subunits, three elongation
factors, and four initiation factors were downregulated in
exhausted CD8* T cells.
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In addition to translational defects, the gene-expression
profiles also suggest other fundamental metabolic and
bioenergetic changes during CD8" T cell exhaustion. For
example, a number of genes involved in energy metabo-
lism and the citric-acid cycle were transcriptionally down-
regulated in exhausted CD8" T cells but not effector or
memory CD8* T cells including Acas2l, Sdha, Adcy7,
Pdha1, and Acadm. Other metabolic pathways transcrip-
tionally altered in exhausted CD8* T cells included solute
and ion channels and aquaporins (Table 1 and Tables S2,
S3, and S5). These observations suggest that bioener-
getic deficiencies in exhausted CD8* T cells might impact
functional responsiveness and perhaps the long-term fit-
ness and survival of this CD8" T cell population.

Other Genes and Pathways of Interest

Several other major classes of mMRNAs were altered in ex-
hausted CD8* T cells. These include changes in expres-
sion of genes involved in glycosylation, increases in IFN-
responsive genes, and several protease mRNAs including
upregulation of serpins, some of which can protect from T
cell-mediated cytotoxicity (Liu et al., 2004). Several cas-
pases (1, 3, and 4) were upregulated, and Bcl-2 family
members were upregulated and downregulated. The pre-
cise balance of these proapoptotic and antiapoptotic
molecules is difficult to infer simply from the mRNA-ex-
pression profiles. However, the mRNA profiles suggest
that the regulation of apoptosis is likely to be quite differ-
ent in the exhausted CD8" T cells compared to naive, ef-
fector, and memory CD8" T cells. Many cell-cycle genes
were changed in exhausted CD8" T cells, and these
changes are predominantly consistent with increased ex-
pression of checkpoint proteins and reduced expression
of prodivision signals.

Several specific genes are also worth noting simply on
the basis of their expression profile including plekstrin
(up ~35- and ~60-fold in exhausted and effector CD8" T
cells), Folate receptor 4 (up in exhausted), and Tmem?2
(up in exhausted) (Table 1 and Table S5). Finally, KLRG1
was the most effector-biased gene when exhausted and
effector CD8" T cells were directly compared to each
other (Table S2).

Progression of CD8* T Cell Dysfunction

during Exhaustion

It was of interest to understand how CD8" T cell exhaus-
tion and the expression of markers of T cell differentiation
change during the course of chronic infection and devel-
opment of exhaustion. To address this issue, we per-
formed a kinetic analysis of both functional exhaustion
and phenotypic differentiation of virus-specific CD8" T
cells after infection with either Arm or clone 13. At day 6
p.i. GP33-specific CD8" T cells in both Arm- and clone
13-infected mice were functional, and a similar proportion
of tetramer* CD8* T cells was capable of producing IFN-y
during both infections (Figures 3A and 3B). Although there
were slightly fewer IFN-y and TNF-o coproducers during
clone 13 infection at day 6, the amount of IFN-y, TNF-a,
and IL-2 produced (MFI) by the virus-specific CD8" T cells
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Figure 3. Kinetics of Exhaustion during Acute versus Chronic LCMV Infection: Functional Exhaustion

(A) LCMV DbGP33-specific CD8" T cells were identified by tetramer staining in the spleen at the indicated times p.i. with Arm versus clone 13 (left
panels). Numbers represent the percent of tetramer* of CD8* T cells. Samples from the same mice were also stimulated with GP33 peptide and
IFN-v, TNF-a, and IL-2 assessed by ICS (IFN-y + TNF-a coproduction, middle panel; IFN-y + IL-2 coproduction, right panel). The percentage in
red is the percentage of cytokine coproducers out of the total IFN-y* population. The percentage in parentheses indicates the total percent of
CD8" T cells producing IFN-y (middle panels).

(B) The percent of tetramer™ cells capable of making IFN-y is shown in the upper left panel. The upper middle and upper right panels indicate the
percentage of IFN-y + TNF-o and IFN-y + IL-2 coproducers at various times p.i. The bottom panels display the MFI for IFN-vy (left), TNF-o (middle),
and IL-2 (right). All responses are for GP33-specific CD8" T cells. Data represents two to six independent experiments depending on the time point.

after either infection was very similar (Figure 3B). Over the v + TNF-o and IFN-y + IL-2 coproducers) and the amount
ensuing weeks after clearance of infection, virus-specific of cytokine produced per cell (MFI) increased. In contrast,
CD8" T cells generated during acute infection all remained during chronic LCMV infection, virus-specific CD8* T cells
functional (all tetramer™* cells produced IFN-v), and in fact, became progressively less functional over time. By 2-3
the percentage cells coproducing multiple cytokines (IFN- weeks p.i., 50% or more of the tetramer* cells could not
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Figure 4. Kinetics of Exhaustion during Acute versus Chronic LCMV Infection: Phenotypic Differentiation

(A) The expression of the indicated molecules was assessed over time on DbGP33 tetramer* CD8* T cells after Arm (blue histograms) or clone 13 (red
histograms) infection. All plots are gated on CD8*DbGP33* except the top row, which is gated on CD8*CD44° cells.

(B) A summary of the kinetic analysis in (A) is shown for each marker at multiple time points after Arm (acute infection; blue lines) or clone 13 (chronic

infection; red lines).

(C) Naive CFSE-labeled DbGP33-specific P14 cells were adoptively transferred to naive mice, and these mice were either left uninfected or infected
with LCMV Arm or clone 13. Three days later, CD69 expression and division of the donor P14 cells was assessed by flow cytometry.

(D) The MFI of FSC for DbGP33 tetramer* CD8* T cells is summarized for acute versus chronic infection (n = 2-3 per group). Data represents two to six
independent experiments depending on the time point. Error bars indicate SD, and p values were determined by t test.

produce IFN-y, and the frequency of cytokine copro-
ducers and amount (MFI) of individual cytokines produced
per cell declined dramatically (Figure 3B). Thus, although
virus-specific CD8* T cells were initially functional after
both Arm and clone 13 infections, during chronic LCMV
infection, virus-specific CD8" T cells become progres-
sively less functional (i.e., exhausted) after the first week
of infection.

Altered T Cell Differentiation during Exhaustion

We next profiled the phenotypic changes in virus-specific
CD8™" T cells during the progression to exhaustion versus
development of memory by using a set of genes identified
by microarray analysis. At day 6 p.i., the inhibitory re-
ceptors PD-1, LAG-3, and 2B4 were upregulated on
DbGP33-specific CD8" T cells during both Arm and clone
13 infection (PD-1 was perhaps slightly higher during clone
13 infection at this time point.). However, by day 8 p.i., the
expression of these inhibitory receptors was low during
Arm infection and remained low thereafter, consistent
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with the clearance of the virus. In contrast, during chronic
infection, PD-1, LAG-3, and 2B4 remained highly ex-
pressed, and especially for PD-1 and 2B4, the expression
increased on virus-specific CD8* T cells after day 8 (Fig-
ures 4A and 4B). Thus, expression of inhibitory receptors
is not unique to chronic viral infection. Rather, during initial
T cell activation during both acute and chronic infection,
these pathways are upregulated; yet, at these early time
points, T cells are functional. It is possible that early during
infection signals from positive costimulatory pathways
outweigh those from negative pathways. Later, during
chronic infection, the persistent (and increased) expres-
sion of inhibitory receptors might shift the balance toward
inhibition of T cell function. Future studies will be necessary
for determining precisely when and how these inhibitory
pathways control antiviral T cell function in vivo.

At early times p.i. (day 6), virus-specific CD8" T cells
primed during acute versus chronic infection expressed
a similar pattern of activation and differentiation markers
including CD44, CD25, granzyme B, 1B11, CD62L, CD27,
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CXCRS3, and Ly6C. In contrast to acute infection, however,
virus-specific CD8"* T cell expression of granzyme B and
1B11 remained elevated during chronic infection, whereas
CD62L remained low. The activation marker CD69 was
low at day 6 (Figure 4C) after both Arm and clone 13 infection
despite the presence of antigen. To examine whether CD69
was expressed earlier during infection, we used a P14 adop-
tive transfer approach to visualize virus-specific CD8* T cells
at day 3 p.i. At this time point, CD69 expression was
elevated after both Arm and clone 13 infections, and a similar
profile of CD69 expression versus cellular division was ob-
served (Figure 4C). During clone 13 infection, CD69 again
began to increase after day 12 and was uniformly high on
virus-specific CD8* T cells from chronically infected mice af-
ter day 21. The reasons for this dynamic regulation of CD69
are not clear but suggest that there might be a period of time
early during infection when T cells are refractory to further
upregulation of CD69.

Although CD44 expression was elevated compared to
naive CD8"* T cells after both infections, beginning ~3
weeks p.i., CD44 expression was lower on exhausted
CD8" T cells compared to memory CD8™ T cells consistent
with the microarray data (Table S5). CD27 is of interest be-
cause this molecule has been used extensively to charac-
terize human antiviral CD8" T cells responding to different
persisting infections (van Lier et al., 2003). Although two
subsets of antiviral CD8" T cells were clearly present on
the basis of CD27 expression during the first ~3-4 weeks
after acute infection, only CD27" cells were found during
chronic infection. Memory CD8" T cells also eventually
all became CD27". Other molecules including CXCR3
and Ly6C also displayed dynamic expression patterns
that differed between the development of memory
(CXCR3"Ly6C") and exhausted (CXCR3MLy6C'°) CD8*
T cells.

The expression of the cytokine receptors CD122,
CD124, and CD127 was low on exhausted CD8* T cells
at late time points during chronic infection compared to
memory CD8" T cells. CD124 and CD127 were perma-
nently downregulated early after infection in contrast to
the re-expression of these cytokine receptors after acute
infection (Figure 4C and Figure S2). CD122, on the other
hand, was similar after acute or chronic infection at day
6, was higher on exhausted CD8" T cells from day 8 to
day 21, but eventually became lower in exhausted com-
pared to memory CD8* T cells at later times p.i. The
expression pattern of these receptors is consistent with
the gene-expression data (Table 1 and Tables S2, S3,
and S5) and suggests that exhausted CD8"* T cells will
not efficiently respond to IL-2, IL-4, IL-7, and IL-15 at later
times p.i.

KLRG1 was one of the few molecules examined that dif-
fered in protein expression at early time points after infec-
tion. During clone 13 infection, virus-specific CD8" T cells
expressed lower amounts of KLRG1 at day 6 (and at all
subsequent time points) compared to virus-specific
CD8* T cells generated after Arm infection. Expression
of KLRG1 by CD8* T cells has been associated with repet-
itive antigen stimulation, cellular senescence, and terminal

differentiation (Joshi et al., 2007; Masopust et al., 2006;
Voehringer et al., 2001). The KLRG1" phenotype of ex-
hausted CD8* T cells was, therefore, a bit surprising
because these cells have a poor proliferative capacity
upon antigen stimulation (Wherry et al., 2004; Wherry
et al., 2005). It will be interesting to determine how the re-
lationship between KLRGI expression and proliferative
potential applies to chronic infection during which the T
cells experience continuous rather than intermittent anti-
gen stimulation.

Finally, virus-specific CD8" T cells were larger in size
during chronic infection compared to after acute infection
between days 8-15. This difference likely reflects persist-
ing TCR stimulation during clone 13 infection, but not
following Arm infection at these time points. However,
exhausted CD8" T cells were significantly smaller than
memory CD8" T cells at later time points (Figures 4A,
4B, and 4D). This reduced cell size for exhausted CD8"
T cells is one of the last differences to emerge. Cell size
is an excellent indicator of metabolic fithess, and when
metabolism is compromised, lymphocytes become con-
siderably smaller (Rathmell et al., 2000). The observations
on the size of exhausted compared to memory CD8* T
cells are in good agreement with the gene-expression pro-
file of metabolic fitness described above.

Gene-Expression Profile of Exhaustion Is Distinct
from Anergy
Exhaustion of antigen-specific CD8" T cells has been de-
scribed during a number of both experimental and human
infections. Anergy also results in T cell dysfunction.
Anergy occurs when initial TCR signals are received in
the absence of optimal costimulation leading to a state
of hyporesponsiveness (Schwartz, 2003). A transcriptional
signature of anergy has been defined, resulting in the iden-
tification of 14 anergy-associated genes (Macian et al.,
2002). In this study, anergized T cells were refractory to
subsequent anti-CD3 stimulation and had decreased tran-
scription of several cytokine genes including /12, Ifng, Tnf,
and Ccl3. The expression profile of anergy-associated
genes was also examined with an in vivo tolerance model
in which many of the anergy-associated genes identified
in vitro were confirmed, thus defining a molecular signa-
ture of anergy both in vitro and in vivo (Macian et al., 2002).
To examine whether exhaustion and anergy shared sim-
ilar transcriptional signatures, we examined the expres-
sion pattern of the 14 anergy associated genes identified
by Macian et al. (2002) in the exhausted CD8" T cells.
Few of the anergy-associated genes were upregulated in
exhausted CD8" T cells (Figure 5A). Also, this panel of
14 genes did not clearly distinguish exhausted CD8" T
cells from effector or memory CD8" T cells. In this type
of analysis, the expression of individual anergy-associ-
ated genes was assessed relative to a threshold value
(i.e., x2-fold). It remained possible that, although the
anergy-associated genes were not individually overex-
pressed >2-fold in exhausted CD8" T cells, these genes
as a set might be specifically enriched during exhaustion.
To test this possibility, we next used gene-set-enrichment
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Figure 5. Gene-Expression Profiles of Exhaustion Are Distinct from Anergy
(A) The expression of 14 anergy-associated genes was determined for the exhausted, effector, and memory profiles with the U74A gene-expression

data.

(B) We performed gene-set-enrichment analysis (GSEA) to determine whether the anergy-associated gene set showed specific enrichment in the
exhausted CD8* T cells. The p value for specific enrichment of the gene set is indicated.

analysis (GSEA; [Subramanian et al., 2005]) (Figure 5B).
GSEA is performed by assigning a rank order to the ex-
pression of the ~9000 genes from the U74A arrays
(ESTs are excluded from this analysis.). The location of
each gene of interest is then determined in the rank-or-
dered data set, and the specific enrichment of the set of
genes at the higher (or lower) ends of the rank order is de-
termined. As shown in Figure 5B, the anergy-associated
gene set did not show specific enrichment in the ex-
hausted CD8" T cells, and the “hits” for the individual
genes were distributed essentially throughout the rank
order and not accumulated on the left side as is expected
for enriched genes (Subramanian et al., 2005). Taken
together, the data in Figure 5 suggest that CD8* T cell
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exhaustion examined in the current study is distinct from
the process of anergy profiled in previous studies (Macian
et al., 2002). Thus, T cell exhaustion and anergy, at least
for these two models, do not appear to share the same
transcriptional signature.

DISCUSSION

A number of pathways, identified in the present study, are
associated with CD8* T cell exhaustion during chronic
viral infection. One of the most obvious patterns that
emerged was the overexpression of cell-surface inhibitory
molecules by virus-specific CD8"* T cells during chronic
infection. Our previous observations on the role of PD-1
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in regulating exhaustion (Barber et al., 2006) suggest that
the group of inhibitory pathways identified in the current
study might provide additional targets for investigation.
It will be important to determine whether inhibitory path-
ways such as LAG-3, 2B4, and GP49B have distinct or
overlapping roles in regulating T cell responses during
chronic infection. A puzzling issue is why exhausted
CD8* T cells would express multiple receptors with inhib-
itory function. One possibility is that these are redundant
pathways for ensuring adequate control ofimmunopathol-
ogy. A second possibility is that these different receptors
have nonoverlapping intracellular signaling targets. A third
possibility is that the expression of the ligands for these re-
ceptors is a key to their effective inhibition of T cell re-
sponses. The ligands for the inhibitory receptors overex-
pressed by exhausted CD8* T cells include a diverse
array of both cell-surface and soluble molecules ex-
pressed in a restricted (e.g., professional APC only) or
broadly distributed manner. A combination of these mech-
anisms might explain the apparent redundancy of inhibi-
tory receptors. Future studies are aimed at investigating
the roles of these different pathways in regulating CD8*
T cells during chronic viral infections.

A second novel observation revealed by the transcrip-
tional profiles of exhausted CD8* T cells was the dramatic
alteration in metabolic and bioenergetic pathways com-
pared to the pathways of naive, effector, and memory T
cells. Exhausted CD8"* T cells downregulated compo-
nents of the translational machinery, molecules involved
in the citric-acid cycle, and energy metabolism, and these
cells also became considerably smaller in size. One impli-
cation of downregulated ribosomal subunits is that these
cells might have difficulty producing the quantity of cyto-
kines or other effector proteins normally produced by
functional effector and memory CD8" T cells. This inter-
pretation would also fit with the predominantly intact ex-
pression of the mRNA for such as IFN-y and granzymes
B, A, and K.

Cell size is a useful indicator of metabolic fitness (Rath-
mell et al., 2000), suggesting that the reduction in cell size
for exhausted CD8* T cells reflects some of the metabolic
deficiencies observed in the gene-expression profiles. It is
interesting to note that the inhibitory receptors PD-1 and
CTLA-4 can impair optimal AKT activation, a key signaling
pathway for glucose utilization and cellular metabolism
(Parry et al., 2005). Impaired translational machinery and
metabolic fitness is also likely to impede robust prolifera-
tion. Production of a new complement of cellular proteins
and the increase in cell size necessary to give rise to two
daughter cells during mitosis might be substantially com-
promised by the bioenergetic and ribosomal deficiencies
present in exhausted CD8"* T cells. It should be noted,
however, that these metabolic changes do not universally
prevent protein translation because a number of mole-
cules, such as the inhibitory receptors, are upregulated
in exhausted CD8™ T cells at the protein level. It will prob-
ably be important to address these bioenergetic and
translantion deficiencies in therapeutic strategies aimed
at restoring optimal function from exhausted T cells.

Kinetic profiling of T cell dysfunction and differentiation
during chronic infection confirmed the expression pattern
of many proteins predicted by the gene-expression pro-
files. More importantly, this kinetic analysis demonstrated
the progressive nature of CD8" T cell exhaustion. Of the 22
properties examined by flow cytometry (including cytokine
coproduction), only three differed between virus-specific
CD8" T cells from Arm and clone 13 infection at day 6 p.i.
(TNF-a + IFN-y coproduction, PD-1, and KLRG1). By day
8 p.i., nine differences were apparent. After day 8 of acute
infection, virus-specific CD8* T cells continued to progres-
sively differentiate into memory T cells and acquired new
phenotypic and functional characteristics such as IL-2
production. T cell exhaustion, in contrast, followed an al-
tered pattern of differentiation, and after day 8 of infection,
the differences between functional memory T cell differen-
tiation and exhaustion continued to increase. Between 1-2
weeks p.i., 18 of 22 properties profiled differed, and after
~1 month, this had increased to 20 or 21 differences out
of 22 properties examined. Thus, our results indicate that
CD8* T cell exhaustion is a graded process during chronic
viral infection and that there are stages in the differentiation
and development of exhausted CD8* T cells. Such
a graded or progressive development of CD8* T cell ex-
haustion might have implications for therapeutic strategies
that could be tailored to overcome specific defects of a par-
ticular stage of exhaustion.

Our data also suggest that T cell anergy and exhaustion
occur by distinct molecular mechanisms. In addition to the
anergy-associated gene set identified by Macian et al.
(2002), several other genes have been reported to be as-
sociated with T cell anergy including Egr-2, Egr-3 (Harris
et al.,, 2004; Safford et al., 2005), and grail (Mueller,
2004). These genes were not selectively expressed by ex-
hausted CD8" T cells compared to functional effector and
memory CD8" T cells. Recent evidence suggests that the
proper NFAT:AP-1 ratio promotes T cell activation,
whereas NFAT activity in the absence of AP-1 favors
anergy (Macian et al., 2002). Indeed, NFATc1 is transcrip-
tionally elevated in exhausted CD8* T cells, and Fos (part
of the AP-1 dimer), Fosb, and Junb are downregulated in
exhausted CD8" T cells compared to memory CD8" T
cells. Thus, some alterations in the NFAT:AP-1 balance
might exist in exhausted CD8* T cells compared to mem-
ory CD8* T cells, but the lack of expression of target genes
of AP-1-independent NFAT transcription such as E3 ubig-
uitin ligases (Heissmeyer et al., 2004) suggest that the ma-
jor transcriptional mechanisms of anergy and exhaustion
are predominantly distinct.

Mouse models including LCMV have been invaluable in
dissecting T cell responses to chronic viral infections. For
example, recent studies on the role of the PD-1 pathway in
regulating CD8" T cell exhaustion first during LCMV, and
soon thereafter for HIV, HBV, and HCV infection highlight
the translation of observations from mouse models to hu-
man viral infection (Barber et al., 2006; Boni et al., 2007;
Day et al., 2006; Petrovas et al., 2006; Radziewicz et al.,
2006; Trautmann et al., 2006; Urbani et al., 2006). It will
be important in the future to determine whether additional
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features of the molecular signature of CD8" T cell exhaus-
tion in the LCMV model can also be extended to humans.
Recent studies suggest that the transcriptional profile of
HIV-specific CD8* T cells from humans might indeed
share similarities to exhausted LCMV-specific CD8" T
cells (W.N.H. and T.R. Golub, unpublished data). Future
studies will be necessary to determine the therapeutic im-
plications of pathways revealed by transcriptional profiling
of mouse and human CD8" T cells responding to chronic
viral infections.

In summary, these studies provide a framework with
which to begin dissection of the factors that influence
virus-specific CD8" T cell differentiation during chronic
infections. In addition, these studies identify a number of
inhibitory, signaling, and metabolic pathways that might
underlie the functional defects in these CD8" T cells and
might also represent novel targets for immunotherapy.

EXPERIMENTAL PROCEDURES

Mice and Infections

Four- to six-week-old female C57BL/6 mice were purchased from The
Jackson Laboratory. We used the LCMV-specific P14 TCR transgenic
system to generate effector and memory CD8" T cells as described
(Kaech et al., 2002). In brief, P14 chimeras were made by adoptive
transfer of a small number of naive P14 CD8" T cells (~5 x 10% to naive
congenic recipient mice followed by LCMV infection. For acute infec-
tions, mice were infected with 2 x 10° pfu of LCMV Arm i.p. For chronic
infections, mice were given 2 x 108 pfu of LCMV clone 13 i.v. and de-
pleted of CD4" T cells with 200 ung GK1.5 on days —1 and +1 p.i. Viral
titers in chronically infected mice were verified by plaque assay in the
serum prior to use. Plaque assays were performed as previously de-
scribed (Wherry et al., 2003).

Lymphocyte Isolation, Flow Cytometry,

and Functional Analysis

Lymphocytes were isolated and MHC class | peptide tetramers were
generated and used as previously described (Wherry et al., 2003). All
antibodies were obtained from BD Bioscience (San Diego, CA) except
for granzyme B and KLRG1 (Caltag). Intracellular cytokine staining was
performed as previously described (Wherry et al., 2003). Elisas were
performed with kits from R&D systems according to the manufac-
turer’s instructions.

Cell Sorting

Naive LCMV DbGP33-specific P14 T cells isolated directly from naive
P14 mice. Effector and memory CD8* T cells from P14 chimeras were
sorted on day 8 or >day 30 after LCMV Arm infection respectively.
LCMV-specific CD8* T cells were sorted on a BD Facs Vantage or Cy-
tomation MoFlo with congenic markers (Thy1.1) for naive, effector, and
memory CD8* T cells as described (Kaech et al., 2002). For technical
reasons, it was not possible to use the P14 system during chronic
LCMV infection. Exhausted CD8* T cells (day 22-35 p.i.) were sorted
with MHC tetramers (DbGP33 n = 3 and DbGP276 n = 1). All samples
were maintained at 4°C for the duration of the sort, and purity was
95%-98% for all populations.

RNA Amplification and Hybridization

Total RNA was isolated from sorted naive, effector, memory, and ex-
hausted CD8" T cells using Trizol (GIBCO/BRL Life Technologies,
Rockville, MD) according to the manufacture’s instructions. cDNA
was synthesized and amplified as described (Kaech et al., 2002). Sam-
ples were hybridized to Affymetrix U74Av2, Bv2, or Cv2 microarrays
at Emory University or at the Vanderbilt University Microarray Shared
Resource. Three to four samples were hybridized to the U74Av2 micro-
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arrays for each cell type, whereas two exhausted, two naive, and one
each for memory and effector were hybridized to U74Bv2 and U74Cv2
arrays. Because of the lower number of samples for the B and C arrays,
these data were not included in clustering analyses.

Microarray-Data Analysis

Gene Chip Murine Genome U74Av2 Array was used for the microarray-
data-analysis study (see: http://www.affymetrix.com/products/arrays/
specific/mgu74.affx).

We performed quality-control checks with R-pack (BioConductor) to
verify technical replicates and their quality. Data analysis and cluster-
ing was done in gene-chip-analysis software GeneSpring GX 7.3 Agi-
lent (see: http://www.chem.agilent.com/Scripts/PDS.asp?IPage =
27881). The data were preprocessed with RMA (Robust Multichip
Average) normalization. There were four technical replicates for each
cell type, naive, memory, and exhausted, and three for effectors. Tech-
nical replicates were averaged for fold-change study. RMA expression
values for genes upregulated and downregulated by 2.0-fold change
between each cell types were exported from Genespring to Microsoft
Excel and analyzed further. We used K means clustering with Pearson
correlation to understand how similar or distant each of the cell types
were from one another with respect to naive. RMA expression values
with 1.4-fold cutoff between all four cell types were used as input for
pathway analysis in Ingenuity pathway analysis software (Ingenuity
Systems). GSEA was performed as described (Subramanian et al.,
2005).

Supplemental Data
One figure and five tables are available at http://www.immunity.com/
cgi/content/full/27/4/670/DC1/.
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