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T HEORE~I 1. If A is a98 eigenwatri..v of a hear trans~omation ‘4 on 

a Jilzite dimerrsional, comj%~~ iwe+prodzcct space H, then the confrcgate 

transpose I.* is an eigewcatrix o,i the adjoiut tvamformatio~~ A*. 

PYOO/. Coordinatize, and thus, in particular, replace the linear 

transformation A by a matrix A. Since A is similar to its transpose A’, 

there exists an invertible matrix S such that A = S%‘S. Similarly, 

since E, is similar to its transpose, there exists an invertible k x R matris 

d such that il = c+~:a. Since the mappings A -•c li ant! rx -+ (3 are 

multiplicative, it follows that, if / is an eigensequence of .4 (linearly 

independent) with eigenmatris A, i .c., if ,-l^f =- $, then 

Multiply on the left by 

matrices such as 8 with 

,$-l/pq -= +-lA’~j* 

$3 and use the commutativity of numeric:il . . 
inflated transformations such as .< to get 

=i’(&s/) = k@Sj}. 

Jkrm the complex con jugate of hot h sides ; the result is 

where 2 is the sequence (glr . . . , gk) suc~h that the coordinates of tilt? 

term5 gi are the complex cunjugatcs of the corresponcling co0rcbn~~t.c~~ 

of the corresponding terms of I;s\. What remains to be proved is tht 

X; is linearly independent or, what comes to the s;Lmc thing, that C;.$/ is 
SUCll. Since S is invertible, it is clear that (Sjl,. . . , .S,&) is linearly h- 

dependent along with (/,, . . . p fk), i.e., that .$/ is independent along with 
j. What is left to prove is that 6 preserves independence, i.e., (with 

an unimportant change of notation), that, if / is inclepcndent, then so 
is 8f. This too is clear: the invertible matrix 2 defines an inyertible 

transformation on the span of the terms of j. 

With all its coordinates and complex conjugates brazenly flaunted, 

this proof is colossally ugly. Some of the ugliness can be retnoved, but 
I have not been able to find a completely clean functorial proof, and 

the proof above has, at least, the \Grtue of being brisk. The cc)mpJes con-- 

jugation, i.e., the treatment of the scscluilinear theory associated with 
unitary geometry rather than the bilinear theory associated tvith duality 

in general, is motivated by the intended applications and generalizations ; 
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it plays a relatively small role in the unnaturality of the proof. The 
statement of Theorem 1, unlike the proof, is quite easy to clean up, and, 

in view of the intrinsic interest of the theorem, it is worthwhile 1.0 do 50. 

Here is an equivalent formulation. 

THEOREM 2. /lo each wbspace M invariant wzder a linear transforma- 

Gun A on a finite dimensional, comfilex inner-firoduct space tlwe corres@zds 

a subspace X ilzvariant under A * such that A*[l\’ is similar to (AiM)*. 

I)roof. Given M, let / = (/,, . . . , lk) lx: a basis for M, and Ict A be 

the matrix of A IM with respect to that basis; then, t,v definition, .~i/ .-‘.r: 

i/. Note that the matrix of (A j&Q* is A*. Apply Theorem 1 to get an 

that, if iV is the span of (gl, . . . , gk), then the matrix of A *jX with re5pcc:t 

to the basis (g,, . . . , gk) is A*:. Since (A [&I)* and A *IN have the same 

nratrix (with respect to two suitable bases), the asserted similarity follows. 
It is easy to see that the argument is reversible, and that, thus, Theorem 

1 can be derived from Theorem 2. 

It should be remarked that, although concepts of unitary geometr! 
(.adjoint) ar2 present in Theorem 2, the similarity it asserts cannot be 

replaced bg? unitary equivalence. For a counterexample Iet A be a linear 

transformation on a three-dimensional space that has the matrix 

with respect to some orthonormal basis. If M is the span of the eigen- 

vectors of A, then M has the orthonormal basis (( 1, 0, o), (0, 0, 1)). 
‘II le transformation A iA2 has two distinct eigcnvalues ; the corresponding 

iaigenvectors are not orthogonal. The only t~vo-dirncnsional invariant _ 

+ubspace of A * on which .A :I: has two distinct eigenvalues (and therefore 

the only possible candidate for X) has the orthonor-ma: tr;lsis ((0, 1, O), 

(0, 0, I)). Since A * jX is Ht Armjti;tI~, but .$ *M is not, it fiIlIO\YS that 

A*IN cannot be unitarily equivalent tc) (A i&l)*. 
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be expressed as a K x k matrix whose entries are tramrformations on H; 

the (i, j> entry is the scalar transformation Ai*. It follows that A - i 

is (or, better, has) a k x k matrix (block matrix) whose entries are pairwise 

commutative linear transformations on H. Tempting generalization : if 

T is a K x k block matrix whose entries are pairwise commutative linear 

transformations on a finite dimensional, complex inner-product space, 

and if there exists an independent sequence in its kernel, then the same 

is true for its adjoint. Verdict: false. Counterexample, with k = 2: 

(and the remaining entries in T are the indicated 2 x 2 scalar matrices). 

The independent sequence (( 1, O), (0, - 1)) is in the kernel of ?‘, but 

every sequence (i, g) in the kernel of T* has j = 0, and, consequentlv, 
no such sequence can be independent. 

The eignmatrix theorem has a pleasant effect on the structure of 

invariant subspaces. If A is a linear transformation on H, call a subspace 

M a comrrzuti9zg range (for A) in case there exists a linear transformation 

23 on N such that R commutes with -4 and such that the range of B is 

equal to M. Similarly, call AZ a comnz-lting kernel in case there exists a 
commuting C: such that the kernel of C is equal to M. It is obvious that I 

each commuting range and each commuting kernel are invariant under 

A ; the pleasant surprise is the convcrsc. 

Remark. The assertion is that, for each A on H, and for err% M 

invariant under A, there exists a B on N and there exists a c on H such 

that AU .-_ BA , A C == CA, ran B = M, and ker C 72 M. It is not 

asserted that 13 -I- C. 

Pm/, Let 1 Is= (/I,. . . , fk) be a basis for M ; the invariance of N 
implies that { iS an ei@?nseqUcllce for A with eigcnmatrix A, say. I$ 
Theorem 1, there exists an independent eigensequence i = (gr, . . . , gk) 

for A *, with eigenmatrix A*. Define a linear transformation B on N by 
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