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Abstract We study optical effects in quintessential Kerr
black hole spacetimes corresponding to the limiting case
of the equation-of-state parameter ωq = −1/3 of the
quintessence. In dependence on the dimensionless quintes-
sential field parameter c, we determine the black hole silhou-
ette and the spectral line profiles of Keplerian disks generated
in this special quintessential Kerr geometry, representing an
extension of the general modifications of the Kerr geome-
try introduced recently by Ghasemi-Nodehi and Bambi (Eur.
Phys. J. C 56:#290, 2016). We demonstrate that due to the
influence of the parameter c, the silhouette is almost homoge-
neously enlarged, and the spectral line profiles are redshifted
with almost conserved shape.

Introduction

Recent research of astrophysical and connected optical phe-
nomena related to possible direct observations of effects
occurring in the field of black holes and naked singularities,
or other strong gravity compact objects, is often concentrated
in effects occurring in the modified Kerr geometry implied by
alternatives to the Einstein gravity. Observable effects related
to these modified Kerr geometries could give signatures of
the alternatives or extensions of the standard Einstein gravity,
or of the influence of non-vacuum environment of the com-
pact objects. The modifications of the Kerr geometry can be
separated into two classes.

In the first class, modifications of the Kerr (or Schwars-
child) geometry are related to a concrete modification of the
standard Einstein gravity. There is a large variety of research
related to the braneworld models [1–3,13,24,33,37,38,40,
48], standard gravity combined with the non-linear electro-
dynamics giving regular black holes or no-horizon space-
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times [4,5,7,39,52,57], Hořava quantum gravity [18,22,50,
51,59], String theory [36], f (R) gravity [34,42], Kerr geom-
etry modified by the cosmological constant [11,17,17,21,
25–28,32,35,41,44–47,49,53–55], or quintessential fields
[14,23,58], higher-dimensional spacetimes [17], or in the
case of Einstein gravity coupled to a complex, scalar field
[31].

In the second class, the Kerr geometry is modified in
the framework of the so-called dirty Kerr geometry [12,20],
where the modifications are usually unrelated to any source
term. The Kerr (Schwarzschild) vacuum solution of the Ein-
stein equations is considered as an example of these studies,
and its metric coefficients are correspondingly modified. In
the dirty Kerr geometry framework, the radial profiles of the
metric coefficients are modified and effects of the modified
metric on the optical phenomena are studied [8,9,19,30].
Recently, Ghasemi-Nodehi and Bambi proposed a new ver-
sion of modified Kerr geometry, where also the latitudinal
profiles of the metric coefficients can be modified [15]. In
this approach, the geometry modifications are related to all
terms of the Kerr metric containing mass M and specific
angular momentum (spin) a. However, there could exist also
modifications of the Kerr metric that are not related to the
parameters M and a. Here we briefly study a concrete case
of such a spacetime, related to the quintessential rotating
black holes.

Here we concentrate attention to a special class of the
quintessential Kerr black holes generating modification of
the Kerr geometry that represents an extension of the seem-
ingly most general class of modifications of the Kerr geom-
etry introduced in [15]. The considered modification of the
Kerr geometry occurs due to a special (limit) class of the
quintessential field.

Recently, Toshmatov et al. [58] have found an axially
symmetric stationary non-vacuum solution of the Einstein
equations where the energy-momentum tensor corresponds
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to the quintessential scalar fields. The quintessential field
is characterized by the equation-of-state parameter ωq ∈
(−1,−1/3), and by the dimensionless parameter c represent-
ing intensity of the quintessential field. The quintessential
Kerr (Schwarzschild) geometry demonstrates repulsive grav-
ity at large distances, and implies existence of the cosmolog-
ical horizon [58]. However, in the limit case of ωq → −1/3,
the quintessential Kerr geometry becomes the asymptoti-
cally flat Kerr geometry – the geometry is modified by the
quintessential field parameter c, but the dependence of the
metric coefficients on the mass and spin parameters, M, a,
remains to be of the standard Kerr character.

Here we study the black hole silhouette shape, and the
profile of the spectral lines of radiation from the inner parts of
the Keplerian disks for the special limit (ωq = −1/3) of the
quintessential Kerr metric, in dependence on the parameter
c. Both these phenomena are fully governed by the geodesic
structure of the quintessential Kerr spacetime.

1 The quintessential Kerr spacetimes and their special
limit

The geometry of the quintessential rotation black hole space-
time introduced in [58] is described in the standard Boyer–
Lindquist coordinates and the geometric units with c = G =
1 by the line element

ds2 = gttdt
2 + grrdr2 + 2gtφdrdφ + gθθdθ2 + gφφdφ2 (1)

with

gtt = −1 + 2Mr + cr1−3ωq

r2 + a2 cos2 θ
,

grr = r2 + a2 cos2 θ

a2 − 2Mr + r2 − cr1−3ωq
,

gtφ = −a sin2 θ
2Mr + cr1−3ωq

r2 + a2 cos2 θ
,

gθθ = r2 + a2 cos2 θ,

gφφ = sin2 θ

(
a2 + r2 + a2 sin2 θ

2Mr + cr1−3ωq

r2 + a2 cos2 θ

)
,

where M and a are the gravitational mass and the specific
angular momentum a = J/M of the black hole, ωq ∈
(−1/3,−1) is the quintessential scalar field equation-of-state
parameter, while c ∈ (0, 1) is the quintessential field parame-
ter characterizing the field magnitude. When the quintessen-
tial field parameter c = 0, the rotating quintessential geom-
etry reduces to the Kerr geometry. The related quintessential

field energy-stress tensor is also determined in [58], but only
the spacetime geometry will be relevant in our study.1

In the case of the special limit of the quintessential Kerr
black holes, determined by the equation-of-state parameter
ωq = −1/3, the line element of the geometry simplifies to
the form

ds2 = −
(

1 − 2ρr

�

)
dt2 + �

�
dr2 + �dθ2 − 4aρr sin2 θ

�
dtdφ

+
(
r2 + a2 + a2 sin2 θ

2ρr

�

)
sin2 θdφ2 (2)

where

� = r2 + a2 cos2 θ, (3)

� = r2 − 2ρr + a2, (4)

2ρ(r) = 2 + cr. (5)

The mass parameter is put for simplicity to M = 1, i.e.,
we express the spin and quintessential field parameter c as
dimensionless quantities, and we use dimensionless radial
and time coordinates r/M → r, t/M → t . The special
(ωq = −1/3) quintessential Kerr metric clearly represents
an extension of the Ghasemi–Nodehi–Bambi modification
of the Kerr geometry, as it modifies also the r2 term in the
expression � = r2−2Mr+a2 governing the loci of the black
hole event horizons. In contrast to the quintessential black
hole spacetimes with ωq ∈ (−1,−1/3), having a cosmolog-
ical horizon, the special case of the ωq = −1/3 spacetimes
is asymptotically flat. The horizons are given by the relation

r± = 1 ± √
1 − a2(1 − c)

1 − c
. (6)

Now the limit on the black hole spin reads

a2 ≤ 1

1 − c
, (7)

and it breaks the standard black hole bound of a ≤ 1.
We study simple optical effects in this special quintessen-

tial rotating black hole geometry in order to demonstrate the
role of this kind of the Kerr geometry modifications. It is con-
venient in numerical simulations to use the reciprocal radial
coordinate u ≡ 1/r and the latitudinal coordinatem ≡ cos θ .

1 This quintessential Kerr spacetime has been obtained as a general-
ization of the Kisilev solution for static quintessential black holes [23],
using the standard method developed by Newman and Janis [29] and
those presented in [6]. An alternative based on the method presented in
[7,57] has been introduced in [16].
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The line element (2) then takes the form

ds2 = −
(

1 − 2ρ̃

�̃u

)
dt2 + σ̃

�̃u3
du2 − 4aρ̃(1 − m2)

u�̃
dφdt

+ �̃

u2(1 − m2)
dm2 + 1 − m2

u2

×
[

1 + a2u2 + 2a2(1 − m2)u2ρ̃

σ̃

]
dφ2, (8)

where

�̃ = 1 + a2u2m2, (9)

�̃ = u − 2ρ̃ + a2u3, (10)

2ρ̃ = cu + 2u2. (11)

2 Equations of geodesic motion

The equations of geodesic motion are given by the Hamilto-
nian [11]

H = 1

2
gμν pμ pν (12)

where H = 0 for null-geodesics, and H = − 1
2m

2 for mas-
sive test particles; and pμ are covariant components of the test
particle 4-momentum. There are two constants of the motion
related to the spacetime symmetries: energy E , connected
with the stationarity, axial angular momentum L , connected
with the axial symmetry.

For the special quintessential rotating black hole geome-
try, given by the line element (2), we obtain the set of first
order differential equations [58]

�pt = r2 + a2

�

[
E(r2 + a2) − aL

]

− a
(
aE sin2 θ − L

)
, (13)

�pr = ±√
R, (14)

�pθ = ±√
W , (15)

�pφ = a

�

[
E(r2 + a2) − aL

]
−

(
aE − L

sin2 θ

)
, (16)

where

R(r; l, q, a, c) =
[
(r2 + a2)E − aL

]2

−�
[
(aE − L)2 + mr2 + Q

]
, (17)

W (θ; l, q, a, c) = Q −
[

L2

sin2 θ
+ a2(m2 − E2)

]
cos2 θ;

(18)

Q is the standard fourth integral of the motion in the Kerr (and
modified Kerr) spacetimes – it reflects hidden symmetries of
the spacetime and is related to the total angular momentum of

the motion. Notice that the latitudinal motion is governed by
the same equation as in the Kerr geometry, but the equation
of the radial motion is modified due to the presence of the
quintessential field.

3 Keplerian orbits

We illustrate the effect of the special quintessential rotating
black hole geometry on the profiled spectral line of the radi-
ation originating in the Keplerian disks assumed to be com-
posed of the test particle emitters following the stable circular
orbits with the so-called Keplerian angular frequency. There-
fore, we first discuss the circular geodesics and their stability.
The circular geodesics are situated in the equatorial plane,
having Q = 0, as in the case of the Kerr spacetimes [10,43].
The resulting maps of the circular geodesics are summarized
in Fig. 2.

The circular test particle orbits are determined by the con-
ditions

R(r; E, L , a, c) = 0,
dR(r; E, L , a, c)

dr
= 0, (19)

which have to be satisfied simultaneously. The radial profiles
of the specific energy E/m and the specific axial angular
momentum L/m take the following form:

E2±(r, a, c)

m
= −r3(2 + σr)2(3 + σr) + a2r2(5 + 3σr) ± 2�ar3/2

r3[−4a2 + r(3 + σr)2]
(20)

and

L2±(r, a, c)

m
= [−r3(2 + σr)2(3 + σr) + a2r2(5 + 3σr) ± 2�ar3/2]

a2�2r3(−4a2 + r(3 + σr)2)

× [a4 + a�r3/2 + a2r(4 + r(−3 + 4c + σcr))]2

(21)

where we have introduced σ ≡ −1 + c. The limits on the
existence of the circular geodesics are given by the photon
circular geodesics. Their loci are the roots of the equation

0 = σ 4r6 + 8σ 3r5 + 2(11 − 8a2)σ 2r4

−4σ(−6 + a2(7 + c))r3 + [9 + 16a4σ − 16a2c]r2

+ 4a2(−3 + 4a2)r − 4a2(−1 + a2), (22)

while their impact parameters are given by

l2ph± ≡ L

E
= a(1 + cr) ± r

√
a2 − 2r(1 + σr)

1 + σr
. (23)

We plot rph± and lph± as a function of spin a for three repre-
sentative values of parameter c = 0, 0.05, and 0.1 in Fig. 1.

The stability of the circular geodesics is encoded in the
sign of d2R/dr2 under the conditions related to the circular
orbits:

123



643 Page 4 of 8 Eur. Phys. J. C (2016) 76 :643

Fig. 1 Radii and corresponding
impact parameters of both
co-rotating (right) and
counter-rotating (left) photon
circular orbits plotted as
functions of spin parameter a
for three representative values of
parameter c = 0.0, 0.05, and 0.1

d2R

dr2 > 0 ⇒ unstable orbit, (24)

d2R

dr2 < 0 ⇒ stable orbit, (25)

d2R

dr2 = 0 ⇒ marginally stable orbit. (26)

In Fig. 2 we demonstrate the dependence of the location of
the unstable and stable circular geodesics on the black hole
spin a for the characteristic values of the quintessential field
parameter q̃ .

4 Silhouette of the special quintessential rotating black
holes

The black hole silhouette is intimately connected with the
photon spherical orbits for which the photon 4-momentum
kμ satisfies the conditions [10]

ku = 0,
dku

dλ
= 0, (27)

implying equations relating the impact parameters l = L/E
and q = Q/E2,

R(r, l, q; a, c) = 0,
dR(r, l, q; a, c)

dr
= 0. (28)

Expressing q ≡ q(r, l; a, c) by means of Eq. (28), we obtain
the conditions for the spherical photon orbits in the form

q(r; l, a, c) ≡ (r2 + a2 − al)2

�(r; a, c)
− (a − l)2, (29)

dq(r; l, a, c)

dr
= 1

�2

[
4r(r2 + a2 − al)�

−(r2 + a2 − al)�′] = 0. (30)

The silhouette is constructed for a static distant observer
with a detector equipped with the coordinates (α, β), which
are connected with the impact parameters (l, q) through rela-
tions

l = −α/

√
1 − m2

o, and q = β2 + m2
o(α

2 − a2). (31)

For fixed parameters a, c, and l ∈ [lmin, lmax], we can
determine the corresponding radius of the photon spherical
orbits rsp > r+. The values of lmin and lmax follow from the
condition β = 0, which implies q = (l2 +a2) for θo = π/2.
Then we solve the equations

�(l2 − a2) = (r2 + a2 − al)2 − �(a − l)2 (32)

and (30) simultaneously to obtain (rph−min, lmin) and
rph−max, lmax. It is also useful to transform the silhouette
coordinates (α, β) to the new coordinates (b, χ) defined as
(see Fig. 3)

b2 = α2 + β2, χ = arctan

(
β

α

)
. (33)

The resulting rotating black hole silhouettes are given
for characteristic values of the quintessential field parameter
c = 0, 2 × 10−2, and c = 10−1 in Fig. 4, for the so-called
canonic value of the black hole spin [56], and large inclina-
tion angle θo = 85◦ enabling one to visualize strong effect
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Fig. 2 The (a, r) map of
circular orbits in the
quintessential rotating
spacetime for two representative
values of parameter c = 0, and
10−1 (left to right). Non circular
orbits are allowed in the white
regions. The stable circular
orbits lie within the gray
regions, and unstable circular
orbits fall into dark gray regions

Fig. 3 Definition of coordinates b and χ to characterize the silhouette
shape

of the black hole rotation. The quintessence field alters the
shape of the silhouette by magnifying the shape, keeping it
almost homogeneous in dependence on the angle χ as shown
in the figure. The magnification increases with increasing
quintessential field parameter c.

5 Spectral line profile

Finally, we study how the c parameter of the special
quintessential rotating black hole modifies the profiles of
spectral lines emitted from the innermost parts of the Keple-
rian disks, r ∈ [rms, 20M].

The profiled spectral line is constructed in the standard
way; see, e.g., [37]. First, the equations of motion are inte-
grated for a given pair of impact parameters (α, β) from the
position of the detector to equatorial plane. If the orbits inter-

sects the θ = π/2 plane in the region rms ≤ 20M , the corre-
sponding frequency shift g is calculated and stored. Second,
the photons contributing to the total specific flux are binned
by the amount of energy flux related to the frequency shift g
and the element of the volume angle related to the detector
��,

�Fi (g) = g4r−p
i ��, (34)

where the power of the disk radius p denotes the emissiv-
ity power-law index. Here we set its value to p = 2, the
frequency shift g is determined by the formula

g =
√

1 − 2ρ/r + 4aρ/r� − (r2 + a2 + 2a2ρ/r)�2

1 − �l
,

(35)

where the Keplerian angular frequency � = dφ/dt , related
to the distant observers, reads

� = 2aρ + (r − 2ρ)lc
r(r2 + a2) + 2ρa2 − 2aρlc

. (36)

The corresponding impact parameter lc related to the cir-
cular orbit at radius ri is determined by the formula

lc = Lc

Ec
=

√
2ar2�A1/2 + a2(B + r3�′)

aB
, (37)

where

A = 2a2 − 2� + r�′, (38)

B = 2(a2 − �)� + a2r�′. (39)

We run the simulations for three representative spin
parameters a = 0.1, 0.5, and 0.998, and three values of the
quintessential field parameter c = 0, 2 × 10−2, and 10−1.
The c = 0 case corresponds to the standard Kerr spacetime.
The resulting profiles are presented in Fig. 5.
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Fig. 4 Left silhouettes of black
holes with spin parameter
a = 0.998 and representative
values of c = 0, 2 × 10−2, and
10−1. Right the effect on the
silhouette shape given by
comparison with the Kerr case
by using the quantity b(χ; a, c)

Fig. 5 The profiles of spectral lines constructed for two spin parameters a = 0.1, 0.5, 0.998, and three representative values of parameter c = 0,
5 × 10−2, and 10−1. The inclination of the observer is θo = 30◦, 60◦, and 85◦. The disk region that radiates the emission line spans between radii
rISCO and 20M

6 Summary

Studies of the astrophysical phenomena in the field of black
holes (or alternative strong gravity objects), based on the
modified geometry only, can give very important basic infor-
mation, but they have to be considered very carefully, as addi-
tional effects related to the origin of the modified gravity, or
the source terms hidden behind the dirty Kerr geometry, could
significantly alter the predictions based on the purely geomet-
rical considerations. Here we have considered some optical

phenomena around the special quintessential Kerr geometry
– the direct influence of the quintessential field on the optical
phenomena is irrelevant and it enters the play only through
the resulting geometry.

The modifications of both the black hole silhouette and
the profile of the spectral line are determined by the func-
tions b(χ) and Flux(g), which reflect the departure of
the particular quantities determined in the specific rotating
quintessential metric relative to those determined in the Kerr
metric.
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We have clearly demonstrated that in the limiting quintes-
sential field with equation-of-state parameter ωq = −1/3,
the resulting geometry of rotating black holes leads, in the
case of the characteristic values of the quintessential field
parameter c = 0, 2 × 10−2, and 10−1, to significant and
specific modifications of the silhouette shape and the pro-
file of the spectral lines generated in the innermost parts of
Keplerian disks.

For the black hole silhouette we have found that the param-
eter b increases with the parameter c increasing, enlarging
the silhouette. The enlargement depends on the angle χ only
slightly.

In the case of the spectral line profiles we obtained sig-
nificant shift of the profiled lines to the red end, the shift
increases with increasing parameter c. The shape of the pro-
filed spectral lines remains unchanged for small and mediate
inclination angles. Only in the case of black holes with large
spin and for Keplerian disks observed under large inclination
angles the declination of the profiled spectral lines at the blue
end is decreasing with increasing parameter c.

Our results demonstrate that the special quintessential
rotating black holes have a clear impact on the considered
optical phenomena extending the assumed variations pre-
dicted for the Kerr metric modification introduced in [15].
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