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Abstract We study the abelian sandpile growth model, where n particles are added at the
origin on a stable background configuration in Z

d . Any site with at least 2d particles then
topples by sending one particle to each neighbor. We find that with constant background
height h ≤ 2d − 2, the diameter of the set of sites that topple has order n1/d . This was
previously known only for h < d. Our proof uses a strong form of the least action principle
for sandpiles, and a novel method of background modification.

We can extend this diameter bound to certain backgrounds in which an arbitrarily high
fraction of sites have height 2d − 1. On the other hand, we show that if the background
height 2d −2 is augmented by 1 at an arbitrarily small fraction of sites chosen independently
at random, then adding finitely many particles creates an explosion (a sandpile that never
stabilizes).

Keywords Abelian sandpile · Bootstrap percolation · Dimensional reduction · Discrete
Laplacian · Growth model · Least action principle

1 Introduction

In this paper we consider the abelian sandpile model as a growth model in the integer lat-
tice Z

d . The model starts from a stable background configuration in which each site x has
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Fig. 1 (Color online) Left: Stable sandpile of n = 2 · 105 particles in Z
2 on background height h = 2.

Right: Sandpile of n = 15000 particles in Z
2 on background height 3, except every fifth row and column has

background height 2. In both cases, the set Tn is a square. Color scheme: sites colored blue have 3 particles,
turquoise 2 particles, yellow 1 particle, red 0 particles

a pile of σ(x) ≤ 2d − 1 particles. To this background, n particles are added at the origin.
Typically, n is large. We stabilize this configuration by toppling every unstable site; that is,
every site with at least 2d particles gives one particle to each of its neighbors, until there are
no more unstable sites. For more information on the abelian sandpile model, also known as
the chip-firing game, see [1–3, 11].

To keep things simple in this introduction, we will enumerate the sites in Z
d (say, in order

of increasing distance from the origin, breaking ties arbitrarily) and perform topplings one
by one in discrete time: At each time step, if there are any unstable sites, then the smallest
unstable site topples. All of our results hold also for the more general toppling procedures
discussed in Sect. 2.

Let Tn = Tn,d,σ be the set of sites that topple (Fig. 1). Since these sets are nested, T1 ⊆
T2 ⊆ · · · , it is natural to view them as a growth model, with n playing the role of a time
parameter. We distinguish between two extreme cases. If Tn is finite for all n, we say that
σ is robust. In this case we are interested in the growth rate, i.e. in how the diameter of Tn

grows with n.
At the other extreme, if Tn = Z

d for some n, then every site topples infinitely often.
Otherwise, some site x ∈ Z

d must finish toppling before all of its neighbors do; since each
neighbor topples at least once after x finishes toppling, x receives 2d additional particles
and must topple again.

If Tn = Z
d for some n, then we say that σ is explosive, and it is exploding when

the n particles are added. (In [7], the term ‘not stabilizable’ was used for ‘exploding,’
and ‘metastable’ for ‘explosive.’) The simplest example of an explosive background is
σ(x) = 2d − 1 for all x, to which the addition of a single extra particle causes every site
in Z

d to topple infinitely many times.
We remark that an intermediate behavior is possible, when Tn is infinite for a finite n,

but Tn �= Z
d for all n. An example is the background with 3 particles at every site on the

x-axis in Z
2, and 2 particles at every other site. Adding one particle at the origin produces an

infinite avalanche of topplings, but each site topples only finitely many times. This example
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shows that exploding is a strictly stronger condition than having an infinite avalanche of
topplings.

The papers [6] and [10] investigated the case of a robust constant background of h ≤
2d − 2 particles at every site. In the regime h < d , the diameter of Tn grows like n1/d ; the
best known bounds can be found in [10, Theorem 4.1]. In the case h = 2d − 2, the set Tn

is a cube for every n, and an upper bound for the radius is n [6, Theorem 4.1]. No proof
was found for a better upper bound, even though simulations clearly indicated a growth rate
proportional to n1/d .

In this paper we complete the picture by deriving an upper bound of order n1/d on the
diameter of Tn for all h ≤ 2d −2, and even for some backgrounds arbitrarily close to 2d −1.
We first correct a gap in the proof of the outer bound of [10, Theorem 4.1], which we thank
Haiyan Liu for pointing out to us. Then we use this theorem together with a new technique
of “background modification” to extend the bounds to higher values of h.

Throughout the paper, we will typically use the symbol σ to indicate a stable background
configuration, and η to indicate an arbitrary (possibly unstable) configuration. We use h to
denote the constant configuration σ(x) ≡ h, and we denote a single particle at the origin
by δo. Write

Qr = {x ∈ Z
d : max |xi | ≤ r}

for the cube of side length 2r + 1 centered at the origin in Z
d . Let ωd be the volume of the

unit ball in R
d .

Our main result, proved in Sect. 3, is the following.

Theorem 1.1 Fix integers d ≤ h ≤ 2d − 2, and let Tn,d,h be the set of sites in Z
d that topple

during the stabilization of h + nδo. Then for any ε > 0, we have

Tn,d,h ⊂ Qr

for all sufficiently large n, where

r = d + ε

2d − 1 − h

(
n

ωd

)1/d

.

In the case d = h = 2, Theorem 1.1 gives a bound of 2+ε√
π

√
n ≈ 1.13

√
n on the radius

of the square of sites that topple. Large scale simulations by David Wilson indicate that the
actual radius is approximately 0.75

√
n.

It is natural to ask what happens when the background height h exceeds 2d −2. While the
background 2d − 1 is explosive, our next result shows that there exist robust backgrounds
in which an arbitrarily high proportion of sites have 2d − 1 particles. For m ≥ 1, let

�(m) = {x ∈ Z
d : m � | xi for all 1 ≤ i ≤ d}.

Thus �(m) is a union of cubes of side length m − 1. The following theorem generalizes the
case h = 2d − 2 of Theorem 1.1, which corresponds to the case m = 1.

Theorem 1.2 For any m ≥ 1, the background

σ = 2d − 2 + 1�(m)
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Fig. 2 (Color online) An
exploding sandpile started from
n = 5000 particles in Z

2.
Background height is 2 except
for sites in the lattice generated
by (1,10) and (10,1), which
have background height 3.
Unstable sites are colored black

is robust on Z
d . Moreover, writing Tn,d,σ for the set of sites in Z

d that topple during the
stabilization of σ + nδo, then for any ε > 0, we have

Tn,d,σ ⊂ Qr

for all sufficiently large n, where

r = m(d + ε)

(
n

ωd

)1/d

.

On the basis of this theorem, one might guess that 2d − 1 is the critical density below
which a background is robust and above which it is explosive. Our next two results show
that this is not the case. Starting from background height 2d − 2, we can destroy robustness
by adding extra particles on an arbitrarily sparse lattice L ⊂ Z

d (Fig. 2).

Proposition 1.3 Let xi = (xi1, . . . , xid) for i = 1, . . . , d be linearly independent vectors in
Z

d satisfying gcd(x1j , . . . , xdj ) = 1 for all j = 1, . . . , d . Let L = Zx1 + · · · + Zxd . Then the
background 2d − 2 + 1L on Z

d is explosive.

Comparing Theorem 1.2 and Proposition 1.3, we see that the geometry of the extra parti-
cles plays a more important role in determining robustness than the density of sites at which
particles are added. In particular, the fact that L intersects every hyperplane in Z

d that is
parallel to one of the coordinate hyperplanes, while �(m) does not, plays a key role in the
proofs.

As our next result shows, the lattice structure is not essential in Proposition 1.3. We can
also produce an explosive background by adding particles at rare random sites.

Proposition 1.4 Fix ε > 0, and let (β(x))x∈Zd be independent Bernoulli random variables
with P(β(x) = 1) = ε. With probability 1, the background 2d − 2 + β on Z

d is explosive.
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Our proofs make extensive use of the abelian property of the abelian sandpile model,
which we state and generalize in the next section.

2 Least Action Principle

We begin by recalling the notion of toppling procedure defined in [8]. This formalism in-
cludes most of the natural ways to topple, including: discrete time parallel updates, in which
all unstable vertices topple simultaneously; toppling in nested volumes, in which we suc-
cessively stabilize larger and larger finite regions of Z

d ; and Markov toppling in continuous
time, in which each site has a Poisson clock and attempts to topple whenever its clock rings.
The technical details of the toppling procedures are tangential to our main argument, so the
reader may wish to skim them and move on to the “least action principle,” which is the only
new material in this section.

Let X = Z
Z

d
. We think of elements of X as particle configurations on Z

d in which some
sites may have a negative number of particles. We endow X with the Borel σ -algebra coming
from the product topology, with Z having the discrete topology. On Z

d and on N we use the
full power set as a σ -algebra, and on the half-line [0,∞) we use the usual Borel σ -algebra.
A toppling procedure is a measurable function

T : [0,∞) × Z
d × X → N

satisfying for all η ∈ X and all x ∈ Z
d

(a) T (0, x, η) = 0.
(b) The function t → T (t, x, η) is right-continuous and nondecreasing with jumps of size

at most one, i.e., for all t ≥ 0,

T (t, x, η) − lim
s↑t

T (s, x, η) ≤ 1.

(c) In every finite time interval, there are only finitely many jumps at x.
(d) There is no “infinite backward chain of topplings,” i.e., no path x1 ∼ x2 ∼ · · · and se-

quence of times t1 > t2 > · · · such that for all i = 1,2, . . .

T (ti , xi, η) > lim
s↑ti

T (s, xi, η).

We interpret T (t, x, η) as the number of times x topples in the time interval [0, t], for
initial configuration η. We say that x topples at time t for initial configuration η, if

T (t, x, η) > lim
s↑t

T (s, x, η).

The toppling procedure T may be deterministic (as in parallel updates or nested volumes)
or random (as in Markov toppling). A random toppling procedure can be viewed as a mea-
surable function

T : [0,∞) × Z
d × X × 
 → N ∪ {∞},

where 
 is a probability space. In this case, we require T (·, ·, ·,ω) to satisfy properties
(a)–(d) for almost all ω ∈ 
.
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If u,v are functions on Z
d , write u ≤ v if u(x) ≤ v(x) for all x ∈ Z

d . The discrete
Laplacian �u of u is the function

�u(x) =
∑
y∼x

u(y) − 2d u(x) (1)

where the sum is taken over the 2d lattice neighbors of x.
Given a toppling procedure T and initial configuration η, the resulting configuration at

time t is

ηt := η + �T (t, ·, η).

We say that T is legal for η if for all x ∈ Z
d and all t ≥ 0 such that x topples at time t , we

have

lim
s↑t

ηs(x) ≥ 2d.

That is, in a legal toppling procedure only unstable sites are toppled.
We set

T (∞, x, η) = sup
t≥0

T (t, x, η) ∈ N ∪ {∞}.

We say that T is finite for initial configuration η, if T (∞, x, η) < ∞ for all x ∈ Z
d . In this

case, we say that T is stabilizing for η if

η∞ := η + �T (∞, ·, η) ≤ 2d − 1.

That is, in the final configuration η∞ no site is unstable.
The following lemma has been proved a number of times in various settings [2–4, 8, 11].

Lemma 2.1 (Abelian property) For any η ∈ X , if T is a finite legal stabilizing toppling
procedure for η, then any legal toppling procedure is finite for η. Moreover if T ′ is another
legal stabilizing toppling procedure for η, then for all x ∈ Z

d

T (∞, x, η) = T ′(∞, x, η).

If η is a particle configuration for which there exists a finite legal stabilizing toppling
procedure, then we say that η stabilizes; otherwise, we say that η is exploding. If η stabilizes,
then the function u : Z

d → N given by

u(x) = T (∞, x, η), (2)

where T is any legal stabilizing toppling procedure for η, is called the odometer of η.
Note that if every site topples at least once, then η must be exploding. Otherwise, by

the no infinite backward chain condition (d), some site x ∈ Z
d must finish toppling no later

than all of its neighbors do; since each neighbor topples at least once more, x receives 2d

additional particles and must topple again, a contradiction. Thus we have shown

Lemma 2.2 [8, Theorem 2.8, item 4] If η stabilizes, then u(x) = 0 for some x ∈ Z
d .
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Let η be a particle configuration that stabilizes, and let u be its odometer function (2).
In our application, we will take η = σ + nδo, where σ is a robust background. Since �u(x)

counts the net number of particles exiting the site x, the stabilization η∞ of η is given by

η∞ = η + �u.

Definition Given a particle configuration η on Z
d , a function u1 : Z

d → Z, is called stabi-
lizing for η if

η + �u1 ≤ 2d − 1.

Informally, we may think of η+�u1 as the configuration obtained from η by performing
u1(x) topplings at each site x ∈ Z

d . Note, however, that the above definition makes no
requirement that these topplings be legal; that is, they may produce sites with a negative
number of particles.

Our proof of Theorem 1.1 rests on the following lemma, which characterizes the odome-
ter function u as minimal among all nonnegative stabilizing functions. Deepak Dhar has
aptly called this a “least action principle,” in the sense that the number of topplings in a
legal toppling sequence is the minimum number required to stabilize the configuration. In
fact, more is true: not only is the total number of topplings minimized, but each vertex does
the minimum amount of work required of it to stabilize the configuration.

According to the abelian property, if we use a legal toppling procedure to stabilize η,
then each site x topples exactly u(x) times, regardless of the choice of procedure. The least
action principle says that in any sequence of topplings that stabilizes η, even if some of those
topplings are illegal, each site x topples at least u(x) times.

Lemma 2.3 (Least Action Principle) Let η be a particle configuration on Z
d that is not

exploding, and let u be its odometer. If u1 : Z
d → N is stabilizing for η, then u1 ≥ u.

Proof To compare u1 to the odometer, we use the following discrete time legal toppling
procedure T ′. Enumerate the sites in Z

d . Call a site x ∈ Z
d ready if it has at least 2d particles

and has toppled fewer than u1(x) times. At each time step, if there are any ready sites, topple
the smallest ready site.

Write u′(x) = T ′(∞, x, η) for the number of times x topples during this procedure. We
will show that u′ = u. If η′ = η + �u′ is stable, then T ′ is stabilizing as well as legal,
so u′ = u by the abelian property. Otherwise, η′ has some unstable site y. We must have
u′(y) = u1(y); otherwise, y would still be ready. Writing u′′ = u1 − u′, we obtain

(η + �u1)(y) = η′(y) + �u′′(y) ≥ η′(y) ≥ 2d

since u′′(y) = 0. This contradicts the assumption that u1 is stabilizing. �

We pause here to record a closely related fact. If u1, u2 are functions on Z
d , write

min(u1, u2) for their pointwise minimum. If x ∈ Z
d is a site where u1(x) ≤ u2(x), then

�min(u1, u2)(x) =
∑
y∼x

min(u1(y), u2(y)) − 2d u1(x)

≤
∑
y∼x

u1(y) − 2d u1(x) = �u1(x).
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Likewise, if u1(x) > u2(x), then �min(u1, u2)(x) ≤ �u2(x). So

�min(u1, u2) ≤ max(�u1,�u2).

As a consequence, we obtain the following.

Lemma 2.4 If u1 and u2 are stabilizing for σ , then min(u1, u2) is also stabilizing for σ .

Proof σ + �min(u1, u2) ≤ max(σ + �u1, σ + �u2) ≤ 2d − 1. �

The set of stabilizing functions is also closed under adding any constant function, giving
it the structure of a module over the tropical semiring (Z,min,+). A related module is
studied in [9].

3 Growth Rates

Fix an integer h ≤ 2d − 2, and let η be the configuration h + nδo on Z
d . Let Sn be the set

of sites that ever topple or receive a particle during the stabilization of η (in [10] these were
called “visited” sites). Note that if y receives a particle, then one of its neighbors must have
toppled. Thus Sn is related to the set Tn of sites that topple by

Sn = Tn ∪ ∂Tn

where for A ⊂ Z
d we write

∂A = {y ∈ Z
d : y �∈ A,∃z ∈ A,z ∼ y}.

Write |x| = (x2
1 + · · · + x2

d )
1/2 for the Euclidean norm on Z

d , and for r > 0 let

Br = {x ∈ Z
d : |x| < r}

be the ball of radius r centered at the origin in Z
d . Let ωd be the volume of the unit ball

in R
d . For the proof of Theorem 1.1, we take as a starting point the following result of [10].

Theorem 3.1 [10, Theorem 4.1] Fix an integer h ≤ 2d − 2. For any n ≥ 1, we have

Bc1r−c2 ⊂ Sn

where r is such that n = ωdr
d , and

c1 = (2d − 1 − h)−1/d

and c2 is a constant depending only on d . Moreover if h ≤ d − 1, then for any n ≥ 1 and
any ε > 0 we have

Sn ⊂ Bc′
1r+c′

2
(3)

where

c′
1 = (d − ε − h)−1/d

and c′
2 is independent of n but may depend on d , h and ε.
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Note that h may be negative, in which case the background h corresponds to each site in
Z

d starting with a “hole” of depth H = −h.
We are grateful to Haiyan Liu for pointing out a gap in the proof of the outer bound (3).

The gap occurs in Lemma 4.2 of [10], which is valid only for H ≥ 0. We correct this gap
in Sect. 3.1. Next, in Sect. 3.2, we explain our technique of “background modification,” and
use it to deduce Theorem 1.1 from Theorem 3.1.

3.1 Low Background Height

Fix 0 ≤ h ≤ d − 1, let η be the configuration h + nδo on Z
d , and consider the odometer

function

un(x) = number of times x topples during the stabilization of η.

The normalization of the odometer function and of the discrete Laplacian (1) differs by a
factor of 2d from the one used in [10]. It is the most convenient normalization for the abelian
sandpile, since 2d particles move in every toppling.

In [10] it is proved that for every site x ∈ Z
d with c′

1r − 1 < |x| ≤ c′
1r we have

un(x) ≤ c

where c is a constant which may depend on d , h and ε but not on n. (In the notation of [10],
c = c′

2/2d .)
It follows that un is uniformly bounded outside the ball Bc′

1r ; indeed, if |x| > c′
1r , then

setting n′ = �ωd(|x|/c′
1)

d�, since n ≤ n′ we have by the abelian property

un(x) ≤ un′(x) ≤ c.

The next lemma shows that in fact, un = 0 outside the slightly larger ball Bc′
1r+c−1. Hence

Tn ⊂ Bc′
1r+c−1, and hence Sn ⊂ Bc′

1r+c , which completes the proof of (3).

Lemma 3.2 For all j = 0,1, . . . , c and all x ∈ Z
d with |x| > c′

1r + j − 1, we have

un(x) ≤ c − j.

Proof Let

Rj = {x ∈ Z
d : |x| > c′

1r + j − 1}.
Note that for any x ∈ Rj , all neighbors y ∼ x lie in Rj−1, and at least d neighbors have
|y| ≥ |x|, so at least d neighbors lie in Rj .

We will prove the lemma by induction on j . Let

Uj = {x ∈ Rj |un(x) > c − j}.

If Uj is empty, then the proof is complete. Otherwise, by the no infinite backward chain
condition, there exists a site x ∈ Uj that finishes toppling no later than all of its neighbors
in Uj . By the inductive hypothesis, every neighbor y of x satisfies.

un(y) ≤ c − j + 1.
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Just before x topples for the last time, each neighbor y ∈ Uj has not yet toppled for the last
time, so y has toppled at most c−j times. Moreover, each neighbor y ∈ Rj −Uj has toppled
at most c − j times; and each neighbor y /∈ Rj has toppled at most c − j + 1 times. Hence,
just before it topples for the last time, x has received at most d(c − j) + d(c − j + 1) chips
and emitted at least 2d(c − j) chips, leaving it with at most h + d chips. Since h ≤ d − 1,
this is not enough chips to topple, which gives the required contradiction. �

3.2 High Background Height

To prove Theorem 1.1 using the least action principle (Lemma 2.3), for each coordinate
i = 1, . . . , d we will construct a toppling function gi supported in the slab

Ai,r = {x ∈ Z
d : |xi | ≤ r}. (4)

The effect of toppling according to gi will be to modify the constant background height h

by “clearing out” particles down to height at most d − 1 in a smaller slab Ai,r0 and “piling
them up” to height at most 2d − 1 outside Ai,r0 . We will see that this can be done while
keeping r0 proportional to r .

On this modified background, n particles at the origin will spread with a growth rate at
most according to h = d − 1, provided n is small enough so that the particles do not spread
outside Qr0 . This growth rate is controlled by Theorem 3.1: n particles on constant back-
ground height d − 1 in Z

d spread at most a distance of order n1/d . Since r0 is proportional
to r , we can therefore choose n proportional to rd .

The desired background modification can be accomplished a function of just one coor-
dinate, gi(x1, . . . , xd) = g(xi). The next lemma spares us the need to specify g explicitly;
it suffices to specify how the background is modified. In the lemma, g plays the role of
toppling function on Z, and f represents the net change in height of the configuration. The
conditions (5) mean in words that topplings cannot change the total number of particles, nor
the center of mass of a configuration.

Lemma 3.3 If f : Z → Z is supported on a finite interval I = [−a, b], and

∑
y∈I

f (y) =
∑
y∈I

yf (y) = 0, (5)

then f = �g for an integer-valued function g supported on the interval I ′ = [1 − a, b − 1].
Moreover, if there are no x1 < x2 < x3 such that f (x1) < 0, f (x2) > 0 and f (x3) < 0, then
g ≥ 0.

Proof Let

g(x) =
x−1∑

y=−a

(x − y)f (y).

Then for x ≥ b we have

g(x) = x

b∑
y=−a

f (y) −
b∑

y=−a

yf (y) = 0
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so g is supported on I ′. Also

�g(x) = g(x + 1) − 2g(x) + g(x − 1)

= f (x) +
x−2∑

y=−a

((x + 1 − y) − 2(x − y) + (x − 1 − y))f (y) = f (x)

as desired.
If g(z) < 0 for some z, then since g(−a) = g(b) = 0, the difference

Dg(y) = g(y + 1) − g(y)

satisfies Dg(y1) < 0 and Dg(y2) > 0 for some y1 < z ≤ y2. Hence the second difference

f (x) = �g(x) = Dg(x) − Dg(x − 1)

satisfies f (x1) < 0, f (x2) > 0 and f (x3) < 0 for some x1 ≤ y1 < x2 ≤ y2 < x3. �

Proof of Theorem 1.1 For each i = 1, . . . , d we will construct a nonnegative function ui on
Z

d which is stabilizing for the configuration h+nδo, and supported on the infinite slab Ai,r ;
see (4).

By the least action principle, Lemma 2.3, the odometer function u satisfies u ≤ ui for
i = 1, . . . , d . Since Tn,d,h is the support of u, we obtain

Tn,d,h ⊆
d⋂

i=1

Ai,r = Qr.

To construct ui , let w : Z
d → N be the odometer function for the configuration d − 1 +

nδo. By Theorem 3.1, if n is sufficiently large, then w is supported on the ball centered at
the origin of radius

ρ =
(

1 + ε

2d

)(
n

ωd

)1/d

. (6)

In particular, w vanishes outside the cube Qρ .
Let r0 be the smallest integer multiple of 2d − 1 − h exceeding ρ, and let

r1 = d

2d − 1 − h
r0.

Let f : Z → Z be given by

f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2(d − 1 − h), x = 0,

d − 1 − h, 0 < |x| < r0,

2d − 1 − h, r0 ≤ |x| < r1,

0, |x| ≥ r1.

Then with I = [1 − r1, r1 − 1]
∑
y∈I

f (y) = 2r0(d − 1 − h) + (2r1 − 2r0)(2d − 1 − h)

= −2dr0 + 2(2d − 1 − h)r1 = 0.
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Since f (y) = f (−y) we have
∑

y∈I yf (y) = 0. By Lemma 3.3, f = �g for a nonnegative
integer-valued function g supported on the interval I ′ = [2 − r1, r1 − 2].

For x = (x1, . . . , xd) ∈ Z
d , define

ui(x) = w(x) + g(xi).

Note that the function g(xi) has d-dimensional Laplacian f (xi). Inside the cube Qρ , we
have f (xi) ≤ d − 1 − h, hence inside Qρ

h + nδo + �ui ≤ d − 1 + nδo + �w ≤ 2d − 1.

Outside Qρ , since w vanishes and f (xi) ≤ 2d − 1 − h, we have

h + nδo + �ui ≤ 2d − 1.

Thus ui is stabilizing for h + nδo. Moreover, since

r1 ≤ d

(
ρ

2d − 1 − h
+ 1

)

= d + ε/2

2d − 1 − h

(
n

ωd

)1/d

+ d

we have r1 ≤ r for sufficiently large n, hence ui is supported on the slab Ai,r as desired. �

We remark that in addition to bounding the set of sites Tn,d,h that topple, the proof gives
a bound on the odometer function

u(x) = # times x topples in the stabilization of h + nδo in Z
d ,

namely

u(x) ≤ min(u1(x), . . . , ud(x))

= w(x) + min(g(x1), . . . , g(xd))

= w(x) + g(max |xi |).

By Lemma 2.4, the right side is stabilizing for h+nδo. The resulting stable configuration in
the case d = h = 2 is pictured in Fig. 3.

The proof of Theorem 1.2 is identical to that of Theorem 1.1, except that we now choose

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 − 2d, x = 0,

−d, 0 < |x| < r0 and m � x,

1 − d, 0 < |x| < r0 and m|x,

0, r0 ≤ |x| < r1 and m � x,

1, r0 ≤ |x| < r1 and m|x,

0, |x| ≥ r1,

where r0 the smallest integer exceeding ρ = (1 + ε
2d

)( n
ωd

)1/d , and

r1 = m(dr0 − 1).
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Fig. 3 (Color online) Left: The stable configuration 2 + nδo + �min(u1, u2) constructed in the proof of
Theorem 1.1. Sites with negative height, along the diagonals of the square, are colored orange. Right: The
stabilization of 2 + nδo . Here n = 105

Then we have that

r1 ≤ m
(
d + ε

2

)(
n

ωd

)1/d

+ m(d − 1),

so that again r1 ≤ r for sufficiently large n.

4 Robust and Explosive Backgrounds

Write ψ1 = e1, . . . ,ψd = ed,ψd+1 = −e1, . . . ,ψ2d = −ed for the 2d coordinate directions
in Z

d . If R is a rectangular prism in Z
d , write

Fi(R) = {y : y �∈ R,y − ψi ∈ R}
for the outer face of R in direction ψi .

We will deduce Propositions 1.3 and 1.4 from the following slightly more general result.

Theorem 4.1 Let σ be a background on Z
d satisfying

(i) σ(x) ≥ 2d − 2 for all x ∈ Z
d ; and

(ii) There exists r0 ∈ N such that for all r ≥ r0, each outer face Fi(Qr) contains a site x

with σ(x) ≥ 2d − 1.

Then σ is explosive.

Proof By Lemma 2.2, in order to prove that a configuration η on Z
d is exploding, it suffices

to find a toppling procedure in which every site in Z
d topples at least once.
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From [6, Theorem 4.1], if the background height is exactly 2d − 2, then for every n, the
set of sites that topple during stabilization forms a cube Qr , and we can choose n so that
r ≥ r0.

Let R0 = Qr and

Rk = Rk−1 ∪ Fk mod 2d(Rk−1), k ≥ 1.

We will define a toppling order in stages k = 0,1,2, . . . so that at the end of stage k, all sites
in Rk have toppled at least once, and no other sites have toppled. Since

⋃
k≥0 Rk = Z

d , it
follows that every site in Z

d topples at least once, so σ + nδo is exploding.
During stage 0, we perform all the topplings that occur in the stabilization of 2d − 2 +

nδo. Then every site in the cube R0 has toppled at least once, and no other sites have toppled.
Hence by (i), every site in every outer face of R0 now has at least 2d − 1 particles, and by
(ii), in every outer face there is at least one unstable site.

The remaining stages are defined inductively. After stage k − 1, every site in F =
Fk mod 2d(Rk−1) has at least 2d − 1 particles, and at least one site y ∈ F is unstable. Topple
first y, then its neighbors in F , then the sites in F at distance 2 from y, and so on, until all
sites in F have toppled once. Now every site in Rk has toppled at least once, and no sites
outside Rk have toppled, completing the inductive step. �

To deduce Proposition 1.3 from Theorem 4.1, since

gcd(x1j , . . . , xdj ) = 1, j = 1, . . . , d

there exist integers aij for 1 ≤ i, j ≤ d , satisfying

d∑
i=1

aij xij = 1, j = 1, . . . , d.

Then for each j = 1, . . . , d , the vector

vj =
d∑

i=1

aij xi ∈ L

has ej -coordinate vjj = 1, so any hyperplane in Z
d parallel to one of the coordinate hy-

perplanes intersects L. Moreover, L contains the vectors Dej for j = 1, . . . , d , where
D = det(xij )

d
i,j=1 �= 0. Thus L intersects every face Fi(Qr) when r ≥ |D|/2.

To deduce Proposition 1.4, it remains to check that the configuration 2d − 2 + β on
Z

d satisfies condition (ii) of Theorem 4.1 with probability 1. Write Ei,r for the event that
β(x) = 0 for all x ∈ Fi(Qr). By the independence of the Bernoulli random variables β(x),
this event has probability

P(Ei,r ) = (1 − ε)|Fi (Qr )| ≤ (1 − ε)r .

In particular,
∑

r≥1

∑2d

i=1 P(Ei,r ) < ∞. By the Borel-Cantelli lemma, with probability 1 only
finitely many of the events Ei,r occur. We remark on the similarity between this argument
and Straley’s argument for bootstrap percolation [5].

We define the box Br as

Br = ∂Qr =
2d⋃
i=1

Fi(Qr).
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The following theorem is a partial converse to Theorem 4.1, and gives a counterexample to
Remark 7.1 in [7].

Theorem 4.2 Let r1, r2, . . . be an increasing sequence of positive integers. Let σ be a stable
background on Z

d in which every site in Br1 ∪ Br2 ∪ · · · has at most 2d − 2 particles.
Then σ is robust.

The proof uses the following lemma, which follows from [6, Lemma 4.2] and the abelian
property.

Lemma 4.3 If σ is a stable background satisfying σ(x) ≤ 2d − 2 for all x ∈ Br , then no
sites outside Qr topple during the stabilization of σ + δo.

Proof of Theorem 4.2 We need to show that σ +nδo stabilizes in finitely many topplings, for
every n ∈ N. We induct on n to show that no sites outside Qrn topple during the stabilization
of σ + nδo.

By Lemma 4.3, no sites outside Qr1 topple during the stabilization of σ + δo.
Let σn be the stabilization of σ +nδo. By the inductive hypothesis, no sites topple outside

Qrn during this stabilization, so σn(x) ≤ 2d − 2 for all x ∈ Brn+1 . By Lemma 4.3, no sites
outside Qrn+1 topple during the stabilization of σn +δo. By the abelian property, a site topples
during the stabilization of σ + (n + 1)δo if and only if it topples during the stabilization of
σ + nδo or during the stabilization of σn + δo. This completes the inductive step. �

Remark Theorem 4.2 remains true for arbitrary disjoint rectangular boxes surrounding the
origin; they need not be cubical or centered at the origin.

5 Dimensional Reduction

Our argument used properties of the one-dimensional sandpile to bound the growth rate of
higher-dimensional sandpiles. There appears to be a deeper relationship between sandpiles
in d and d − 1 dimensions, which we formulate in the following dimensional reduction
conjecture. For x ∈ Z

d , let σn,d(x) be the final number of particles present at x in the sta-
bilization of 2d − 2 + nδo. Write rad(n, d) for the radius of the cube {x ∈ Z

d |σn,d(x) > 0}.
Note that by Theorem 1.1, rad(n, d) has order n1/d .

Identifying Z
d−1 with the hyperplane xd = 0 in Z

d , we would like to compare the slice
through the origin Qrad(n,d) ∩ Z

d−1 of the d-dimensional sandpile started from n particles
with a (d − 1)-dimensional sandpile started from some number m of particles. Given m, n

and d , let us call a site x = (x1, . . . , xd−1) ∈ Z
d−1 an exact match if

σn,d(x1, . . . , xd−1,0) = 2 + σm,d−1(x1, . . . , xd−1).

Given 0 < λ < 1, consider the subset Aλ of the slice through the origin

Aλ = (
Qrad(n,d) − Qλrad(n,d)

) ∩ Z
d−1.

Conjecture 5.1 There exists a constant λ = λd < 1 such that for all n ≥ 1 there exists m ≥ 1
such that all but O(rad(n, d)d−2) sites in Aλ are exact matches.
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Fig. 4 (Color online) Left: A two-dimensional slice through the origin of the sandpile of n = 5 ·106 particles
in Z

3 on background height h = 4. Right: The sandpile of m = 47465 particles in Z
2 on background height

h = 2. Color scheme on left: sites colored blue have 5 particles, turquoise 4, yellow 3, red 2, gray 1, white 0.
On right: blue 3 particles, turquoise 2, yellow 1, red 0

The case d = 3 is illustrated in Fig. 4. Amazingly, except in a region near the origin, the
two pictures shown in the figure agree pixel for pixel. For some rare values of n, certain
small “defects” or “filaments” in the two pictures fail to match exactly, which is why we
exclude up to O(rad(n, d)d−2) sites. For simplicity, we have restricted our formulation to
the slice through the origin, but dimensional reduction seems to occur in all slices except for
those close to the boundary of the cube. The value of m is the same for all of these slices.
We first learned of the dimensional reduction phenomenon from Deepak Dhar.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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