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Abstract

In this paper we investigate the temporal decay behavior of the solutions of the one-dimensional problem in various theories of
continua with voids. It has been proved that the coupling of the elastic structure with porous microstructure is weak in the sense
that in many situations the temporal decay of solutions is slow. We have considered some theories of porous continua when the
deformation-rate tensor or time-rate or porosity function or thermal effects is present. We have proved that the decay cannot be
controlled by a negative exponential. The natural question now is whether there exist or not a polynomial rate of decay of the
solution in some appropriate norms. In this paper we consider some cases where the decay is slow and we obtain polynomial
decay estimates. In concrete we consider the case when only the viscoelastic effect is present, the case when the motion of voids
is assumed to be quasi-static and the porous viscosity is present and we finish with the case of the porous-elasticity when thermal
effect is coupled.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Elasticity problems have attracted the attention of researchers from different fields interested in the temporal
decay behavior of the solutions. This interest has given many results that can be found in the literature. In the one-
dimensional case, for instance, it is known that the interaction between the temperature field and elastic bodies lead
to the exponential decay of the solution, see for example [8,16,17].

If elastic solids with voids are considered, as in this paper, one should look into the theory of porous elastic
materials. Here we deal with the theory established by Cowin and Nunziato [3,4,13]. In their setting, the bulk density
is the product of two scalar fields, the matrix material density and the volume fraction field. It is deeply discussed in
the book of Ieşan [7]. It is worth recalling that porous materials have applications in many fields of engineering such
as petroleum industry, material science, etc.
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The analysis of the temporal decay in one-dimensional porous-elastic materials was first studied by Quin-
tanilla [15]. The author showed that the dissipation given by the porous viscosity was not powerful enough to obtain
exponential stability to the solutions. For the sake of completeness we recall that the solutions generated by a semi-
group U(t) are said to be exponentially stable if there exist two constants (independent of the initial conditions) C > 0
and � > 0 such that ‖U(t)‖ � C exp(−�t)‖U(0)‖. We will say that the decay of the solutions is exponential if they
are exponentially stable and, if they are not, we will say that the decay of the solutions is slow. Perhaps it is worth
recalling the main difference between these two concepts in a thermomechanical context. If the decay is exponential,
then after a short period of time, the thermomechanical deformations are very small and can be neglected. However, if
the decay is slow, then the solutions weaken in a way that thermomechanical deformations could be appreciated in the
system after some time. Therefore, the nature of the solutions highly determines the temporal behavior of the system
and, from a thermomechanical point of view, it is relevant to be able to classify them.

In a series of recent papers [1,2,10–12] the authors have clarified the kind of decay when we combine temperature,
elastic viscosity, porous viscosity and microtemperature. We recall the main conclusions with the help of a scheme:

Thermal effect

Viscoelastic effect
−→

Elasticity
�

Porosity
←−

Microthermal effect

Viscoporous effect

If we take simultaneously one effect from the right square and other one from the left square, then we get exponen-
tial stability. However, if we consider two simultaneous effects from one square only, then we get slow decay.

From the above comments, it seems natural to think that the porous-elastic coupling is not very strong. In this work
we want to deepen that matter and clear it up. In order to do so, we will consider some dissipation mechanisms where
the temporal decay is slow and we obtain polynomial estimates for the decay.

To be concrete, we will consider the three problems: the first is the one when only the elastic viscosity of rate type
is present, but the porous viscosity is absent; the second is the case when the motion of voids is assumed to be quasi-
static and porous viscosity is present, but the viscoelastic effect is absent and the third is when the only dissipation
effect is the thermal effect. It has been proved that the solutions decay slowly in all three cases and here we prove that
this decay can be controlled by a polynomial.

Recently, Z. Liu and B. Rao [9] and A. Batkai et al. [14] found sufficient conditions to get a polynomial decay
of semigroup operators. These conditions depend essentially on the regularity of the initial data and also on some
estimates of the resolvent operator. One interesting point about these results is that in the two references above there
exists a lack of optimality on the rate of decay. That is to say, the rate of decay is like 1/t1−ε where such ε appears
for technical reasons.

This paper is structured as follows. In Section 2 we recall the general three-dimensional theory and we state the
equations for the one-dimensional case. In Section 3 we study the theory of viscoelastic porous bodies in which the
mechanical dissipation is produced by the deformation-rate tensor, and we show that the decay can be controlled by
means of the inverse of a polynomial of first degree. In Section 4 we consider the case when the motion of voids is
assumed to be quasi-static and the porous viscosity is present, but the viscoelastic effect is absent. A similar decay
estimate is also obtained in this case. In Section 5, we prove that under suitable conditions on the constitutive material
constants (see condition (5.2)) the decay is also polynomial of first degree. We use the energy method and some
technical ideas to show the polynomial stability. Our decay result is optimal in the sense that no additional parameter
appears in our decay estimate, that is we remove the parameter ε given in [9,14]. Moreover using a result on [14] we
are able to improve the polynomial rate of decay by taking more regular initial data.

2. Preliminaries

The theory of elastic solids with voids was introduced by Nunziato and Cowin [13]. Ieşan [5–7] added temperature
to this theory. Let us make a short presentation of the general three-dimensional theory. The evolution equations are:⎧⎨

⎩
ρüi = tj i,j ,

J φ̈ = hi,i + g,

ρT η̇ = q ,
0 i,i
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where tj i is the stress tensor, hi is the equilibrated stress vector, g is the equilibrated body force, qi is the heat flux
vector, η is the entropy and T0 is the absolute temperature in the reference configuration. The variables ui and φ

are, respectively, the displacement of the solid elastic material and the volume fraction. We assume that ρ and J are
positive constants whose physical meaning is well known.

To state the field equations, we need first the constitutive equations. In the general case of solids with viscoelasticity,
porous-viscosity, temperature we assume the following (see [6,7]):⎧⎪⎪⎪⎨

⎪⎪⎪⎩
tij = λerrδij + 2μeij + bφδij + λ∗ėrr δij + 2μ∗ėij − βθδij ,

hi = δφ,i ,

g = −berr + mθ − ξφ − τ φ̇,

ρη = βerr + cθ + mφ,

qi = kθ,i ,

where 2eij = ui,j + uj,i . Here λ, μ, b, λ∗, μ∗, β , δ, d , ξ , τ , c and k are the constitutive coefficients, and θ is the
temperature. From [3], the constitutive coefficients for isotropic bodies satisfy the following inequalities:

μ > 0, ξ > 0, δ > 0, 2μ + 3λ > 0, (2μ + 3λ)ξ > 3b2. (2.1)

The other coefficients satisfy the Clausius–Duhem conditions [6].
As we are considering here the one-dimensional theory, the evolution equations become easier and they are given

by ⎧⎨
⎩

ρü = tx,

J φ̈ = hx + g,

ρη̇ = q∗
x ,

where q∗ stands for T −1
0 q .

We use the constitutive equations:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t = μux + bφ + γ u̇x − βθ,

h = δφx,

g = −bux − ξφ + mθ − τ φ̇,

ρη = βux + cθ + mφ,

q∗ = k∗θx,

where, abusing a little bit the notation, we write μ instead of λ + 2μ and γ instead of λ∗ + 2μ∗. We also use k∗ to
denote T −1

0 k, respectively, but in the sequel, we will omit the star.
Thus, the constitutive coefficients, in the one-dimensional case and with the new notation, satisfy the following

inequalities:

ξ > 0, δ > 0, μξ > b2. (2.2)

It is assumed that the internal mechanical energy density is a positive definite form.
As coupling is considered, b must be different from 0, but its sign does not matter in the analysis.
When thermal effects are considered, we assume that the thermal capacity c and the thermal conductivity k are

strictly positive.
Note that γ and τ are nonnegative. If γ > 0 viscoelastic dissipation is assumed in the system, and if τ > 0 porous

dissipation is present.
It is known that in the one-dimensional linear theory, the equations that describe porosity and microstretch coincide.

Therefore, we think it is appropriate to use the equations proposed by Ieşan [6] to describe this theory.
In this paper we analyze several problems. All of them are particular cases of the above system. However, it is

worth noting that we do not consider in any place the complete system. In fact, our aim is to know if the decay can be
controlled by a polynomial when only one of the damping effects is present.

To the field equations we must adjoin boundary and initial conditions. Thus, we assume that the solutions satisfy
the boundary conditions

u(0, t) = u(π, t) = φx(0, t) = φx(π, t) = θx(0, t) = θx(π, t) = 0, (2.3)
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and the initial conditions

u(x,0) = u0(x), u̇(x,0) = v0(x), φ(x,0) = φ0(x), φ̇(x,0) = ϕ0(x), θ(x,0) = θ0(x). (2.4)

There are solutions (uniform in the variable x) that do not decay. To avoid these cases, we will also assume that
π∫

0

φ0(x) dx =
π∫

0

ϕ0(x) dx =
π∫

0

θ0(x) dx = 0.

It is worth noting that when we consider the quasi-static problem for the void motion we only need the initial
condition for φ, but not for φ̇. We finish this section, introducing a result due to Prüss [14], for which we can improve
the polynomial rate of decay, by taking more regular initial data.

Theorem 2.1. Assume that −A ∈ G(X,M,0), A is invertible and α a positive constant. Then the following statements
are equivalent:∥∥T (t)A−α

∥∥ � Ct−β, t > 0,∥∥T (t)A−αγ
∥∥ � C′(γ )t−γβ, t > 0, γ > 0.

3. Viscoelasticity and porosity

In this section we study the problem determined by the system{
ρü = μuxx + bφx + γ u̇xx,

J φ̈ = δφxx − bux − ξφ,
(3.1)

with boundary and initial conditions given by (2.3) and (2.4), respectively. We will prove that the time decay of the
solutions can be controlled by a polynomial. We note that the solutions of this problem can be generated by means of
a semigroup of contractions. In fact, this semigroup is defined in

H =
{

(u, v,φ,ϕ) ∈ H 1
0 × L2 × H 1 × L2,

π∫
0

φ(x)dx =
π∫

0

ϕ(x)dx = 0

}

by the operator

A =
⎛
⎜⎝

0 I 0 0
ρ−1μD2 ρ−1γD2 ρ−1bD 0

0 0 0 I

−J−1bD 0 J−1δD2 − ξ 0

⎞
⎟⎠ ,

and I is the identity operator.
Now, we recall an inner product in H. If U∗ = (u∗, v∗, φ∗, ϕ∗), then

〈
U,U∗〉 = π∫

0

(
ρvv̄∗ + Jϕϕ̄∗ + μuxū

∗
x + δφxφ̄

∗
x + ξφφ̄∗ + b

(
uxφ̄

∗ + ū∗
xφ

))
dx.

Hereafter a superposed bar denotes the conjugate complex number. It is worth recalling that this product is equivalent
to the usual product in the Hilbert space H.

The domain of A is

D(A) = {
U ∈H: u ∈ H 2, v ∈ H 1

0 ∩ H 2, φ ∈ H 2, Dφ ∈ H 1
0 , ϕ ∈ H 1}.

We note that D(A) is dense in H. So, we will show that the solution of

Ut = AU, U(0) = U0 = (u0, v0, φ0, ϕ0) ∈ D(A) (3.2)

decays polynomially to zero.
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Our starting point is to define the first order energy as

E1(t, u,φ) = 1

2

π∫
0

(
ρ|u̇|2 + J |φ̇|2 + μu2

x + δφ2
x + ξφ2 + 2buxφ

)
dx. (3.3)

Then we introduce the second order energies,

E2(t) = E1(t, u̇, φ̇), (3.4)

and

E3(t) = E1(t, ux,φx). (3.5)

We know that

dE1

dt
= −γ

π∫
0

|u̇x |2 dx, (3.6)

dE2

dt
= −γ

π∫
0

|üx |2 dx, (3.7)

dE3

dt
= −γ

π∫
0

|u̇xx |2 dx. (3.8)

Let us introduce the following functionals

Φ(t) =
π∫

0

(
ρuxu̇x + γ

2
u2

xx

)
dx,

R(t) = −
π∫

0

(
J φ̇ux − γ ξ

2b
u2

x

)
dx.

Lemma 3.1. Let us suppose that (u0, v0, φ0, ϕ0) ∈ D(A), then the corresponding solution of (3.2) satisfies,

d

dt

(
Φ + b

δ
R

)
� −μ

π∫
0

u2
xx dx + b2 − μξ

2δ

π∫
0

u2
x dx + ε

∫
|φ̇|2 dx + cε

π∫
0

(|ü|2 + |u̇x |2
)
dx.

Proof. Let us multiply Eq. (3.1)1 by −uxx and integrate from 0 to π

d

dt

π∫
0

ρu̇xux dx = ρ

π∫
0

|u̇x |2 − ρ

π∫
0

üuxx dx

= ρ

π∫
0

|u̇x |2 dx −
π∫

0

(μuxx + bφx + γ u̇xx)uxx dx

= ρ

π∫
0

|u̇x |2 dx − μ

π∫
0

u2
xx dx − b

π∫
0

φxuxx dx − γ

2

d

dt

π∫
0

u2
xx dx. (3.9)

Recalling the definition of Φ(t) we get

d

dt
Φ(t) = ρ

π∫
|u̇x |2 dx − μ

π∫
u2

xx dx − b

π∫
φxuxx dx. (3.10)
0 0 0
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Multiply Eq. (3.1)2 by ux

d

dt

π∫
0

J φ̇ux dx =
π∫

0

(δφxx − bux − ξφ)ux dx + J

π∫
0

φ̇u̇x dx

= −δ

π∫
0

φxuxx dx − b

π∫
0

u2
x dx − ξ

π∫
0

φux dx

︸ ︷︷ ︸
:=I (t)

+J

π∫
0

φ̇u̇x dx. (3.11)

But, using Eq. (3.1)1 we get

I (t) = ξ

π∫
0

φxudx = ξ

b

π∫
0

bφxudx = ξ

b

π∫
0

(ρü − μuxx + γ u̇xx)udx

= ξρ

b

π∫
0

üu dx + μξ

b

π∫
0

u2
x + γ ξ

2b

d

dt

π∫
0

u2
x dx. (3.12)

Recalling the definition of R and substitution of (3.12) into (3.11) we get

−dR

dt
= −δ

π∫
0

φxuxx dx − b2 − μξ

b

π∫
0

u2
x dx + ξρ

b

π∫
0

üu dx + J

π∫
0

φ̇u̇x dx. (3.13)

From (3.10) and (3.13) we obtain that

d

dt

(
Φ + b

δ
R

)
= ρ

π∫
0

|u̇x |2 − μ

π∫
0

u2
xx dx + b2 − μξ

δ

π∫
0

u2
x dx − ξρ

δ

π∫
0

üu dx − Jb

δ

π∫
0

φ̇u̇x dx, (3.14)

from where our conclusion follows. �
Now let us introduce the following functionals

S1(t) = − sign(b)

π∫
0

ρu̇φx dx,

S2(t) =
π∫

0

J φ̇φ dx.

Under the above conditions we have

Lemma 3.2. With the same hypothesis as in Lemma 3.1 we have

d

dt

{
S1(t) − |b|

4(δ + ξ)
S2(t)

}
� −|b|

4

π∫
0

φ2
x dx − |bJ |

8(δ + ξ)

π∫
0

|φ̇|2 dx + C

π∫
0

(
u2

xx + |u̇xx |2
)
dx.

Proof. Using Eq. (3.1)1 we get

d

dt

π∫
ρu̇φx dx =

π∫
ρüφx dx −

π∫
u̇x φ̇ dx
0 0 0
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=
π∫

0

(μuxx + bφx + γ u̇xx)φx dx − ρ

π∫
0

u̇x φ̇ dx

= b

π∫
0

φ2
x dx + μ

π∫
0

uxxφx dx + γ

π∫
0

u̇xxφx dx − ρ

π∫
0

u̇x φ̇ dx. (3.15)

Recalling the definition of S1 we get

dS1

dt
� −|b|

2

π∫
0

φ2
x dx + sign(b)ρ

π∫
0

u̇x φ̇ dx + C

π∫
0

(
u2

xx + |u̇xx |2
)
dx, (3.16)

where C is a positive constant.
Differentiating S2 with respect to the time and using Eq. (3.1)1 we get

dS2

dt
= J

π∫
0

|φ̇|2 dx + J

π∫
0

φ̈φ dx

= J

π∫
0

|φ̇|2 dx +
π∫

0

(δφxx − bux − ξφ)φ dx

� J

π∫
0

|φ̇|2 dx − (δ + ξ)

π∫
0

φ2
x dx − b

π∫
0

uxφ dx, (3.17)

where we have used the Poincaré inequality. From (3.16) and (3.17) our conclusion follows. �
Now, we are in conditions to show the main result of this section.

Theorem 3.3. Assume that the hypotheses of in Lemma 3.1 hold. Then there exists a positive constant C such that

E1(t) �
C‖(u0, v0, φ0, ϕ0)‖2

D(A)

t
.

Moreover, if (u0, v0, φ0, ϕ0) ∈ D(Aα), then we have that

E1(t) �
Cα‖(u0, v0, φ0, ϕ0)‖2

D(Aα)

tα
.

Proof. Let us introduce the functional L(t) as

L(t) = S1(t) − |b|
5(δ + ξ)

S2(t) + N

(
Φ(t) + b

δ
R(t)

)
+ N1E1(t) + N2E2(t) + N3E3(t), (3.18)

where N and Ni , i = 1,2,3, are large enough such that L(t) � 0, then from Lemmas 3.1 and 3.2 we have

dL
dt

� −γbE1. (3.19)

Integration over [0, t] implies

L(t) + γb

t∫
0

E1(s) ds � L(0). (3.20)

Then
d (

tE1(t)
) = E1(t) + t

dE1 � E1(t). (3.21)

dt dt
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A quadrature implies that

tE1(t) �
t∫

0

E1(s) ds � γ −1
b L(0) (3.22)

which implies the polynomial decay. To improve the polynomial decay we use Prüss Theorem 2.1 �
4. A quasi-static theory

Here we consider the case where viscoelasticity is absent, but porous dissipation is present and the void motion is
quasi-static. It has been proved [12] that the decay in this situation is slow. In this section we obtain that the solutions
are polynomially stable.

The system we want to study is{
ρü = μuxx + bφx,

τ φ̇ = δφxx − bux − ξφ.
(4.1)

From the mathematical point of view this system can be considered as the limit system (as J → 0) of the usual
system of the porous-elasticity when only porous dissipation is present.

The boundary and initial conditions are given by (2.3) and (2.4), respectively. We suppose that the coefficients
satisfies condition (2.2). Again, we note that the solutions of this problem can be generated by means of a semigroup
of contractions in the Hilbert space

H =
{

(u, v,φ) ∈ H 1
0 × L2 × H 1,

π∫
0

φ(x)dx = 0

}
.

Denote by U = (u, v,φ), and define the operator A as

A =
⎛
⎝ 0 I 0

ρ−1μD2 0 ρ−1bD

−τ−1bD 0 τ−1δD2 − ξ

⎞
⎠ ,

with domain

D(A) = {
U ∈H: u ∈ H 2, v ∈ H 1

0 , φ ∈ H 2, Dφ ∈ H 1
0

}
.

By I we denote the identity operator. Note that D(A) is dense in H. Then the initial-boundary value problem (4.1) is
equivalent to

Ut = AU, U(0) = U0 = (u0, v0, φ0) ∈D(A). (4.2)

Now, we define an inner product in H. If U∗ = (u∗, v∗, φ∗), then

〈
U,U∗〉 = π∫

0

(
ρvv̄∗ + μuxū

∗
x + δφxφ̄

∗
x + ξφφ̄∗ + b

(
uxφ̄

∗ + ū∗
xφ

))
dx.

To obtain the polynomial decay we define the following functions

E1(t, u,φ) = 1

2

π∫
0

(
ρ|u̇|2 + μu2

x + δφ2
x + ξφ2 + 2buxφ

)
dx, (4.3)

E2(t) = E1(t, u̇, φ̇), (4.4)

and

E3(t) = E1(t, ux,φx). (4.5)

It is not difficult to show that
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dE1

dt
= −τ

π∫
0

|φ̇|2 dx, (4.6)

dE2

dt
= −τ

π∫
0

|φ̈|2 dx, (4.7)

dE3

dt
= −τ

π∫
0

|φ̇x |2 dx. (4.8)

Let us introduce the functional

S(t) =
π∫

0

τ

2
φ2

x dx + bρ

μ

π∫
0

u̇φx dx. (4.9)

Lemma 4.1. If the initial data U0 = (u0, v0, φ0) ∈ D(A) then the functional S satisfies

dS

dt
= −δ

π∫
0

φ2
xx dx −

(
ξ − b2

μ

) π∫
0

φ2
x dx + bρ

μ

π∫
0

u̇φ̇x dx. (4.10)

Proof. Let us multiply the second equation of (4.1) by −φxx , to get

τ

2

d

dt

π∫
0

φ2
x dx = −δ

π∫
0

φ2
xx dx + b

π∫
0

uxφxx dx − ξ

π∫
0

φ2
x dx. (4.11)

Using the first equation of (4.1) we have

b

π∫
0

uxφxx dx = − b

μ

π∫
0

φx(ρü − bφx) dx

= −bρ

μ

d

dt

π∫
0

u̇φx dx + bρ

μ

π∫
0

u̇φ̇x dx + b2

μ

π∫
0

φ2
x dx. (4.12)

Finally, by substituting (4.12) into (4.11) our conclusion follows. �
Let us introduce the functional

R(t) = sign(b)τ

π∫
0

φux dx − |b|
6μ

π∫
0

ρu̇udx. (4.13)

Lemma 4.2. With the same hypotheses as in Lemma 4.1, we have

dR

dt
� −|b|

4

π∫
0

u2
x dx − ρ|b|

12μ

π∫
0

|u̇|2 dx + C∗
0

π∫
0

(
φ2

x + φ2
xx

)
dx.

Proof. Let us multiply the second equation of (4.1) by ux . We see that

sign(b)τ
d

dt

π∫
φux dx = sign(b)

(
τ

π∫
φ̇ux dx + τ

π∫
φu̇x dx

)

0 0 0
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= sign(b)

( π∫
0

(δφxx − bux − ξφ)ux dx − τ

π∫
0

φxu̇ dx

)

= sign(b)

(
δ

π∫
0

φxxux dx − b

π∫
0

u2
x dx − ξ

π∫
0

uxφ dx − τ

π∫
0

φxu̇ dx

)

� −|b|
2

π∫
0

u2
x dx − τ

π∫
0

φxu̇ dx + δ2 + ξ2

|b|
π∫

0

(
φ2

x + φ2
xx

)
dx. (4.14)

Multiplying the first equation of (4.1) by u we get

d

dt

π∫
0

ρu̇udx =
π∫

0

ρüudx + ρ

π∫
0

|u̇|2 dx =
π∫

0

(μuxx + bφx)udx + ρ

π∫
0

|u̇|2 dx

= −μ

π∫
0

u2
x dx + b

π∫
0

φxudx + ρ

π∫
0

|u̇|2 dx. (4.15)

So we have

− d

dt

π∫
0

ρu̇udx � −ρ

π∫
0

|u̇|2 dx + 3μ

2

π∫
0

u2
x dx + C1

π∫
0

φ2
x dx, (4.16)

where C1 is a positive constant that can be calculated. Finally, multiplying relation (4.16) by |b|/6μ and summing up
with relation (4.14) our conclusion follows. �

Now, we are in conditions to show the main result of this section.

Theorem 4.3. Assume that the hypotheses of in Lemma 4.1 hold. Then there exists a positive constant C such that

E1(t) �
C‖(u0, v0, φ0)‖2

D(A)

t
.

Moreover, if (u0, v0, φ0) ∈ D(Aα), for α > 0, then we have that

E1(t) �
Cα‖(u0, v0, φ0)‖2

D(Aα)

tα
.

Proof. Let us introduce the functional L(t) as

L(t) = R(t) + NS(t) + N1E1(t) + N2E2(t) + N3E3(t), (4.17)

where N is sufficiently great and Ni , i = 1,2,3, are also sufficiently greater to guarantee that L(t) is positive. Using
Lemmas 4.1 and 4.2 we conclude that

dL
dt

� −γbE1. (4.18)

We can finish the proof of the polynomial decay in a similar way as in Section 3. �
5. Porous-elasticity and heat conduction

In this section, we consider the problem determined by the system of the porous-elasticity when the only dissipation
mechanism is the heat conduction. The system of equations is⎧⎨

⎩
ρü = μuxx + bφx − βθx,

J φ̈ = δφxx − bux − ξφ + mθ,
˙ ˙

(5.1)

cθ = kθxx − βu̇x − mφ.



1306 J. Muñoz-Rivera, R. Quintanilla / J. Math. Anal. Appl. 338 (2008) 1296–1309
The solutions of this system with the initial and boundary conditions determined by (2.3), (2.4) are generated by a
semigroup of contractions which is defined in the Hilbert space

H =
{

(u, v,φ,ϕ, θ) ∈ H 1
0 × L2 × H 1 × L2 × L2,

π∫
0

φ dx =
π∫

0

ϕ dx =
π∫

0

θ dx = 0

}
,

by the operator

A =

⎛
⎜⎜⎜⎝

0 Id 0 0 0
ρ−1μD2 0 ρ−1bD 0 −ρ−1βD

0 0 0 Id 0
−J−1bD 0 J−1(δD2 − ξ) 0 J−1m

0 −c−1βD 0 −c−1m c−1kD2

⎞
⎟⎟⎟⎠ ,

with domain

D(A) = {
U ∈H; u ∈ H 2(0,π), v ∈ H 1

0 (0,π), Dφ,Dϕ,Dθ ∈ H 1
0 (0,π)

}
.

In fact, we consider the scalar product〈
(u, v,φ,ϕ, θ),

(
u∗, v∗, φ∗, ϕ∗, θ∗)〉

H

=
π∫

0

(
ρvv∗ + Jϕϕ∗ + cθθ∗ + μuxu

∗
x + αφxφ

∗
x + ξφφ∗ + b

(
uxφ

∗ + u∗
xφ

))
dx.

Therefore, system (5.1) is equivalent to solving the Cauchy problem

Ut = AU, U(0) = U0 = (u0, v0, φ0, ϕ0, θ0) ∈ D(A). (5.2)

In this section we prove the polynomial decay of solutions whenever

m(βb − mμ) > 0. (5.3)

For this system, we can define the following energies

E1(t, u,φ, θ) = 1

2

π∫
0

(
ρ|u̇|2 + μu2

x + J |φ̇|2 + δφ2
x + 2bφux + cθ2)dx, (5.4)

E2(t, u,φ, θ) = E1(t, u̇, φ̇, θ̇ ), (5.5)

E3(t, u,φ, θ) = E1(t, ux,φx, θx). (5.6)

After several integrations by parts, we can see that

dE1

dt
= −k

π∫
0

θ2
x dx, (5.7)

dE2

dt
= −k

π∫
0

|θ̇x |2 dx (5.8)

and

dE3

dt
= −k

π∫
0

θ2
xx dx. (5.9)

Let us introduce the functional

R(t) =
π∫

0

(cθ + mφ)u̇x dx + c

π∫
0

θxu̇ dx + mμ

b

π∫
0

uxu̇x dx. (5.10)
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Lemma 5.1. Let us suppose that the initial data (u0, v0, φ0, ϕ0, θ0) ∈ D(A). Then there exists positive constants γ0
and C0 such that the solution of problem (5.2) satisfies

dR

dt
� −γ0

π∫
0

(|u̇x |2 + |ü|2)dx + C0

π∫
0

(
θ2
x + θ2

xx

)
dx.

Proof. We can rewrite the third equation in (5.1) as

cθ̇ + mφ̇ = kθxx − βu̇x.

Multiplying by u̇x and integration from 0 to π we find that

d

dt

π∫
0

(cθ + mφ)u̇x dx =
π∫

0

(cθ̇ + mφ̇)u̇x dx +
π∫

0

(cθ + mφ)üx dx

=
π∫

0

(kθxx − βu̇x)u̇x dx + c

π∫
0

θüx dx + m

π∫
0

φüx dx

= k

π∫
0

θxxu̇x dx − β

π∫
0

|u̇x |2 dx − c
d

dt

π∫
0

θxu̇ dx + c

π∫
0

θ̇x u̇ dx − m

π∫
0

φxü dx. (5.11)

The last term on the right-hand side can be estimated in the following way

−m

π∫
0

φxü dx = −m

b

π∫
0

(ρü − μuxx + βθx)ü dx

= −mρ

b

π∫
0

|ü|2 dx − mμ

b

π∫
0

uxüx dx − mβ

b

π∫
0

θxü dx

= −mρ

b

π∫
0

|ü|2 dx − mμ

b

d

dt

π∫
0

uxu̇x dx + mμ

b

L∫
0

|u̇x |2 − mβ

b

π∫
0

θxü dx. (5.12)

Recalling the definition of R we get

dR

dt
= k

π∫
0

θxxu̇x dx −
(

β − mμ

b

)
︸ ︷︷ ︸

:=I1

π∫
0

|u̇x |2 dx + c

π∫
0

θ̇x u̇ dx − mρ

b︸︷︷︸
:=I2

π∫
0

|ü|2 dx − mβ

b

π∫
0

θxü dx. (5.13)

By hypotheses we have that I1 and I2 have the same sign. Therefore we can assume that βb > mμ. Otherwise, we
take −R instead of R. From where our conclusion follows. �

Finally we are able to show the polynomial decay.

Theorem 5.2. Assume that the hypotheses of in Lemma 5.1 hold. Then there exists a positive constant C such that

E1(t) �
C‖(u0, v0, φ0, ϕ0, θ0)‖2

D(A)

t
.

Moreover, if (u0, v0, φ0, ϕ0, θ0) ∈ D(Aα), then we have that

E1(t) �
Cα‖(u0, v0, φ0, ϕ0, θ0)‖2

D(Aα)

tα
.
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Proof. Let us multiply the first equation of (5.1) by u, then we have

d

dt

π∫
0

ρuu̇ dx = ρ

π∫
0

|u̇|2 dx +
π∫

0

ρüudx

= ρ

π∫
0

|u̇|2 dx −
π∫

0

μu2
x dx + b

π∫
0

φxudx − β

π∫
0

uθx dx, (5.14)

and

d

dt

π∫
0

cθφ̇ dx =
π∫

0

cθ̇ φ̇ dx + c

π∫
0

θφ̈ dx

= k

π∫
0

θxxφ̇ dx − β

π∫
0

u̇x φ̇ dx − m

π∫
0

|φ̇|2 dx + c

J

π∫
0

θ(δφxx − bux − ξφ + mθ)dx. (5.15)

Denoting by

Q(t) = sign(m)

π∫
0

cθφ̇ dx, (5.16)

we find that

dQ

dt
� −|m|

2

π∫
0

|φ̇|2 dx + C1

π∫
0

(|u̇x |2 + |θxx |2 + |θx |2
)
dx

− sign(m)c

J

( π∫
0

δθxφx dx +
π∫

0

bθux dx +
π∫

0

ξφθ dx

)
, (5.17)

where C1 is a positive constant that can be estimated.
Now, we can see that

d

dt

π∫
0

Jφφ̇ dx = J

π∫
0

φφ̈ dx + J

π∫
0

|φ̇|2 dx

= −δ

π∫
0

φ2
x dx − b

π∫
0

φux dx − ξ

π∫
0

φ2 dx + m

π∫
0

θφ dx + J

π∫
0

|φ̇|2 dx. (5.18)

Let us introduce the functional

S(t) =
π∫

0

(ρuu̇ + Jφφ̇) dx. (5.19)

Using (5.14) and (5.18) we arrive to

dS

dt
= ρ

π∫
0

|u̇|2 dx + J

π∫
0

|φ̇|2 dx − μ

π∫
0

u2
x dx − δ

π∫
0

φ2
x dx − ξ

π∫
0

φ2 dx − 2b

π∫
0

φux dx

+
π∫

θ(mφ + βux) dx
0
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� ρ

π∫
0

|u̇|2 dx + J

π∫
0

|φ̇|2 dx − γ1

π∫
0

(
u2

x + φ2
x + φ2)dx + C2

π∫
0

θ2
x dx. (5.20)

Here γ1 and C2 are two positive constants which can be estimated. Now, if we define the function

L(t) = S(t) + N
(
Q(t) + R(t)

) + N1E1(t) + N3E3(t), (5.21)

where N and Ni , i = 1,3, are large enough such that L(t) is positive. Using Lemma 5.1 and the above inequalities
we get that

dL
dt

� −γbE1. (5.22)

We can finish the proof of the polynomial decay in a similar way as in Section 3. �
6. Conclusions

In this paper we have analyzed the behavior of porous continua. We have considered three situations where the
dissipation mechanisms are not so strong to guarantee the exponential stability of the solutions. These are:

(i) Porous viscoelastic bodies when the dissipation is produced by the deformation-rate tensor.
(ii) Porous viscoelastic bodies when the dissipation is produced by the time-rate of the porosity function and when

the motion of the voids is quasi-static.
(iii) Porous thermoelastic bodies when the dissipation is due to the thermal effect.

In the two first cases we have seen that the decay can be controlled by a polynomial. The same happens in the third
case whenever the constitutive constants satisfy the condition (5.2).
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[6] D. Ieşan, On a theory of micromorphic elastic solids with microtemperatures, J. Thermal Stresses 24 (2001) 737–752.
[7] D. Ieşan, Thermoelastic Models of Continua, Springer, 2004.
[8] S. Jiang, R. Racke, Evolution Equations in Thermoelasticity, Chapman and Hall/CRC, Boca Raton, 2000.
[9] Z. Liu, B. Rao, Characterization of polynomial decay for the solution of linear evolution equation, J. Angew. Math. Phys. 56 (2005) 630–644.

[10] A. Magaña, R. Quintanilla, On the exponential decay of solutions in one-dimensional generalized porous-thermo-elasticity, Asymptot.
Anal. 49 (2006) 173–187.

[11] A. Magaña, R. Quintanilla, On the time decay of solutions in one-dimensional theories of porous materials, Internat. J. Solids Struct. 43 (2006)
3414–3427.

[12] A. Magaña, R. Quintanilla, On the time decay of solutions in porous elasticity with quasi-static microvoids, J. Math. Anal. Appl. 331 (2007)
617–630.

[13] J.W. Nunziato, S.C. Cowin, A nonlinear theory of elastic materials with voids, Arch. Ration. Mech. Anal. 72 (1979) 175–201.
[14] A. Batkai, K.J. Engel, J. Prüss, R. Schnaubelt, Polynomial stability of operators semigroup, Math. Nachr. 279 (2006) 1425–1440.
[15] R. Quintanilla, Slow decay for one-dimensional porous dissipation elasticity, Appl. Math. Lett. 16 (2003) 487–491.
[16] R. Quintanilla, R. Racke, Stability for thermoelasticity of type III, Discrete Contin. Dyn. Syst. Ser. B 3 (2003) 383–400.
[17] M. Slemrod, Global existence, uniqueness and asymptotic stability of classical smooth solutions in one-dimensional nonlinear thermoelastic-

ity, Arch. Ration. Mech. Anal. 76 (1981) 97–133.


