
J
H
E
P
0
6
(
2
0
1
4
)
1
7
7

Published for SISSA by Springer

Received: April 29, 2014

Revised: June 4, 2014

Accepted: June 6, 2014

Published: June 30, 2014

AGT, Burge pairs and minimal models

M. Bershteina,b,c and O. Fodad

aLandau Institute for Theoretical Physics,

Chernogolovka, Russia
bInstitute for Information Transmission Problems,

Moscow, Russia
cNational Research University Higher School of Economics, International Laboratory of Represen-

tation Theory and Mathematical Physics, Independent University of Moscow, Moscow, Russia
dMathematics and Statistics, University of Melbourne,

Parkville, VIC 3010, Australia

E-mail: mbersht@gmail.com, omar.foda@unimelb.edu.au

Abstract: We consider the AGT correspondence in the context of the conformal field

theory M p,p′ ⊗ MH, where M p,p′ is the minimal model based on the Virasoro algebra

V p,p′ labeled by two co-prime integers {p, p′}, 1 < p < p′, and MH is the free boson

theory based on the Heisenberg algebra H. Using Nekrasov’s instanton partition functions

without modification to compute conformal blocks in M p,p′ ⊗ MH leads to ill-defined or

incorrect expressions.

Let B p,p′,H
n be a conformal block in M p,p′ ⊗ MH, with n consecutive channels χι,

ι = 1, · · · , n, and let χι carry states from Hp,p′
rι,sι ⊗ F , where Hp,p′

rι,sι is an irreducible highest-

weight V p,p′-representation, labeled by two integers {rι, sι}, 0 < rι < p, 0 < sι < p′, and

F is the Fock space of H.

We show that restricting the states that flow in χι, ι = 1, · · · , n, to states labeled by

partition pairs {Y ι
1 , Y

ι
2 } that satisfy Y ι,⊺

2,σ − Y ι,⊺
1,σ+rι−1 > 1 − sι, and Y ι,⊺

1,σ − Y ι,⊺
2,σ+p−rι−1 >

1−p′+sι, where Y
ι,⊺
i,σ is the σ-column of Y ι

i , i ∈ {1, 2}, we obtain a well-defined expression

that we identify with B p,p′,H
n . We check the correctness of this expression for 1. Any 1-

point B p,p′,H
1 on the torus, when the operator insertion is the identity, and 2. The 6-point

B 3,4,H
3 on the sphere that involves six Ising magnetic operators.
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1 Introduction

1.1 AGT in generic models

Consider the two-dimensional conformal field theory M gen,H = M gen ⊗ MH, based on the

algebra V gen,H = V gen ⊕ H, where M gen is a generic model with a chiral spectrum that

spans infinitely-many infinite-dimensional irreducible highest-weight V gen-representations,1

MH is the conformal field theory of a free boson that takes values in R, V gen is the

Virasoro algebra of generic central charge cgen,
2 and H is the Heisenberg algebra. The

Virasoro central charge of MH is cH = 1. The AGT correspondence of Alday, Gaiotto and

Tachikawa [1] identifies conformal blocks inM gen,H [2] with instanton partition functions in

four-dimensional N =2 supersymmetric quiver gauge theories [3]. Conjectured in [1], AGT

was proven for cgen=1 in [4], and for all cgen in [5] for conformal blocks with non-degenerate

external primary fields.

1.2 AGT in minimal models

In this note, we consider AGT in the context of M p,p′,H = M p,p′ ⊗ MH, based on the

algebra V p,p′,H = V p,p′ ⊕ H, where M p,p′ is the minimal conformal field theory with a

chiral spectrum that spans finitely-many V p,p′ irreps, and V p,p′ is the Virasoro algebra

labeled by two co-prime integers {p, p′}, 0 < p < p′, of central charge cp,p′ ,

cp,p′ = 1− 6

(

(

p

p′

) 1
2

−

(

p′

p

) 1
2

)2

(1.1)

Let B p,p′,H
n , B p,p′

n and BH be conformal blocks with n consecutive channels.3 We wish to

compute any B p,p′,H
n of vertex operators O p,p′,H

ι (zι) = O p,p′
ι (zι) × OH

ι (zι), ι = 0, · · · , n+2.

Since any B p,p′,H
n factorizes to B p,p′

n × BH
n and an explicit expression for the MH-factor

BH
n is known,4 computing B p,p′,H

n is equivalent to computing its M p,p′-factor B p,p′
n which

is typically what we want.

1Only the chiral sector of a conformal field theory is discussed in this work, and this is implied in the

sequel. We abbreviate ‘the AGT correspondence’ to ‘AGT’, and ‘irreducible highest-weight representation’

to ‘irrep’, which in this work is always infinite-dimensional.
2By generic Virasoro central charge cgen we specifically mean cgen 6= cp,p′ , where cp,p′ is the Virasoro

central charge of the minimal model Mp,p′ .
3Only linear conformal blocks, as in figure 3, are considered in this work. Our notation is such that an

n-channel conformal block B indices
n , is the expectation value of (n + 3) vertex operators O same indices

ι (zι),

ι = 0, · · · , (n+ 2), in M same indices on a Riemann surface S, and zι ∈ S.
4See, for example, equation (1.9) in [5].

– 1 –
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1.3 Zeros in denominators and deformations

Applying AGT to minimal model conformal blocks without modification leads to ill-defined

expressions, as will be explained in detail below. In particular, setting the parameters

that appear in Nekrasov’s partition functions to minimal model values leads to zeros in

the denominators of the summands. Following [6], one can make the summands well-

defined using suitable deformations of the parameters. Doing that, one finds whenever a

denominator is zero in the limit of removing the deformations, the corresponding numerator

is also zero in such a way that and that limit is well-defined. This is in agreement with [7],

where arguments were given to the effect that, analytically continuing the conformal blocks

in the conformal dimensions of the primary states that flow in each channel, the only

singularities are poles and the sum of all residues is zero. This is the approach that was

followed, albeit without discussion, in an earlier work on AGT in minimal models [8].

1.4 Zeros in denominators and restrictions

In this note, we follow a different approach from that discussed in subsection 1.3. Our idea

is that the zeros in the denominators of Nekrasov’s partition functions are due to including

null states that should not be included. We avoid this by restricting the summations over

Young diagrams that appear in Nekrasov partition functions to avoid these null states. We

make the summands well-defined by restricting the partition pairs that label the summed-

over states to exclude the summands with poles. To compute B p,p′,H
n , the summations that

label the factors in Nekrasov’s instanton partition functions must be restricted to avoid

ill-defined or incorrect expressions for B p,p′,H
n , and consequently for its M p,p′-factor B p,p′

n .

Our approach allows us to characterise the Young diagrams that label the summands that

do contribute to B p,p′,H
n .

1.5 Unrestricted partition pairs

The AGT expression for a linear conformal block B gen,H
n , that has n consecutive channels

χι, ι = 1, · · · , n, is an n-fold sum,5

B gen,H
n =

∑

~Y 1,··· ,~Y n

n+1
∏

ι=1

q|
~Y ι|
ι Zι

bb

(

~aι−1, ~Y ι−1 | µι | ~aι, ~Y ι
)

, (1.2)

where the summand is a product of (n + 1) factors q
|~Y ι|
ι Zι

bb[~a
ι−1, ~Y ι−1 | µι | ~aι, ~Y ι], ι =

1, · · · , n + 1, that will be defined in section 2. Each factor Zι
bb is a rational function that

depends on two pairs of ‘unrestricted’ Young diagrams {Y ι−1
1 , Y ι−1

2 } and {Y ι
1 , Y

ι
2 }. In

other words, there are no conditions on these Young diagrams and all possible pairs are

allowed. The denominator zιden of Zι
bb is a product of the norms of the states that flow in the

preceding channel χι−1 and the subsequent channel χι. Since Zι
bb is labeled by unrestricted

partition pairs, and the sums are over all possible unrestricted pairs, the states that flow

in each channel belong to a Verma module of V gen,H.

5The partition pairs ~Y 0 and ~Y n+1 are trivial, that is they consist of empty partitions, and no summation

is performed on them.

– 2 –
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Applying AGT without modification to M p,p′,H, one includes zero-norm states in the

summation, and thereby includes states in a Verma module rather than in an irrep of

V p,p′,H. This leads to summands in the instanton partition function with zero denomina-

tors. Further, as show, whenever a denominator in a summand vanishes, the corresponding

numerator vanishes as well and one ends with ill-defined expressions

1.6 Restricted partition pairs

In this note, we consider Bp,p′,H
n as an instanton partition ZNek that consists of building

block partition functions Zι
bb that has a numerator zιnum and a denominator zιden, ι =

1, · · · , n + 1. Zι
bb connects two channels χι−1 and χι. The denominator zι of Zι

bb is a

product of two factors [zι−1
norm]

1/2 and [zιnorm]
1/2 that account for the norms of the states

that flow in the channels χι−1 and χι, respectively. We characterise the zeros in these

denominators that lead to ill-defined expressions for B p,p′,H
n . If channel χι, ι = 1, · · · , n,

carries states that belong to an irreducible highest weight Virasoro representation that flows

is Hp,p′
rι,sι , we attribute these zeros to the flow of null states that do not belong to Hp,p′

rι,sι , and

eliminate these zeros by restricting the partition pairs that appear in Nekrasov’s original

expressions to partition pairs {Y1, Y2}, that satisfy the conditions

Y ι,⊺
2,σ − Y ι,⊺

1,σ+rι−1 > 1− sι, Y ι,⊺
1,σ − Y ι,⊺

2,σ+p−rι−1 > 1− p′ + sι (1.3)

where Y ι,⊺
i,σ is the σ-column of Y ι

i , i ∈ {1, 2}. These restricted Burge pairs were first studied

in [9] and appeared more recently in [10, 11]. We show that when used to restrict AGT to

compute B p,p′,H
n , that is when we sum over Burge pairs rather than on all possible partition

pairs,

B p,p′,H
n =

′
∑

~Y 1,··· ,~Y n

n+1
∏

ι=1

q|
~Y ι|
ι Zι

bb

(

~aι−1, ~Y ι−1 | µι | ~aι, ~Y ι
)

(1.4)

where
∑′ indicates that the sum is restricted to partition pairs that satisfy the Burge

conditions (1.3), we obtain well-defined expressions. We check these expressions in two

cases 1. Any 1-point B p,p′,H
1 on the torus, when the operator insertion is the identity, and

2. The 6-point B 3,4,H
3 , when all operator insertions involve Ising magnetic operators. We

also give theoretical arguments why we expect this identification to be correct.

1.7 Outline of contents

In section 2, we recall basic facts related to Nekrasov’s instanton partition functions. In

section 3, we recall the AGT parametrisation of M gen,H, the choice of parameters that

allows us to obtain M p,p′,H, then show how the unrestricted instanton partition functions

give the wrong answer in the case of B p,p′,H
1 on the torus. In section 4, we use the require-

ment that the summands remain well-defined to characterise the partition pairs that label

them. We identify these partition functions with B p,p′,H
n In section 5, we study the vanish-

ing of the numerator, and show that whenever the denominator of a summand vanishes,

then the numerator also vanishes. In section 6, we check the correctness of our expressions

in the two cases listed above. In section 7, we use results from [5, 10, 11], Proposition 4.1

– 3 –
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Y1

Y2

Y3

Y ⊺
1 Y ⊺

2 Y ⊺
3 Y ⊺

4 Y ⊺
5

X

Figure 1. The Young diagram Y of 5 + 4 + 4. The rows are numbered from top to bottom. The

rows of the transpose Y ⊺ that represents 3+3+3+3+1, which are the columns of Y , are numbered

from left to right. From the viewpoint of Y , the marked cell �X has A
�X,Y

= 2, A+

�X,Y
= 3, and

L�X,Y
= 1. From the viewpoint of Y ⊺, �X has A

�X,Y ⊺
= 1, A+

�X,Y ⊺
= 2, and L�X,Y ⊺ = 2.

in section 4, and Conjecture 7.1 in section 7, to explain why the restriction to Burge pairs

produces conformal blocks in M p,p′,H. Because we use Conjecture 7.1, this explanation is

not a proof. In section 8, we extend of our results to conformal blocks in Mgen,H, with

degenerate intermediate Virasoro representations, and in section 9, we collect a number of

remarks that include 1. a conjectural generalization to the WN conformal blocks, and 2. a

geometric interpretation of the summation over Burge pairs as a summation over isolated

torus fixed points on the instanton moduli space.

2 The instanton partition function

2.1 Partitions

A partition π of an integer |π| is a set of non-negative integers {π1, π2, · · · , πp}, where p is

the number of parts, πi > πi+1, and
∑p

i=1 πi = |π|. π is represented as a Young diagram Y ,

which is a set of p rows {Y1, Y2, · · · , Yp}, such that the i-th row has Yi = πi cells,
6 Yi > Yi+1,

and |Y | =
∑

i Yi = |π|. We use Y ⊺
i for the transpose of Yi, and define Y +

i,ρ = Yi,ρ + 1.

We use � for a cell in a Young diagram Y , which is a square in the south-east quadrant

of the plane, with coordinates {ρ, σ}, such that ρ is the row-number, counted from top to

bottom, and σ is the column number, counted from left to right. We define A+
�,Yi

=

A�,Yi
+ 1, where A�,Yi

is the arm of � in Yi, that is, the number of cells in the same row

as, but to the right of � in Yi, and L�,Wj
to be the leg of � with respect its position in

Wj , that is the number of cells in the same column as, but below � in Yi.

2.2 Partition pairs

The AGT representation of B p,p′,H involves a multi-sum over internal states labeled by

n + 2 partition pairs ~Y ι, ι = 0, 1, · · · , n, n + 1, where ~Y ι is a pair of Young diagrams,

{Y ι
1 , Y

ι
2 }, and |~Y ι| = |Y ι

1 | + |Y ι
2 | is the total number of cells in ~Y ι. The pairs {Y ι

1 , Y
ι
2 },

6We use Yi for the i-th row as well as for the number of cells in that row.

– 4 –
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X X

Figure 2. A partition pair {Y1, Y2}. Y1 is on the left, Y2 is on the right. The cell �X has coordinates

(2, 3), �X ∈ Y1, but �X 6∈ Y2. It has A
�X,Y1

= 1, A+

�X,Y1

= 2, L�X,Y1

= 1, as well as A
�X,Y2

= −2,

A+

�X,Y2

= −1, and L�X,Y ⊺ = −1.

ι ∈ {1, · · · , n}, are non-empty Young diagrams, while {Y ι
1 , Y

ι
2 }, ι ∈ {0, n+ 1} are empty,7

~Y (0) = ~Y (n+1) = ~∅, where ~∅ is a pair of empty Young diagrams.

2.3 A decomposition of the instanton partition function

Consider the four-dimensional N = 2 supersymmetric linear quiver gauge theory with

a gauge group
∏n+1

ι=1 U(2)ι, that is (n + 1) copies of U(2) [3]. The instanton partition

function of this theory can be written in terms of ‘building block’ partition functions Zι
bb,

ι = 1, · · · , n+ 1, as follows

ZNek =
∑

~Y 1,··· ,~Y n

n+1
∏

ι=1

q|
~Y ι|
ι Zι

bb

(

~aι−1, ~Y ι−1 | µι | ~aι, ~Y ι
)

, (2.1)

where qι is an indeterminate. In gauge theory, qι = e2πiτι , where τι is the complexified

coupling constant of U(2)ι. In conformal field theory, it is a rational function of the

positions zι, ι = 0, 1, · · · , n+ 2, of the vertex operators Oι, whose expectation value is the

conformal block, on the Riemann surface S that the conformal field theory is defined on.

Zι
bb is defined in subsection 2.4.

The decomposition of the instanton partition function in (2.1) follows that in [12] and

mirrors the decomposition of conformal blocks on a sphere, represented as a comb diagram

in figure 3.

2.4 The building block of the instanton partition function

Zbb is

Zbb

(

~a, ~Y | µ | ~b, ~W
)

=
znum

(

~a, ~Y | µ | ~b, ~W
)

zden

(

~a, ~Y | ~b, ~W
) , (2.2)

The parameters that appear in Zbb are as follows.

7We work in terms of n + 2 linearly-ordered partition pairs. Since we consider conformal blocks of

primary fields, the initial and final pairs are always empty, but we prefer to work in terms of n+ 2 rather

than n non-empty pairs to make the notation in the sequel more uniform.

– 5 –
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O0 O6

O1 O2 O3 O4 O5

χ1 χ2 χ3 χ4

Figure 3. The comb diagram of a 4-channel conformal block that corresponds to a linear quiver. It

consists of an initial state that corresponds to a vertex operator O0 on the left, five vertex operator

insertions O1, · · · ,O5, and a final state that corresponds to a vertex operator O6 on the right. Oι

is placed at zι, where z0, zn+1 and zn+2 are set 0, 1 and ∞, respectively. In this example, n = 4.

2.4.1 The 2-component vector ~aι = {aι,−aι}

In gauge theory, aι is the expectation value of the vector multiplet in the adjoint rep-

resentation of the gauge group U(2)ι. In conformal field theory, aι is the charge of the

highest weight of the Virasoro irrep that flows in channel χι in the conformal block under

consideration.

2.4.2 The partition pairs ~Y and ~W

In gauge theory, each partition pair ~Y ι = {Y ι
1 , Y

ι
2 } labels the fixed localization points in

the instanton moduli space of U(2)ι. In conformal field theory, they label the states that

flow in channel χι in the corresponding conformal block. In (2.2), ~Y and ~W are attached

to the line segments on the left and the right of a given vertex, respectively.

2.4.3 The scalar µι

In gauge theory, µι is the mass parameter of the bi-fundamental matter field that inter-

polates the gauge groups U(2)ι and U(2)ι+1. In conformal field theory, µι is the charge

of the vertex operator that connects channels χι and χι+1. In the following, we study the

structure of the right hand side of (2.2).

2.4.4 The denominator

zden

(

~a, ~Y | ~b, ~W
)

=
(

znorm

(

~a, ~Y
)

znorm

(

~b, ~W
)) 1

2
, (2.3)

where

znorm

(

~a, ~Y
)

= znum

(

~a, ~Y | 0 | ~a, ~Y
)

(2.4)

In gauge theory, znorm is a normalization factor related to the contribution of the vector

multiplets that the bi-fundamental couples to. In conformal field theory, it accounts for

the norms of the states that propagate into and out of the vertex operator insertion in Zbb.

2.4.5 The numerator

znum

(

~a, ~Y | µ | ~b, ~W
)

=

2
∏

i,j=1

∏

�∈Yi

(E[ai − bj , Yi,Wj ,�]− µ)
∏

�∈Wj

(ǫ1 + ǫ2 − E[bj − ai,Wj , Yi,�]− µ) , (2.5)

– 6 –
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where the elementary function E[x, Yi,Wj ,�] is defined as

E[x, Yi,Wj ,�] = x+A+
�,Yi

ǫ2 − L�,Wj
ǫ1, (2.6)

x is an indeterminate, and {ǫ1, ǫ2} are Nekrasov’s deformation parameters, which are gen-

erally complex. In gauge theory, znum is the contribution of a bi-fundamental multiplet in

U(2)ι and U(2)ι+1. In conformal field theory, it is the contribution of the vertex operator

insertion that inputs a charge µ into the conformal block into Zbb.

2.4.6 Remark

One can think of znum as the basic object in U(2) AGT theory and in this paper, and all

other objects can be written in terms of special cases of it.

2.4.7 Normalisation

Consider the special case where the Virasoro part of the vertex operator in Zbb is the

identity, that is {r, s} = {1, 1}, and consequently µ = 0.8 Zbb is defined combinatorially

and does not necessarily vanish when the fusion rules are not satisfied. To ensure that the

fusion rules are satisfied, we set ~a = ~b.

Setting µ = 0 and ~a = ~b ensures that the Virasoro part of the vertex operator insertion

is the identity operator, but then, [5], the Heisenberg part of the vertex operator is an

exponential of the creation part of the free boson field, which can contribute to a difference

between ~Y and ~W , and we do not necessarily have ~Y = ~W . Setting ~Y = ~W , we pick up the

contribution of the trivial part of the exponential, that is the identity, and Zbb reduces to

Zbb

(

~a, ~Y | 0 | ~a, ~Y
)

=
znum

(

~a, ~Y | 0 | ~a, ~Y
)

zden

(

~a, ~Y | ~a, ~Y
) = 1 (2.7)

Equation (2.7) is relevant to computing 1-point conformal blocks of the identity operator

on the torus in subsections 3.4 and 4.13.

3 Unrestricted instanton partition functions for M p,p
′
,H

3.1 AGT parameterisation. Generic models

A generic model is a conformal field theory characterised by a central charge cgen that we

parametrise as

cgen = 1 + 6

(

bgen +
1

bgen

)2

, bgen =

(

ǫ2
ǫ1

) 1
2

, (3.1)

In the Coulomb gas approach to computing conformal blocks in generic models, the

screening charges {β+, β−}, and the background charge, −2β0, satisfy
9

β+ = bgen, β− =
1

bgen
, 2β0 = β+ + β− (3.2)

8See subsection 5.2.
9We use β+, β−, −2β0 for generic model charges and reserve α+, α− and −2α0 for the corresponding

minimal model charges. We use bgen and ap,p′ for the parameters used to describe the generic and minimal

models central charges respectively, since a and b are used for other purposes in the sequel.
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3.2 AGT parameterisation. Minimal models

A minimal model M p,p′ , based on a Virasoro algebra Vp,p′ , characterised by a central

charge cp,p′ < 1, that we parameterise as

cp,p′ = 1− 6

(

ap,p′ −
1

ap,p′

)2

, ap,p′ =

(

p′

p

) 1
2

, (3.3)

where {p, p′} are the minimal model parameters, which are co-prime integers and satisfy

0 < p < p′, in our conventions. In the Coulomb gas approach to computing conformal

blocks in minimal models with c < 1 [13, 14], the screening charges {α+, α−}, and the

background charge, −2α0, satisfy

α+ = ap,p′ , α− = −
1

ap,p′
, 2α0 = α+ + α− (3.4)

The AGT parameterisation of M p,p′,H is obtained by choosing

ǫ1 < 0 < ǫ2, ǫ1 = α−, ǫ2 = α+ (3.5)

so that α− < 0 < α+. Since we focus on M p,p′,H, we work in terms of {α−, α+} instead of

{ǫ1, ǫ2}, and write the elementary function E[x, Yi,Wj ,�] as

E[x, Yi,Wj ,�] = x+A+
�,i α+ − L�,j α− (3.6)

3.3 Charge content

We need two distinct objects that, in Coulomb gas terms, are expressed in terms of the

screening charges {α+, α−}. 1. The charge µr,s of the vertex operator Oµ that intertwines

two irrep’sHp,p′
r1,s1 andHp,p′

r2,s2 , and 2. The highest weight |ar,s〉 of an irrepHp,p′
r,s . Following [1,

5], we use {r, s} as indices for the charge µr,s of the vertex operator Oµr,s , and {r, s} as

indices for the charge ar,s of the highest weight |ar,s〉. These charges are parameterised in

terms of α+ and α− as follows

µr,s = −

(

r − 1

2

)

α+ −

(

s− 1

2

)

α−,

ar,s = −
r

2
α+ −

s

2
α−, 1 6 r 6 p− 1, 1 6 s 6 p′ − 1 (3.7)

Note that the same numerical values of {r, s} indicate different charge contents in µr,s and

in ar,s. In particular,

2µr,s = 2ar,s + (α+ + α−) (3.8)

3.4 Unrestricted instanton partition functions give incorrect 1-point functions

on the torus

Consider a conformal block in a 1-point function in M p,p′,H on a torus, figure 4.

Following [1], this is given by the instanton partition function of the N = 2⋆ U(2)

theory,

Z
N=2⋆,U(2)
Nek (~a, ~µ) =

∑

~Y

q|
~Y |
znum

(

~a, ~Y | µ | ~a, ~Y
)

zden

(

~a, ~Y | ~a, ~Y
) , (3.9)
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µ

Hp,p′
r,s ⊗F

Figure 4. A graph of a conformal block of a 1-point function on a torus. The vertex operator

insertion carries a charge µ. The chiral states that flow in the channel belong to Hp,p′

r,s ⊗ F . For

this 1-point function to be finite, the fusion rules must be satisfied.

where µ is determined by the operator insertion, and ~a is determined by the states of the

Hp,p′
r,s that flow in the torus and determine the conformal block. When the inserted operator

is the identity, that is {r, s}, then10 µ = 0, and if ~Y is an unrestricted partition pair as in

the original AGT prescription, then

Z
N2⋆,U(2)
Nek

(

~a,~0
)

=
∑

~Y

q|
~Y | =

1
∏∞

n=1 (1− qn)2
(3.10)

while the correct result is

Z
N2⋆,U(2)
Nek

(

~a,~0
)

=
χp,p′
r,s

∏∞
n=1 (1− qn)

, (3.11)

where χp,p′
r,s is the character of the irrep Hp,p′

r,s that flows in the torus, and ~a = {a,−a},

where 2a = −r α+ − s α−,

χp,p′

r,s =

∑∞
k=−∞

(

qk
2pp′+k(p′r−ps) − q(kp+r)(kp′+s)

)

∏∞
n=1 (1− qn)

(3.12)

This simple example makes it clear that applying the prescription of [1] to M p,p′,H

without modification, leads to incorrect answers. In the following section, we find that it

leads to zeros in the denominators of the summands.

4 Restricted instanton partition functions for M p,p
′
,H. The denominator

Consider the denominator zden of Zbb in (2.2). To look for zeros in zden, it is sufficient to

look for zeros in znorm[~a, ~Y ] in (2.4). Consider B p,p′,H
n and focus on a channel that carries

states that belong to Hp,p′
r,s .

Proposition 4.1 znorm[~a, ~Y ] 6= 0, if and only if

Y ⊺
2,σ − Y ⊺

1,σ+r−1 > 1− s, Y ⊺
1,σ − Y ⊺

2,σ+[p−r]−1 > 1−
(

p′ − s
)

, (4.1)

where Y ⊺
i,σ is the σ-column in Yi, i ∈ {1, 2}.

The proof of Proposition 4.1 is based on checking the products that appear in

znorm[~a, ~Y ] for zeros.

10See subsection 5.2.
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4.1 More notation

We set a1 = −a2 = a, and a1 − a2 = 2a. If a channel χι carries states from Hp,p′
rι,sι ⊗ F ,

then the label aι of the corresponding highest weight is

arι,sι = −rι α+ − sι α− (4.2)

4.2 Two zero-conditions

In the sequel, we find that an instanton partition function has a zero when an equation of

type

C+ α+ + C− α− = 0, (4.3)

where α− < 0 < α+, is satisfied. Equivalently, an instanton partition function has a zero

when the two conditions

C+ = c p, C− = c p′, (4.4)

are satisfied, where c is some constant that needs to be determined.

4.3 From two zero-conditions to one zero-condition

Given two conditions, such as (4.4), we need, for the purposes of comparing with known

results, to re-write them as one condition. Consider the two conditions

A�,1 = A′ > 0, −L�,2 = L′ > 0 (4.5)

These conditions are satisfied if � ∈ Y1, and � 6∈ Y2.
11 If � is in row-ρ and column-σ in

Y1, then the first condition in (4.5) implies that there is a cell ⊞ ∈ Y1, to the right of �,

with coordinates {ρ, σ+A′}, that lies on a vertical boundary. In other words, 1. there are

no cells to the right of ⊞, and 2. there may or may not be cells below ⊞. This means that

the (σ +A′)-column in Y1, or equivalently, the (σ +A′)-row in Y ⊺
1 , has length at least ρ,

Y ⊺
1,σ+A′ > ρ (4.6)

This allows us to write the second condition in (4.5) as

− L�,2 = L′ = ρ− Y ⊺
2,σ, (4.7)

where the second equality in (4.7) follows from the definition of L�,2. In other words,

ρ = L′ + Y ⊺
2,σ, and from (4.6),

Y ⊺
1,σ+A′ − Y ⊺

2,σ > L′, (4.8)

which is one condition that is equivalent to the two conditions in (4.5).

11We chose the labels of the Young diagrams to be concrete. The same arguments apply under Y1 ⇔ Y2.
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4.4 One non-zero condition

Consider a function z[Y1, Y2], of a pair of Young diagrams {Y1, Y2}, such that z[Y1, Y2] = 0,

if and only if (4.8) is satisfied. This implies that z[Y1, Y2] 6= 0, if and only if {Y1, Y2}

satisfies the complementary condition

Y ⊺
1,σ+A′ − Y ⊺

2,σ < L′, (4.9)

which, in order to compare with results in the literature, we choose to write as

Y ⊺
2,σ − Y ⊺

1,σ+A′ > 1− L′ (4.10)

4.4.1 Remark

Since we use equations such as (4.5) and (4.10) frequently in the sequel, refer to the former

as ‘zero-conditions’, and to the latter as ‘non-zero-conditions’.

4.5 Products that appear in the denominator

Two types of products appear in znorm, 1. products in the form
∏

�∈Yi
E[ai − aj , Yi, Yj ,�]

that we refer to as {Yi, Yj}den, and 2. products in the form
∏

�∈Yi
[α+ + α− − E[ai −

aj , Yi, Yj ,�]] that we refer to as {Yi, Yj}
′
den.

4.6 In search of zeros

In the following subsections, 1. we consider the products that appear in zden, one at a

time, 2. we search for possible zeros, as in subsection 4.2, 3. we find the conditions that

we need to impose on the pair {Y1, Y2} in order to avoid the zeros, and 4. when there is

more than one set of conditions to avoid the zeros, we choose the stronger set. That is, the

set that ensures that all zeros are eliminated. We use the fact that r, s, p − a and p′ − s

are non-zero positive integers.

4.7 {Y1, Y1}den

This product does not vanish, since this requires that there is a factor that satisfies

E[0, Y1, Y1,�] = A+
�,1 α+ − L�,1 α− = 0, (4.11)

which is not possible since � ∈ Y1 and α− < 0.

4.8 {Y1, Y1}
′, {Y2, Y2}den and {Y2, Y2}

′
den

These products do not vanish for the same reason that {Y1, Y1}den in paragraph 4.7 does

not vanish.

4.9 {Y1, Y2}den

This product vanishes if any factor satisfies

E[−r α+ − s α−, Y1, Y2,�] =
(

−r +A+
�,1

)

α+ +
(

−s− L�,2

)

α− = 0, (4.12)
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which lead to the conditions

A�,1 = r − 1 + c p − L�,2 = s+ c p′ (4.13)

Since A�,i, L�,i, i ∈ {1, 2}, r, and s are non-zero positive integers, and p and p′ are positive

co-primes, c must be a non-negative integer, and the conditions in (4.13) are possible for

c = {0, 1, · · · }, � ∈ Y1 and � 6∈ Y2.
12

4.9.1 From two zero-conditions to one non-zero-condition

Following paragraphs 4.3 and 4.4, the two zero-conditions in (4.13) can be translated to

one non-zero-condition,

Y ⊺
1,σ − Y ⊺

2,σ+r−1+c p > 1− s− c p′ (4.14)

4.9.2 The stronger condition

Equation (4.14) is the statement that to eliminate the zeros, we want Y ⊺
2,σ −Y

⊺
1,σ+r−1+c p >

1 − s − c p′, where c = {0, 1, · · · } Since the row-lengths of a partition are by definition

weakly decreasing, and c = {0, 1, · · · }, this is the case if Y ⊺
2,σ − Y ⊺

1,σ+r−1 > 1 − s − c p′,

which is the case if Y ⊺
2,σ − Y ⊺

1,σ+r−1 > 1− s. Thus, we should set c = 0, and obtain

Y ⊺
2,σ − Y ⊺

1,σ+r−1 > 1− s (4.15)

4.10 {Y2, Y1}den

This product vanishes if any factor satisfies

E[r α+ + s α−, Y2, Y1,�] =
(

r +A+
�,2

)

α+ +
(

s− L�,1

)

α− = 0, (4.16)

which leads to the conditions

A�,2 = −1− r + c p, −L�,1 = −s+ c p′, (4.17)

which are possible for c = {1, 2, · · · }, � ∈ Y2 and � 6∈ Y1.

4.10.1 From two zero-conditions to one non-zero-condition

Following paragraphs 4.3 and 4.4, the two zero-conditions in (4.17) can be translated to

one non-zero-condition,

Y ⊺
1,σ − Y ⊺

2,σ−1−r+c p > 1 + s− c p′ (4.18)

4.10.2 The stronger condition

Equation (4.18) is the statement that to eliminate the zeros, we want Y ⊺
2,σ −Y

⊺
1,σ−1−r+c p >

1 + s − c p′, where c = {1, 2, · · · }. Since the row-lengths of a partition are by definition

weakly decreasing, and c = {1, 2, · · · }, this is the case if Y ⊺
2,σ − Y ⊺

1,σ+p−r−1 > 1 − s − c p′,

which is the case if Y ⊺
2,σ − Y ⊺

1,σ+p−r−1 > 1− p+ s. Thus, we should set c = 1, to obtain

Y ⊺
1,σ − Y ⊺

2,σ+[p−r]−1 > 1−
(

p′ − s
)

(4.19)

12Note that from conditions (4.13), if the Young diagram Y such that � ∈ Y , which in this case is Y1,

is sufficiently large compared to the Young diagram W such that � 6∈ W , which in this case is Y2, then

the product under discussion will have more than one zero. This will be the case in the rest of the factors

discussed in this section as well.
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4.11 {Y1, Y2}
′
den

This product vanishes if any factor satisfies

−α+ − α− + E[−r α+ − s α−, Y1, Y2,�] =
(

−r +A�,1

)

α+ +
(

−s− L+
�,2

)

α− = 0, (4.20)

which leads to the conditions

A�,1 = r + c p, −L�,2 = 1 + s+ c p′, (4.21)

which, using the same arguments as in subsections 4.9 and 4.10, are possible for c =

{0, 1, · · · }, � ∈ Y1, � 6∈ Y2, and we should choose c = 0 to obtain

Y ⊺
2,σ − Y ⊺

1,σ+r > −s (4.22)

Comparing condition (4.15) with condition (4.22), we see that the former is stronger than

the latter, for the same reasons as in paragraph 4.9.2. Thus this case does not offer new

conditions on the partition pair.

4.12 {Y2, Y1}
′
den

This product vanishes if any factor satisfies

−α+ − α− + E[r α+ + s α−, Y2, Y1,�] =
(

r +A�,2

)

α+ +
(

s− L+
�,1

)

α− = 0, (4.23)

which leads to the conditions

A�,2 = −r + c p, −L�,1 = 1− s+ c p′, (4.24)

which, using the same arguments as in subsections 4.9 and 4.10, are possible for c =

{1, 2, · · · }, � ∈ Y2 and � 6∈ Y1, and we should choose c = 1 to obtain

Y ⊺
2,σ − Y ⊺

1,σ+[p−r] > −
(

p′ − s
)

(4.25)

Comparing condition (4.19) with condition (4.25), we see that the former is stronger than

the latter, for the same reasons as in paragraph 4.10.2. Thus this case does not offer new

conditions on the partition pair.

4.13 Restricted instanton partition functions give the correct 1-point function

on the torus

From the discussion in paragraphs 4.7–4.12, we conclude that zden has no zeros if the

conditions in (4.15) and (4.19) are satisfied. As mentioned in section 1, these conditions

on partition pairs are known. They were introduced and studied in [9], and were further

studied and called Burge pairs in [10]. A full and explicit derivation of the fact that the

generating function of the Burge pairs, that satisfy conditions (4.15) and (4.19), is the

q-series in (3.11), we refer the reader to appendix A of [10].
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4.13.1 Remark

The conditions obtained in this note were written differently in [9, 10] for three reasons. 1.

These papers used the notation {a, b, α, β}, which in terms of the variables {r, s, p, p′} used

in this work are a = r, b = p− r, α = s, and β = p′ − s, 2. The partition rows were labeled

such that Yi > Yi−1, while in this note, we assume the opposite (and more conventional)

labeling, and 3. The conventions in [9, 10] are such that the conditions were expressed

in terms of the Young diagrams that the presentation naturally started with, while in

this work, we wished to follow the conventions of [1, 3, 5], so we ended up expressing the

conditions on the partition pair {Y1, Y2} as conditions on {Y ⊺
1 , Y

⊺
2 }.

5 Restricted instanton partition functions for M p,p
′
,H. The numerator

5.1 Products that appear in the numerator

Two types of products appear in znum, 1. products in the form
∏

�∈Yi
[E[x, Yi,Wj ,�]− µ]

that we refer to as {Yi,Wj}num, and 2. products in the form
∏

�∈Wj
[α+ + α− −

E[−x,Wj , Yi,�] − µ] that we refer to as {Wj , Yi}
′
num. We need to examine the condi-

tions that each of these factors imposes on the partition pairs {Y1, Y2} and {W1,W2}.

5.2 Notation

We set

a1 = −a2 = a = −

(

ma + 1

2

)

α+ −

(

na + 1

2

)

α−,

ma ∈ {0, 1, · · · , p− 2}, na ∈ {0, 1, · · · , p′ − 2}, (5.1)

b1 = −b2 = b = −

(

mb + 1

2

)

α+ −

(

nb + 1

2

)

α−,

mb ∈ {0, 1, · · · , p− 2}, nb ∈ {0, 1, · · · , p′ − 2}, (5.2)

µ = −
1

2
mµ α+ −

1

2
nµ α−, mµ ∈ {0, 1, · · · , p− 2}, nµ ∈ {0, 1, · · · , p′ − 2}, (5.3)

and use the subscript a (b) to indicate the parameters that appear in the conditions on

the partition pairs ~Y ( ~W ) that label the states in the incoming (outgoing) channel that

flows towards (away from) the vertex operator insertion. It is useful to note that, in this

notation,

ra = ma + 1, sa = na + 1, rb = ma + 1, sb = na + 1 (5.4)

Further, to simplify the presentation, we use the notation

M[±,±,±] =
1

2
(±ma ±mb ±mµ) , N[±,±,±] =

1

2
(±na ± nb ± nµ) (5.5)

5.3 The fusion rules

In the notation of subsection 5.2, the fusion rules are

ma +mb +mµ = 0 mod 2, na + nb + nµ = 0 mod 2 (5.6)
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and the triple {ma,mb,mµ} satisfies the triangular conditions

ma +mb > mµ, mb +mµ > ma, mµ +ma > mb (5.7)

with analogous triangular conditions for {na, nb, nµ}.

5.4 Bounds on M[±,±,±] and N[±,±,±]

For the purposes of the proofs in subsections 5.7 and 5.8, we need to show that M[±,±,±]

and N[±,±,±] satisfy the bounds

0 6M[±,±,±] 6 p− 2, 0 6 N[±,±,±] 6 p′ − 2, (5.8)

The lower bounds follow from the lower bounds in the definitions (5.1)–(5.3). The upper

bounds are obtained as follows. There are two ways to choose the charge content of the

highest weight state of a Virasoro irrep. The first choice is αr,s, where

2αr,s = − (r − 1)α+ − (s− 1)α−,

r = m+ 1, s = n+ 1,

0 6 m 6 p− 2, 0 6 n 6 p′ − 2, (5.9)

while the second choice is

2αr′,s′ = −
(

r′ − 1
)

α+ −
(

s′ − 1
)

α−,

r′ = m′ + 1, s′ = n′ + 1,

0 6 m′ 6 p− 2, 0 6 n′ 6 p′ − 2, (5.10)

and the two choice are related by

r′ = p− r, s′ = p′ − s (5.11)

While the two representations are the same, for the purposes of the proofs in the sequel,

we need to use one or the other, as follows.

Scanning a linear conformal block Bp,p′,H
n from left to right, one considers the building

block Zι
bb, ι = 1, 2, · · · , with the Virasoro irrep labeled by {rι−1, sι−1} flowing in from the

left, the vertex operator Oι of the primary field labeled by {rµ, sµ} in the middle, and the

Virasoro irrep labeled by {rι, sι} flowing out to the right. Suppose that the charge content

of the incoming primary field in χι−1 is fixed.13 The charge content of primary state µ of

the vertex operator Oµ in the middle, and that of the outgoing primary field in χι are not

fixed yet, and each can be chosen in one of two equivalent ways. We wish to show that

we can choose these charge contents in such a way that that the upper bounds in (5.8) are

satisfied. This will simplify our proofs in the sequel.

13Starting from Z1
bb, we can choose the charge of the highest weight state in O0 either way, but for the

purposes of this proof, it is sufficient to consider an arbitrary Zι
bb, ι = 1, 2, · · · , n+ 1, and take the charge

of the primary field in χι−1 to be fixed.
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If {mι, nι} and {mµ, nµ} are such that the upper bounds in (5.8) are satisfied, then

use this choice. If {mι, nι} and {mµ, nµ} are such that the upper bounds in (5.8) are not

satisfied, we choose the dual representation of the vertex operator in the middle and the

outgoing Virasoro irrep.14 In other words, p− 1
2 (mι−1 +mµ +mι)−2, that does not satisfy

the upper bound, becomes

p−
1

2

(

mι−1 +m′
µ +m′

ι

)

− 2 =

p−
1

2
(mι−1 + p−mµ − 2 + p−mι − 2)− 2 =

1

2
(mι−1 +mµ +mι) > 0 (5.12)

using the triangular conditions (5.7), and similarly

p′ −
1

2

(

nι−1 + n′µ + n′ι
)

− 2 > 0 (5.13)

Now the charge content of the outgoing primary field is fixed and goes on to become the

incoming primary field of Zι+1
bb or the primary state of On+3. Thus we can always choose

the charge contents such that the upper bounds in equations (5.12) and (5.13).

In the following subsections, we consider the conditions that products in the numerator

must satisfy to be non-zero.15

5.5 {Y1,W1}num

This product vanishes if any factor satisfies

E[a− b, Y1,W1,�]− µ =

−M[+,−,−] α+ −N[+,−,−] α− +A+
Y1
α+ − LW1

α− = 0, (5.14)

which leads to the zero-conditions

A�,Y1 = −M[−,+,+] + c p− 1, −L�,W1 = −N[−,+,+] + c p′ (5.15)

From the triangular conditions (5.7), the maximal value of M[−,+,+] is p − 2, and the

maximal value of N[−,+,+] is p
′ − 2, thus the stronger condition corresponds to c = 1, and

we obtain two zero-conditions that we can write as one non-zero-condition,

W ⊺
1,σ − Y ⊺

1,σ+[p−M[−,+,+]−1] > −
(

p′ −N[−,+,+] − 1
)

(5.16)

14Remember that the charge content of the incoming primary field is given and cannot be changed.
15In writing equations (5.16), (5.19), and (5.20)–(5.24), we choose to group terms together in such a

way to make the analogy with equations (4.15)–(4.25), that involve {Y1, Y2} only, relatively more clear.

Basically, M and N in the former are analogues of (r − 1) and (s− 1) in the latter.
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5.6 {Y1,W1}
′
num

This product vanishes if any factor satisfies

E[−a+ b,W1, Y1,�] + µ− 2α0 =

−
1

2
(−ma +mb +mµ) α+ −

1

2
(−na + nb + nµ) α− +AW1

α+ − L+
Y1
α− = 0, (5.17)

which leads to the zero-conditions

A�,W1
=M[−,+,+] + c p, −L�,Y1

= N[−,+,+] + 1 + c p′ (5.18)

Following 5.5, we should set c = 0, and (5.18) translates to the non-zero-condition

Y ⊺
1,σ −W ⊺

1,σ+M[−,+,+]
> −N[−,+,+] (5.19)

5.7 The remaining six products

The analysis of the remaining six products is identical to that in 5.5 and 5.6, and it suffices

to list the non-zero-condition in each case.

5.7.1 {Y2,W2}num

W ⊺
2,σ − Y ⊺

2,σ+[p−M[+,−,+]−1] > −
(

p′ −N[+,−,+] − 1
)

(5.20)

5.7.2 {Y2,W2}
′
num

Y ⊺
2,σ −W ⊺

2,σ+M[+,−,+]
> −N[+,−,+] (5.21)

5.7.3 {Y1,W2}num

W ⊺
2,σ − Y ⊺

1,σ+M[+,+,−]
> −N[+,+,−] (5.22)

5.7.4 {Y1,W2}
′
num

Y ⊺
1,σ −W ⊺

2,σ+[p−M[+,+,−]−1] > −
(

p′ −N[+,+,−] − 1
)

(5.23)

5.7.5 {Y2,W1}num

W ⊺
1,σ − Y ⊺

2,σ+[p−M[+,+,+]−1]−1 > 1−
(

p′ −N[+,+,+] − 1
)

(5.24)

5.7.6 {Y2,W1}
′
num

Y ⊺
2,σ −W ⊺

1,σ+M[+,+,+]+1 > −
(

N[+,+,+] + 1
)

(5.25)

5.7.7 Remark

Equations (5.23) and (5.24) make sense as Burge-type conditions because of the bounds

in (5.12) and (5.13).

5.8 If the denominator is zero, then the numerator is zero

The non-zero-conditions on the {Yi,Wj}num and {Yi,Wj}′num products that appear in

the numerator can be combined in pairs to produce non-zero-conditions on {Yi, Yj} and

{Wi,Wj} pairs, i 6= j pairs also in the numerator, that can be compared to the first and

second Burge non-zero-conditions (4.15) and (4.19) obtained from the denominator.
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5.8.1 {Y1,W1}num and {Y2,W1}
′
num

Consider conditions (5.16) and (5.25). We eliminate W ⊺
1 to obtain a non-zero condition on

Y1 and Y2 by re-writing (5.16) as

W ⊺

1,σ+[M[+,+,+]+1] − Y ⊺

1,σ+[p−M[−,+,+]−1]+[M[+,+,+]+1] > −p′ +N[−,+,+] + 1 (5.26)

which combined with condition (5.25) gives

Y ⊺
2,σ − Y ⊺

1,σ+[ra−1]+p > 1− sa − p′ (5.27)

which is a weak version of the first Burge condition (4.15).

5.8.2 {Y1,W2}num and {Y2,W2}
′
num

From (5.22) and (5.21),

Y ⊺
2,σ − Y ⊺

1,σ+[ra−1] > 1− sa (5.28)

which is the first Burge condition (4.15).

5.8.3 {Y2,W1}num and {Y1,W1}
′
num

From (5.24) and (5.19),

Y ⊺
1,σ − Y ⊺

2,σ+[p−ra]−1 > 1− [p′ − sa], (5.29)

which is the second Burge condition (4.19).

5.8.4 {Y2,W2}num and {Y1,W2}
′
num

From (5.20) and (5.23),

Y ⊺
1,σ − Y ⊺

2,σ+[p−ra−1]+p > 1− [p′ − sa]− p′, (5.30)

which is a weak version of the second Burge condition (4.19).

5.8.5 {Y1,W1}
′
num and {Y1,W2}num

From (5.19) and (5.22),

W ⊺
2,σ −W ⊺

1,σ+rb−1 > 1− sb, (5.31)

which is the first Burge condition (4.15).

5.8.6 {Y2,W1}
′
num and {Y2,W2}num

From (5.25) and (5.20),

W ⊺
2,σ −W ⊺

1,σ+[rb−1]+p > 1− sb − p′ (5.32)

which is a weak version of the first Burge condition (4.15).
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5.8.7 {Y1,W2}
′
num and {Y1,W1}num

From (5.23) and (5.16),

W ⊺
1,σ −W ⊺

2,σ+[p−rb−1]+p > 1− [p′ − sb]− p′ (5.33)

which is a weak version of the second Burge condition (4.19).

5.8.8 {Y2,W2}
′
num and {Y2,W1}num

From (5.21) and (5.24),

W ⊺
1,σ −W ⊺

2,σ+[p−rb−1] > 1− [p′ − sb] (5.34)

which is the second Burge condition (4.19).

The stronger condition in each of the above cases is one of the Burge conditions. Thus,

when the denominator zden of the building block partition function Zbb is non-zero, then

the numerator znum is also non-zero. The reverse is not true.

Note that the above result is similar but different from that in [7], where Zamolodchikov

argues that 1. The conformal block B gen
n is a meromorphic function in ∆a, the conformal

dimension of the Virasoro irrep that flows in a channel, and that B gen
n has only simple

poles at ∆a = ∆ar,s , where ar,s = −1
2 [rα+ + sα−], and 2. If the fusion rules are satisfied,

then the residue at each pole vanishes.

Our result is that 1. When a summand in Zbb has a zero in the denominator, and the

fusion rules are satisfied, then it also has a zero in the numerator. This is independent of

Zamolodchikov’s statement, since in the latter, the whole sum vanishes rather than just

the summand with the zero in the denominator. 2. Zamolodchikov has argued that B gen
n

has only simple poles, while, as far as we can tell, summands in Zbb can have poles of order

greater then 1.

6 An Ising conformal block

In this section, we set p = 3 and p′ = 4, so that the minimal model component Mp,p′ of

the conformal field theory Mp,p′,H under consideration, is the Ising model. In this case,

there are three primary fields to form conformal blocks from. They can be labeled as

follows. {r, s} = {1, 1} is the identity operator 1, {r, s} = {1, 2} is the spin operator σ and

{r, s} = {1, 3} is the thermal operator ψ. Explicit expressions for conformal blocks can be

found in [15] and references therein. Consider the 6-point conformal block of σ fields in

figure 6.

In this case, α+ =
√

4/3, α− = −
√

3/4, and α1,2 = −1
2α− = −1

2

√

3/4, and follow-

ing [15],

〈σ(z0)σ(z1) · · ·σ(z5)〉 =

1

2

3
∏

i=1

(z2i−2 − z2i−1)
− 1

8









∑

t1=1,
t2,t3=−1,1

3
∏

i=1

ti
∏

16i<j63

(1− xi,j)
titj

4









1
2

, (6.1)
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1 σ 1

σ σ σ σ

σ σ

Figure 5. The comb diagram representation of the Ising 6-point conformal block discussed

in section 6. All external lines correspond to vertex operator insertion of the spin operator σ.

The internal channels carry the Virasoro irreps that correspond to the identity operator, the spin

operator, then the identity operator.

where

xi,j =
(z2i−2 − z2i−1)(z2j−2 − z2j−1)

(z2i−2 − z2j−1)(z2j−2 − z2i−1)
(6.2)

setting the coordinates z0 = 0, z1 = q1q2q3, z2 = q2q3, z3 = q3, z4 = 1, z5 = ∞,

x1,2 =
−q1(1− q2)

1− q1
, x1,3 = q1q2q3, x2,3 =

q3(1− q2)

1− q2q3
. (6.3)

The instanton partition function should equal the product of the Ising conformal block and

a contribution from the Heisenberg algebra H.16 Using e.g. [5], equation (1.9),

Z =





∏

16i6j63

(1− qi · · · qj)
1
8



 〈σ(z0)σ(z1) · · ·σ(z5)〉 (6.4)

Therefore

Z = 1−
1

8
q1 −

1

8
q3 −

5

128
q21 −

1

8
q1q2 +

1

64
q1q3

−
5

128
q22 −

1

8
q2q3 −

5

128
q23 + · · · −

453

8192
q21q

2
2q

2
3 + · · · (6.5)

Calculating the expansion of Z up to degree 2 in each variable, we find that result coincides

with the sum of non-zero terms in the instanton partition function. Using the notation

ZNek (Y1, Y2 | Y3, Y4 | Y5, Y6) =

Zbb (∅,∅ | Y1, Y2) · Zbb (Y1, Y2 | Y3, Y4) · Zbb (Y3, Y4 | ∅,∅) (6.6)

the q21q
2
2q

2
3-term, as an example, is

ZNek (2,∅|∅, 2|2,∅) + ZNek (2,∅|1, 1|2,∅) + ZNek (2,∅|2,∅|2,∅)

+ZNek (2,∅|2,∅|1 + 1,∅) + ZNek (2,∅|1, 1|1 + 1,∅) = −
453

8192
(6.7)

while all other terms, that satisfy Proposition 4.1 and the condition |Y1|+|Y2| = |Y3|+|Y4| =

|Y5|+ |Y6| = 2, vanish.

16The contribution of the Heisenberg algebra H is often referred to as the U(1) factor.
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7 An explanation, based on a conjecture, of why we obtain Mp,p
′
,H con-

formal blocks

As mentioned in section 1, there is a proof of AGT in the context of conformal blocks in

Mgen,H with non-degenerate intermediate Virasoro representations in [5]. In this subsec-

tion, we use 1. results from [5], 2. Proposition 4.1 of section 4, 3. that the generating

function of Burge pairs is the character of Hp,p′,H
r,s [10, 11], and 4. Conjecture 7.1 below, to

explain why restricting the summation to Burge pairs as in (1.4) leads to conformal blocks

in Mp,p′,H. Proving 3 would amount to proving that restricting to Burge pairs leads to

conformal blocks in Mp,p′,H, but this is beyond the scope of this work.

Consider the Verma module Ha over Vgen ⊕H generated by highest-weight vector |a〉,

Lk|a〉 = ak|a〉 = 0, k > 0, L0|a〉 = ∆a|a〉, (7.1)

where Lk, and ak, k ∈ Z, are generators of Vgen and H, respectively, and

∆a =
1

4

(

bgen +
1

bgen

)2

− a2, bgen =

(

ǫ2
ǫ1

) 1
2

. (7.2)

Conformal blocks are defined in terms of vertex operators Oµ(z) : Ha 7→ Hb, that in

turn are defined by the commutation relations

[Lk,Oµ(z)] = zk+1∂zOµ(z) + i(k + 1)∆µ′qkOµ(q), µ′ = µ−
ǫ1 + ǫ2

2
(7.3)

as well as

[ak,Oµ(z)] = iµzkOµ(z), k < 0, [ak,Oµ(z)] = i(Q− µ)zkOµ(z), k > 0 (7.4)

AGT was proven in [5] for generic central charge cgen, in the following sense

Proposition 7.1 Following [5], there exists an orthogonal basis J~Y ∈ Ha labeled by pairs

of Young diagrams such that the matrix elements of vertex operator Oµ satisfy

〈J~Y | Oµ | J ~W 〉

〈J~∅ | Oµ | J~∅〉
= znum

(

~a, ~Y | µ | ~b, ~W
)

(7.5)

where ~a = {a,−a}, ~b = {b,−b}.

From this proposition, it follows that

〈J~Y | J ~W 〉 = znorm

(

~a, ~Y
)

δ~Y , ~W (7.6)

The vectors J~Y can be written in the standard basis of the Verma module,

J~Y =
∑

λ,µ

Cλ,µ
~Y
L−λ1L−λ2 · · · a−µ1a−µ2 · · · |a〉, (7.7)

where the summation is over partition pairs {λ, µ} such that |λ| + |µ| = |Y1| + |Y2|. The

coefficients Cλ,µ
~Y

depend on the parameters a, bgen. In [5, Corollary 3.8], it was proven that

Cλ,µ
~Y

is a polynomial in a. In this section, we need the following conjecture17

17This conjecture is not original to this work. It is standard in the community, although not written in

the literature.
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Conjecture 7.1 The coefficients Cλ,µ
~Y

are Laurent polynomials in bgen.

Conjecture 7.1 is motivated by the explicit examples of the vectors J~Y [5]. Further

motivation is provided by the relation between Jack symmetric functions Jα
Y [16] and J~Y ,

for α = b2gen [5]. Namely, from Macdonald’s conjectures, proved by Haiman [17], the

coefficients of Jα
Y , in the standard basis, are polynomial in α, so it is natural to expect that

J~Y satisfies an analogous property.

Assuming Conjecture 7.1, we can set bgen → bp,p′ and a → ar,s, as defined in subsec-

tion 3.2. Thus, we can consider J~Y as vectors in the module over H ⊕ Vp,p′ . In this case,

the Verma module Ha becomes reducible, the maximal submodule Kera is a kernel of the

Shapovalov form 〈·|·〉 on Ha, and the irreducible quotient is Hp,p′,H
r,s = H p,p′

r,s ⊗F .

It was follows from (4) and (7.6) that ~Y satisfy condition (4.1) if and only if the vector

J~Y is not in the kernel Kera. Then to each Burge pair ~YBurge one can consider J~Y as an

element of quotient Hp,p′,H
r,s . The vectors J~Y ∈ Hp,p′,H

r,s , for a Burge pair ~YBurge, are linearly

independent since they are orthogonal. It was proven in [10, 11], that the generating

function of Burge pairs give the character of Hp,p′,H
r,s . Therefore the vectors J~YBurge

form a

basis in Hp,p′,H
r,s . This is the point of this subsection.

Finally we note that the norms and matrix elements of Oµ depend on the parameters

{a, b, µ, ǫ1, ǫ2} algebraically. Therefore, since (7.5) was proven for a generic central charge,

it holds for the Mp,p′,H models, and the expression that we obtain for Bp,p′,H
n , by summing

over Burge pairs, holds.

8 Generic model conformal blocks with Degenerate intermediate repre-

sentations

In generic models with a generic central charge cgen, znorm[~a, ~Y ] can have zeros due to

degenerate Vgen representations in the intermediate channels. Since ~a = {a,−a}, setting

2a = 2ar,s = −rβ+ − sβ−, we can study these zeros just as in section 4. Since the central

charge is generic we have

C+ β+ + C− β− = 0, (8.1)

if and only if C+ = C− = 0, and only the {Y1, Y2}den factors can be zero. Proceeding from

the two zero-conditions (8.1), we obtain

Proposition 8.1 znorm[~a, ~Y ] 6= 0 if and only if Y ⊺
2,σ − Y ⊺

1,σ+r−1 > 1− s

The proof of Proposition 8.1 follows the same line of arguments as the proof of Proposi-

tion 4.1 in section 4. From Proposition 8.1, we obtain

Proposition 8.2

Bdegen,H
n =

′
∑

~Y 1,··· ,~Y n

n+1
∏

ι=1

q|
~Y ι|
ι Zbb

(

~aι−1, ~Y ι−1 | µι | ~aι, ~Y ι,
)

(8.2)

where Bdegen,H
n is an n-channel generic model conformal block, such that some of the chan-

nels carry degenerate intermediate representations, and
∑′ indicates that, for channels
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that carry degenerate representations, the sum is restricted to partition pairs that satisfy

Proposition 8.1.

The proof of Proposition 8.2 is based on the same line of arguments as in section 7 but

without requiring a conjecture analogous to Conjecture 7.1. Indeed, since the coefficients of

J~Y are polynomial in a, we can set a = ar,s in (7.7). The vectors J~Y for which znorm[~a, ~Y ] =

0, belong to the kernel of the Shapovalov form on the Verma module Ha. Let H
gen
r,s denote

the irreducible quotient of Ha. The vectors J~Y , where
~Y satisfy Proposition 8.1, project to

the module Hgen
r,s . In [11], Feigin et al. proved that the generating function of the ~Y pairs

that satisfy Proposition 8.1 is the character of Hgen
r,s , therefore the corresponding vectors

J~Y form a basis in Hgen
r,s . Using (7.5) and (7.6), we obtain the expression (8.2) for the

conformal block for degenerate representations.

9 Comments and remarks

9.1 q-gl∞ Ding-Iohara

Let E be the algebra called q-deformed gl∞ in [11], and Ding-Iohara in [18].18 Following [18],

operators in the rank-2 representations Fu1 ⊗ Fu2 of E generate the sum of a q-deformed

Virasoro algebra and a q-deformed Heisenberg algebra. On the other hand, following [11]

[Theorem 3.8], for special values of parameters u1 and u2, as well as q1 and q3 of E , this

representation has a sub-representation with a basis labeled by Burge pairs. In is natural

to expect that in the limit q1, q3 → ∞, the basis constructed in [11] reduces to the basis

J~Y described in section 7.

9.2 Higher-rank AGT-W

AGT was extended to theories based on the higher rank algebras WN ⊕ H, N > 2, by

Wyllard in [19], and by Mironov and Morozov in [20]. In this note, we chose to simplify

the presentation by focusing on Virasoro minimal models, but we expect that our analysis

extends without essential modification to minimal models based on WN algebras with

N > 2. We conjecture that the restricted partitions that are relevant to these extended

cases are those that appeared in [11].

9.3 The work of Alkalaev and Belavin

In [21], Alkalaev and Belavin independently suggested the Virasoro result in (1.4) in the

4-point conformal block case. They proved a proposition equivalent to 4.1, made the same

comment on conformal blocks in generic models with degenerate intermediate representa-

tions as in section 8, albeit without proving an analogue of Proposition 8.2 and made the

same WN conjecture as in subsection 9.2.

18Also called ‘quantum toroidal gl(1) algebra’, ‘elliptic Hall algebra’, etc. in the literature.
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9.4 Previous works on AGT in minimal models

There are two previous works on AGT in minimal models that we are aware of. In [8],

Santachiara and Tanzini identify Moore-Read wave functions, which are minimal model

conformal blocks of {r, s} = {1, 2} and {2, 1} vertex operators, with Nekrasov instanton

partition functions, AGT is applied without modification to these conformal blocks and

ill-defined expressions are made well-defined using a deformation scheme, as outlined in

subsection 1.3. In [22], Estienne, Pasquier, Santachiara and Serban interpret Wn⊕H mini-

mal model conformal blocks of {r, s} = {1, 2} and {2, 1} vertex operators as wave functions

of a trigonometric Calogero-Sutherland models with non-trivial braiding properties, and

find that the excited states are characterized by (n+ 1)-partitions, just as in AGT. While

Estienne et al. use different notation from ours, preliminary checks indicate that their par-

titions can be translated to the Burge pairs used in this note, for n = 2, and {r, s} = {1, 2}

or {2, 1}.

9.5 Geometry

Let M(r,N) be the moduli space of U(r) instantons on R
4. The instanton partition

function for
∏n

i=1U(2)ι gauge theory equals the generating function of equvariant integrals

over M(2, N1)×· · ·×M(2, Nn), where the equivariant integral is taken with respect to the

torus T = (C∗)2 × (C∗)21 × (C∗)22 × · · · × (C∗)2n, where the first (C∗)2 acts on C
2, and (C∗)2i

acts on the i-th instanton moduli space M(2, Ni) by constant gauge transformation. These

equvariant integrals are computed using localization and is given by the torus fixed points.

These points were labeled by n pairs of Young diagrams ~Y 1, · · · , ~Y n. The parameters ǫ1,

ǫ2, and ~a
i are the coordinates on t = Lie(T). In the Mp,p′,H case, ǫ1 and ǫ2 are linearly-

dependent, and aij is given by (3.7). Geometrically, this means that we are considering the

one-dimensional subgroup C
∗
ǫ1,ǫ2,~ai

⊂ T.

The function znorm[~a, ~Y ] is the determinant of the vector field with coordinates {ǫ1, ǫ2,

a1, a2} on the tangent space of the point labeled by ~Y . The condition znorm[~a, ~Y ] 6= 0

is equivalent to the fact that corresponding point is an isolated fixed point of the one

dimensional torus C∗
ǫ1,ǫ2,~ai

. Therefore, summing over Burge pairs is equivalent to summing

over the isolated torus fixed points.
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