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If Ais an eigenvalue of a lincar transformation 4 on a finite dimensional,
complex inner-product space H, then the complex conjugate £* is an
cigenvalue of the adjoint transformation A* In other words, if there

vector g such that A*g = A*¢. A generalization of the concept of eigen-
vector (an etgensequence) is a finite sequence {/,,..., f,) of vectors such
that each A4f; is a linear combination of the f;'s, that is, Af; - _\_:, A1
The corresponding appropriate generalization of the requirement that f
be not zero is that the set {/,,.. ., /,} be linearly independent. The span
of the vectors in an ecigensequence is an invariant subspace.

An elegant wayv to discuss eigensequences (of a fixed length £) is to
consider the direct sum I of & copies of H. For cach linear transformation
A on H, write A for the linear transformation on /7 defined by Ay, .., 4D
= {Afy,..., Af). Foreachk x kmatrix 4, write 4 for the linear transfor-
mation on A defined by

-

A v )y = (g o)
where

XA ’
87 & Al

The matrix 4 deserves to be called an eigenmatriv of the transformation

I in case there exists a linearly independent sequence j == {fy,. .., [i)

such that Af = Af. The purpose of this note is to prove and discuss the

[ollowing generalization of the introductory sentence.
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12 P. R. HALMOS

THEOREM 1. If A is an eigenmatrix of a Unear transformation A on
a finite dimensional, complex inner-product space H, then the conjugate
transpose A* is an eigenwmatrix of the adjoint transformation A*.

transformation 4 by A. Since A is similar to its transpose A4’,
thaore avicte an invertihle matriv § cnch that 4 — S-14'S Qimtlarly
LIIVAL LAWY il 233V Lk LEL/AL ALB3CALA K ~7 LA RA A3 R 1439 “a L - s ‘Illll«llul&nv »
e T i cotevrslae b sbo $rancrincn tharo aviete an invardihla A O matriv
SITICE A4 ID SHIdL LU I U allbpusts, BT TAIOW all VUL UUIL v A v dlalldila
L A% 1 1% Qinmp 4+lin smnsmemirge 4 o A nedl o A e
g SUcCit tilat A == “hC SHTICE U HdPPINES a4 ~+ A a0 >0 e
R T VT REEET Y N B2 TODURPR T
multlp“ca[lve, It IolHOows tnat, I 7 1s dan eigensequence ol a (Hedriy
independent) with eigenmatrix 4, i.c., if Af = if, then
Sy s A7 4_‘1:1»‘;
DTTEAD] = 0AOF.
\fultinle: on the loft he 5 an 11cae tha commutativite of nuamerical
»' l“l‘ll)l.’ r3s TLAL iviL l}-y I CLEIANS I GLRIN- LAZREIdFiNALCARLL Y lL‘y A% 8 8 ABLBARAL & &% <&
wanteicne ctieh ac 2 with inflatad tranclfarmatione caich ac € 40 oot
Hatficeés sUcCi das ¢ Wit INuated ransiormiations sudii as & ww gev
i1 A “riAalt
A'(6S]) = X(6Sh

Form the complex conjugate of both sides; the result is

1t

Arg = %

where ¢ is the sequence {g;,..., g,) such that the coordinates of the
terms g; are the complex conjugates of the corresponding coordinates
of the corresponding terms of 4Sf. What remains to be proved is that
¢ is linearly independent or, what comes to the same thing, that a5/ is
such. Since S is invertible, it is clear that (Sf,,..., S7.) is linearly in-
dependent along with {f},. .., f.), i.e., that §f is independent along with
f. What is left to prove is that & preserves independence, i.e., (with
an unimportant change of notation), that, if f is independent, then so

is éf. This too is clear: the invertible matrix & defines an invertible

M P RS
the nroof abhove has at least the virtne of heino hriclk The comnlex can.
e pr 2 d4DOVE 1as, 41 2CAsL, 10 VIITUE O DEIng DrisK, 120 omprex con
i“ﬂafin 16 tho troatmaont Af tha cocanmlinaasr thanruv accaciantad with
Jepsustiin, ., Wb ulalinllic OF o2 SUG(Julnndar uitiry assuiiaeG Wi
1nitares gonmatee rathar than $#he Wiliaane 4hiareer acomeiabarl wmeh deenlider
KEAFILAL LU L TQUIITE Lilasl LT PMLICal Liieyg AdDHVLIALCU WILi uu llL)‘
PR P BN Py s I PR S UL D, [ R | . [ LI S
H1 goaitidl, 15 H1otvaicd Dy LIIe HHenaca dppuacations and generaizZdauons,
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CIGENVECTORS AND ADJOINTS 13

it plays a relatively small role in the unnaturality of the proof. The
statement of Theorem 1, unlike the proof, is quite easy to clean up, and,
in view of the intrinsic interest of the theorem, it is worthwhile to do so.
Here is an equivalent formulation.

THEOREM 2. To each subspace M invariant under a linear transforma-

n A on a finite dimensional, complex inner-product space there corvesponds
a subspace N itnvariant under A* such that A*’N 1s simtlar to (A IM)*,

2 LEroLerie RILLC =2 8TL

1274 (/1)
o
Dwnnt ~ivan M lat . /4 £\ o n hacie far AT sl lag 2 W
LrO0;. NIIVEIRL vz, 16U § = Sy ey [ DU A 04ASIS 10T S, dilG 18U A4 1€
ilisy savabaier b AIAL caridh mncermmd 44 dhind bincic. 4hae beee A fiaalelon 84
t11C IHdillX Ul flslVl VILIL TOOPCLL LU LAl DdAadi>, i), oy Uciiiitioln, 4’1! e
.

}f. Note that the matrix of (A; My* is A*. Apply Theorem 1 to get an
independent sequence § = (g,,..., g) such that A*¢ = A*§. This savs
that, if N is the span of {g,,.. ., g}, then the matrix of A*.V with respect
to the basis {g,..., g} is A*. Since (4{M)* and A*|N have the same
matrix (with respect to two suitable base%) the asserted similarity follows.
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tion A|M has two distinct eigenvalues; the corresponding
cigenvectors are not orthogonal. The only two-dimensional invariant
subspace of A* on which A* has two distinct eigenvalues (and therefore
the only possible candidate for N) has the orthonormal basis ({0, 1, 0),
0,0, 1)). Since A*N is Hermitian, but 4:M is not, it follows that
A*N cannot be unitarily equivalent to (4!M)*

The ecigenmatrix theorem has a tempting generalization. The trans-
formation . on A can be expressed as a & x & matrix whose entries are
transformations on H, namely, the matrix whose diagonal entries are A

Linear Algebra and Its A pplications 4(1971), 11-15 "



14 P. R. HALMOS

be expressed as a £ X k& matrix whose entries are transformations on H;

the (i, j) entry is the scalar transformation 4;;. It follows that 4 — i
is (or, better, has) a # x & matrix (block matrix) whose entries are pairwise
commutative linear transformations on H. Tempting generalization: if
T is a k x k block matrix whose entries are pairwise commutative linear
transformations on a finite dimensional, complex inner-product space,
and if there exists an independent sequence in its kernel, then the same
is true for its adjoint. Verdict: false. Counterexample, with & = 2:

- (A 1 | p (O 1
=\ o) Where :\l 0

{and the remaining entries in T are the indicated 2 X 2 scalar matrices).
The independent sequence ({1, 0), (0, — 1)) is in the kernel of 7', but
every sequence (f, g) in the kernel of T* has f == 0, and, consequently,
no such sequence can be independent.

The eigenmatrix theorem has a pleasant effect on the structure of
invariant subspaces. If A is a linear transformation on H, call a subspace
M a commuting range (for A) in case there exists a linear transformation
B on H such that B commutes with 4 and such that the range of B is
equal to M. Similarly, call M a commuting kernel in case there exists a
commuting C such that the kernel of C is equal to M. It is obvious that
each commuting range and each commuting kernel are invariant under
A; the pleasant surprise is the converse.

THEOREM 3. Every subspace tnvariant under a lincar transformation
on a finite dimensional, complex inner-product space is both a commuting
range and a commuting kernel.

Remark. The assertion is that, for each 4 on H, and for each M
invariant under A, there exists a B on H and there exists a C on H such
that AB == BA, AC==C4, ran B =M, and kerC = M. It is not
asserted that B = C.

Proof. Let f = (/,,.. ., fx) be a basis for M; the invariance of M
implies that f is an eigensequence for 4 with eigenmatrix 4, say. By
Theorem 1, there exists an independent eigensequence § = (gy,. .., g’
for A*, with eigenmatrix A*. Define a linear transformation B on H by

Bl = 3 (g
7
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EIGENVECTORS AND ADJOINTS 15

The range of B is obviously included in M. If the g,'s were orthonormal,
the reverse inclusion would be obvious too; since, however, thev alwavs
are orthonormal with respect to some inner product equivalent to the
given one, the reverse inclusion is true in any case. As for commutativity:

ABf = 2 (1.8)4f; = 2 (/25 :2: Aiifi = 2 }:, (1,8 )il
] j i

H i

and

o ady’
7 ? 7 \ i

BAf = _‘:: (Af. g, = :S (f, A*g )y = 3 (f' b }_;fgi)f}.

Y Q& SN S 1
i 2‘ }d (/- gl}A)lf;.
H H

(What is really going on here is transparent in the case b = 1: if I} .-
tfogfy, then ABf == (f,g)Adfy = (/, g0y and  BA[f = (4], ¢y
(£, A*¥g))fy == (f, A¥¢)h = ([, €1)4/;. The general case could have been
reported in a similarly condensed manner, but only at the cost of the
consideration of an appropriatelv generalized inner product in the space
iT; the machinery is too heavy to drag in for just one usc.)

That takes care of commuting ranges. The assertion about commut’ .

kernels follows by an application of the commuting range statement to
A* and M- i A*C* = C*4* and ran (% = M -, then AC - €4 and

ker C == M. The proof of Theorem 3 is cemplete.

How much of all this remains true with no essential change for infinite
dimensional Hilbert spaces, bounded operators, and closed subspaces?
Answer: none.  Theorems 1 and 2 break down even for & == 1; the
complex conjugate of an eigenvalue for A4 may fail to be an cigenvalue
tor 4% Example: the adjoint of the unilateral shift.  Theorem 3 al<o
breaks down.  Example: the bilateral shift on L2 of the circle in the
role of the operator and H2 in the role of the subspace. D. E. Sarason
s even constructed an irreducible example: the Hilbert space is f1?
of an annulus centered at 0, the operator is multiplication by the in-
dependent variable, and the subspace is the closure of the set of all
colvnomials,

Fecetved Jawnarv, 1970
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