
Biochimica et Biophysica Acta 1788 (2009) 768–778

Contents lists available at ScienceDirect

Biochimica et Biophysica Acta

j ourna l homepage: www.e lsev ie r.com/ locate /bbamem

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Review

Reciprocal influence of connexins and apical junction proteins on their expressions
and functions

Mickaël Derangeon a, David C. Spray b, Nicolas Bourmeyster a, Denis Sarrouilhe a, Jean-Claude Hervé a,⁎
a Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS 6187; 40 avenue du recteur Pineau, Poitiers, F-86022, France
b Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
Abbreviations: 42GPA9, Sertoli cell line; Caco-2, hum
COS7, monkey African green kidney cells; HEK293 cells
cells; NIH 3T3, mouse fibroblasts; NRK, rat kidney cells;
⁎ Corresponding author. Tel./fax: +33 549 45 37 51.

E-mail address: Jean.Claude.Herve@univ-poitiers.fr (

0005-2736/$ – see front matter © 2008 Elsevier B.V. A
doi:10.1016/j.bbamem.2008.10.023
a b s t r a c t
a r t i c l e i n f o
Article history:
 Membranes of adjacent cell

Received 21 April 2008
Received in revised form 29 October 2008
Accepted 30 October 2008
Available online 11 November 2008

Keywords:
Gap junction
Tight junction
Apical junction
Adherens junction
Connexin
ZO-1
s form intercellular junctional complexes to mechanically anchor neighbour cells
(anchoring junctions), to seal the paracellular space and to prevent diffusion of integral proteins within the
plasma membrane (tight junctions) and to allow cell-to-cell diffusion of small ions and molecules (gap
junctions). These different types of specialised plasma membrane microdomains, sharing common adaptor
molecules, particularly zonula occludens proteins, frequently present intermingled relationships where the
different proteins co-assemble into macromolecular complexes and their expressions are co-ordinately
regulated. Proteins forming gap junction channels (connexins, particularly) and proteins fulfilling cell
attachment or forming tight junction strands mutually influence expression and functions of one another.

© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In various tissues, e.g. in different types of epithelia, membranes
in contact form intercellular junctional complexes comprising tight
junctions, adherens junctions, and gap junctions. These different
membrane specialisations fulfill different roles, tight junctions
serving the major functional purpose of providing a “barrier” and
a “fence” within the membrane by regulating paracellular perme-
ability and maintaining cell polarity, anchoring junctions couple
cytoskeletal elements to the plasma membrane at cell–cell
contacts, providing mechanical integrity to tissues, whereas gap
junctions allow the passage of small molecular weight solutes
directly between neighbouring cells. The three types of junctions
frequently intermingle with each other, sharing common proteins,
termed adaptors, particularly zonula occludens (ZOs, ZO-1 being
the most common), that are able to recruit other regulatory and
structural proteins to the sites of intercellular junctional complexes.
Adaptors are indeed composed of conserved protein binding
domains, which allow them to link a variety of structural or
signalling proteins to form multi-protein complexes to the same
site and to tether transmembrane proteins belonging to anchoring,
tight or gap junctions to the underlying cytoskeleton (which also
plays important roles in bridging different protein complexes of the
different intercellular junctions). The release or incorporation of
these adaptors by one of the types of junctions plausibly interferes
with the junction complexity and the stability of other junctions.
Moreover, these adaptors per se can be substrates and/or activators
of kinases or phosphatases. These close relationships allow the
different types of junctions to mutually influence via these
extensive networks. Moreover, protein–protein interactions may
also activate signal transduction pathways (e.g. G-protein cascades,
see Section 6.1) influencing the behaviour of other membrane
junctions.

2. Methodological approaches for detection of protein partners

The determination of protein–protein interactions is no easy
matter, with an abundance of potentially false positive detections
with several methodologies, leading to the need to seek after
protein partners using many different approaches. The most
traditional methods are “directed” studies, with the strategy to
identify potential protein partners on the basis of previous studies
Fig. 1. Artistic overview of the importance of adaptors (particularly ZO-1), which play pivo
components and actin cytoskeleton.
or preliminary functional or structural data. Immunofluorescence
confocal microscopy is used to investigate co-localization of
junctional proteins with protein partners, to examine if their
similar subcellular localization makes possible a physical interac-
tion between two proteins. Co-immunoprecipitation assays allow
substantiation of their interaction. These approaches require
identifying the potential partners and the availability of high
affinity specific antibodies to them. In co-immunoprecipitation
studies, cells or tissues are lysed in non-denaturing buffers; then
using junctional protein antibodies, the complexes are pulled down
from solution and run on denaturing gels to disaggregate the
complexes. Proteins are electrophoretically transferred to nitrocel-
lulose membranes, which are probed for the potential binding
partner by means of specific antibodies. This traditional identifica-
tion method is low throughput but relatively high stringency. To
confirm that a binding partner pulled down with co-immunopre-
cipitation is a possible partner, and not an artefact of cell lysis
condition, the reverse pull down should also be done where the
identified protein is pulled down with its specific antibody and the
complex is probed for the protein of interest. An additional
stringent control is the use of cells or tissues in which the protein
of interest is absent, such as transgenic null mice.

Several “non-directed” approaches with high throughput
screens are also used, such as employing purified protein portions
of junctional proteins (such as their N- or C-terminus domain) as
“bait” for protein partners. The expressed domain of interest is
incubated with cell or tissue lysates, and then directly pulled down
and the complexes of protein run out on a denaturing SDS gel. The
2-D or 3-D gel is then either western blotted and proteins
identified using specific antibodies, or stained to highlight the
presence of a band of protein which is excised, allowing
identification of individual proteins by means of HPLC or MALDI-
TOF mass spectrometry. Another methodology is to use antibody
arrays to examine groups of potential protein partners. In this
procedure, antibodies to a wide variety of potential partners of
junctional protein are immobilized on nitrocellulose membranes in
clusters of related proteins and incubated with cell or tissue
lysates, and protein complexes are captured by specific antibodies.
The presence of junctional proteins within these complexes is then
probed using HRP-tagged connexin specific antibodies. These
methods allow simultaneous probing of a large number of potential
partners; moreover, if arrays are prepared by a commercial entity,
tal roles in the protein–protein interactions between gap junction and apical junction



Table 1
Reported interactions of gap junction proteins with anchoring junction components.

AJ protein Cx Main
approachesa

Cell typesb References

β-catenin Cx43 cl ci Neonatal rat
cardiomyocyte,
N2A cells

[14]

β-catenin cl ci NIH 3T3 cells [13]
p120 cl ci NIH 3T3 cells [13]
N-cadherin cl ci NIH 3T3 cells [13]

a cl: colocalization; ci: co-immunoprecipitation.
b In roman characters, cells where Cx were endogenously expressed; in italics, cells

where Cx were exogenously expressed, surexpressed or mutated.
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the risk of investigator bias is partially prevented. More directed
searches can be done, if the arrays are made “in house” with
antibodies against particular proteins being immobilized on
nitrocellulose. If these antibodies are chosen due to either
functional or structural relationship to a given protein, the arrays
have the potential to yield entire pathways which involve Cx–
protein interactions. Among in vitro approaches developed to
compare binding affinities of identified protein partners of Cxs,
the surface plasmon resonance measures the change in refractive
index of a solvent near a surface (typically a gold film) that occurs
during complex formation or dissociation.

The barrier function of tight junctions can be estimated by
either the transepithelial electrical resistance (TER) measurement
or the estimation of the paracellular flux, for example of 14C-inulin,
14C-mannitol or BODIPY-sphingomyelin or with fluorescent cell
impermeant molecules such as FITC-dextran, whereas the cell-to-
cell coupling through gap junctions can be assessed in dual
voltage-clamp conditions (gap junctional conductance) or by
intercellular diffusion of intracellularly injected or scrape-loaded
fluorescent dye.

3. Gap junction proteins

All gap junction channels have a similar overall structure but,
unlike most other membrane channels, different gene families
encode the channel-forming proteins in different animal phyla. Gap
junction structure and functions were for a long time mainly
investigated in vertebrates, where they were believed to be solely
formed by connexins (Cxs). Then, in C. elegans (a nematode) and
Drosophila (an arthropod), which have no Cx genes, gap junctions
were found to be encoded by another gene family, the innexins
(Inxs, invertebrate analogues of Cxs), which have no sequence
homology to Cxs [1]. The list of animal phyla with identified
members of the Inx family progressively extended to platyhel-
minthes, annelida, coelenterata and mollusca (see [2] for review).
Sequences with low, but detectable, similarity to Inxs were then
identified in vertebrate chordates, leading some authors to suggest
that the protein family be re-named pannexins (from the Greek
“pan”, all, entire, and nexus, connection), abbreviated Panxs [3].
Using statistical, topological and conserved sequence motif ana-
lyses, Yen and Saier [4] recently proposed that Inxs and Panxs
would belong to a single superfamily. White et al. [5] showed that
Cx genes were not restricted to vertebrate animals but were also
present in invertebrate chordates (e.g. in tunicates, ascidians and
appendicularians).

Cxs, Inxs and Panxs share with claudins and occludins, two
essential tight junctional components, similar topologies, with 4 α-
helical transmembrane segments (TMSs); all proteins exhibit well-
conserved extracellular cysteinyl residues that either are known to
or potentially can form disulfide bridges. Yen and Saier [4] used a
multiple alignment of the protein sequences of the different
families of gap junction proteins to derive average hydropathy
and similarity plots as well as phylogenetic trees. The data
obtained led to several evolutionary, structural and functional
suggestions, in particular (i) the most conserved regions of the
proteins of the different families are the 4 TMSs (although the
extracellular loops between TMSs 1 and 2, and TMSs 3 and 4 are
also usually well conserved). (ii) The phylogenetic trees revealed
sets of orthologues except for Inxs, where phylogeny primarily
reflects organismal source (possibly on account of the lack of
relevant invertebrate genome sequence data. (iii) Conserved
cysteinyl residues in Cxs and Inxs pointed to a similar extracellular
structure involved in the docking of hemi-channels to form
intercellular channels. (iv) In claudins and occludins, these residues
might play a similar role in homomeric interactions. The lack of
sequence or motif similarity between the different protein families
indicates that, if they did evolve from a common ancestral gene,
they have diverged considerably to fulfill separate, different
functions.

When their full-length amino acid sequences are compared,
Inxs display relatively low overall identity to either Panxs or Cxs;
however, there is greater identity or similarity between Inxs and
Panxs when only the first halves of the molecules (the first two
TMSs and their extracellular linker (EC1)) are compared (a pair of
cysteinyl residues in EC1 is for example absolutely conserved in all
Inxs and Panxs but the latter do not possess the YY(X)W(Z) motif
in TM2 regarded as a signature sequence of innexins, see [2].
Invertebrate Cxs share 25–40% sequence identity with human Cxs
[5]. Twenty and twenty-one members of the Cx gene family are
likely to be expressed in the mouse and human genome,
respectively (19 of which can be grouped into sequence-ortholo-
gous pairs) and orthologues are increasingly characterised in other
vertebrates; in invertebrate chordates, a comparable number (e.g.
seventeen connexin-like sequences in a basal marine chordate, the
tunicate Ciona intestinalis) have been found. The Inx family appears
large since well over 50 sequences have already been reported (as
for example 25 in C. elegans) but functional studies of cell–cell
communication have only been performed for some of them (see
[2]). In contrast, only 3 Panx genes have been described in mouse
and human and, up to now, both the presence of Panxs in
ultrastructurally defined gap junctions as well as the in vivo
existence of Panx-built canonical intercellular channels remain to
be shown. In vitro Panx1, alone and in combination with Panx2,
however induced the formation of intercellular channels in paired
Xenopus oocytes [6]. Given the fact that the N-terminal halves of
the gap junction proteins are better conserved than the C-terminal
halves, Yen and Saier [4] suggested that the former segments
might share an essential, universal function while the latter
segments could have diverged for more specialised functions.

A major difference between pannexins and both innexins and
connexins is the presence of glycosylation sites in the pannexin
extracellular loops [7]. Presumably, such glycosylation not only plays a
role in trafficking of Panx1 to the membrane, but also this glycosyla-
tion poses a steric barrier to formation of pannexon linkage across
extracellular space. Thus, the role of pannexin channels is most likely
to involve exchange from extracellular space, rather than between
cells (see [8–11]).

4. Protein–protein interactions

4.1. Interactions of connexins with adhesion junction components

Adherens junctions (AJs) mediate adhesion between neighbour-
ing cells by linking the actin cytoskeleton of one cell to that of the
next cell via transmembrane adhesion molecules and their asso-
ciated protein complexes. The core of these junctions consists of two
basic adhesive units, the interactions among transmembrane
glycoproteins of the classical cadherin superfamily and the catenin
family members (including p120-catenin, β-catenin, and α-catenin)
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and the nectin/afadin complexes (for review, see [12]). Their
formation, as that of gap junctions, requires close membrane–
membrane apposition, and durable interactions between AJ and gap
junction (GJ) components have been summarized in Table 1. Cad-
herins comprise an important family of transmembrane glycopro-
teins that mediate calcium-dependent cell–cell adhesion and are
linked to the actin cytoskeleton via catenins. In NIH3T3 cells, Cx43,
N-cadherin and different N-cadherin-associated proteins were found
colocalized and coimmunoprecipitated, suggesting that Cx43 and N-
cadherin are coassembled in a multiprotein complex containing
various N-cadherin-associated proteins [13]. However, no evidence
was found in the latter study for direct binding between N-cadherin
and the C-terminal part of Cx43, suggesting that weak protein–
protein interactions might exist between them, or that interactions
occur with the short N-terminus or intracellular loop domains of
Cx43 or via a protein partner acting as an anchoring bridge. Cate-
nins, which anchor cadherins to the actin cytoskeleton, were found
co-localized and coimmunoprecipitated with Cx43 in neonatal rat
cardiomyocytes [14,15]. In the latter study, β-catenin was suggested
to associate with α-catenin, ZO-1 and Cx43 during gap junction
development. In contrast, Cx45 and β-catenin do not have a direct
association to each other in mouse heart [16].

4.2. Interactions of connexins with tight junction components

Tight junctions (TJs), the most apical organelle of the apical
junctional complex, primarily involved in the regulation of para-
cellular permeability and membrane polarity, are built from about 40
different proteins, including members frommultigenic families. These
proteins include three main transmembrane proteins (claudins,
occludin, and junctional adhesion molecules, JAMs), as well as
cytoplasmic proteins fulfilling roles in scaffolding, cytoskeletal
attachment, cell polarity, signalling, etc. (see [17–20]). Up to now,
connexin interactionwith JAMs has not yet been reported, but several
interactions of the other TJ components have been observed,
summarized in Table 2.

Occludin was found to interact with Cx32 in immortalized mouse
hepatocytes [21] and cultured rat hepatocytes [22]. Nusrat et al. [23],
using a bait interaction system, reported that Cx26 interacted with a
coiled-coil domain of occludin. This suggests that Cx26 retains the
ability to interact with occludin in some cell systems, although in
other cultured systems this interaction may not be physiological.
Claudin-1 was found co-localized with Cx32, occludin and ZO-1 at cell
borders of primary cultured rat hepatocytes, and binding of Cx32 to
the tight-junction proteins was demonstrated by coimmunoprecipita-
tion [22]. Both occludin and claudin-5 (and ZO-1, see below) were
shown to colocalize and to coprecipitate with Cx40 and Cx43 in
porcine blood-brain barrier endothelial cells [24].

In the different junctional complexes, adaptor proteins, which
possess a modular organization with several protein–protein interac-
tion domains, usually bind to the cytoplasmic C-terminal tail of
transmembrane proteins and connect them to the actin cytoskeleton
directly or indirectly by recruiting other proteins. Zonula occludens
(ZO) proteins, in addition to the characteristic modules of the MAGUK
protein family (PDZ, SH3 and GUK domains), have a distinctive C-
terminus comprising acidic- and proline-rich regions, and splicing
domains. ZO-1, a 220 kDa peripheral membrane protein, tethers
transmembrane proteins either directly (e.g. occludin, claudins and
JAMs) or via their adapter proteins (α-catenin or afadin for example)
to the actin cytoskeleton (for recent reviews, see for example
[18,19,25,26]. The growing number of connexins that can associate
with ZO proteins, summarized in Table 2 (see also [27]), indicates that
the latter may play a more general role in organizing gap junctions
and/or in recruiting signalling molecules that regulate intercellular
communication. Up to now, all Cxs that have been shown to interact
with ZO-1 belong to the alpha connexin isotypes, leading to the
speculation that other connexin isotypes (betas, gammas, etc) may
have alternate scaffolding partners.

Coxsackievirus-adenovirus receptor (CAR) is a transmembrane TJ
protein associated with ZO-1 [28], well conserved in vertebrates but
its function remains poorly understood. CAR is, in the postnatal heart,
predominantly localized at the intercalated disc and also present in
the atrioventricular (AV) node. CAR interacts with Cx45 and they form
a complex with ZO-1 and β-catenin [16].

5. Possible structural domains of connexins involved in
interactions with partner proteins of Apical Junctions

ZO proteins are at the centre of a network of protein interactions,
linked to the actin cytoskeleton via their C-termini whereas their N-
termini interact with the C-terminal regions of different transmem-
brane junctional proteins (claudins, occludin, JAM and connexins) via
different docking modules. The first N-terminal PDZ domain of ZO-1,
ZO-2 andZO-3 directly binds to the C-termini of claudins, the third PDZ
domainof ZO-1 interacts in vitrowith JAM-1whereas theGUK regionof
ZO-1 is responsible for occludin interaction (see [18]). ZO-1 also
directly interactswithα-catenin and afadin (see [25]). Except Cx35and
-36, which appear to interact with PDZ1 of ZO-1, connexins mainly
interactwith PDZ2of ZO-1 and, to a lesser extent, ZO-2; up tonow, only
Cx45has been found to interactwith ZO-3 (see Table 2). Cx36 andCx45
binding to different ZO-1 PDZ domains (respectively PDZ1 and PDZ2,
see Table 2). Li et al. [29] suggested that ZO-1 might simultaneously
interact with Cx36 and Cx45 in a tripartite manner, thereby tethering
the twoCxswithin gap junctions. As ZO-1 can target to the peripheryof
Cx43 junctional plaque independently of PDZ2-mediated interactions,
Hunter and Gourdie [30] put forward a targeting sequence that would
initially involve ZO-1 bound to junctional complexes (possibly N-
cadherin-based) adjacent to GJs, followed by a transfer of ZO-1 and its
direct engagement with Cx43 at GJ edges.

TheC-terminus regionof Cxs (adomainof 156aminoacids inCx43 for
example) is not required for the formation of functional channels but is
critical for GJICmodulation. It presents several potential phosphorylation
sites for different protein kinases, andmodifications in the phosphoryla-
tion status of tyrosine, serine, or threonine residues have been reported
to affect, in one way or another, GJIC (see for example [31–33]).

Different cytoplasmic domains of connexins appear involved in
interactions with partner proteins and may mutually influence one
another. The interactionbetween theextremeC-endofCx43 forexample
with ZO-1 via the second, but not the first, PDZ domain (see Table 2)
seems influenced by c-Src [34], see also [35]. Cx43/v-Src associations are
mediatedby interactionsbetweentheSH3domainofv-Srcandaproline-
rich region of Cx43 and by the SH2 domain of v-Src and tyrosine 265 of
Cx43 [36], and ithas been suggested that such interactionmight induce a
structural change in the C terminal region of Cx43, therebyhindering the
interaction between Cx43 and the ZO-1 PDZ-2 domain [34]. Jin et al. [37]
suggested that Cx43 interaction with this domain might take place
through a typical Class II PDZ binding domain. NMR titration experi-
ments determined that the ZO-1 PDZ-2 domain affected the last 19
amino acid residues (a.a.) of the C-terminus of Cx43 [35].

Jin et al. [37] emphasized the fact that, in contrast to Cx32, Cx31.9,
Cx43, Cx46 and Cx50 exhibit similar ZO-1-PDZ2-binding motifs (D-L-
X-I) in their C-terminus. Cx31.9 [38], Cx45 [39], Cx46 [40], Cx47 [41]
and Cx50 [42] interact with ZO-1 via their C-terminus whereas Cx36
[43,44] and Cx35 [45] bind PDZ-1 of ZO-1; Cx35 and Cx36 indeed, in
contrast with the first connexin group, contain the C-terminus a.a. YV,
the binding motif domain present in the C-terminus of most of the
claudins and reported to be responsible for their interaction with the
PDZ-1 domain of ZO-1, ZO-2 and ZO-3 [46]. A domain of 14 C-terminal
a.a. (and particularly the last 4 ones, SAYV) of the Cx35 and Cx36
sequences appear required for their interaction with the PDZ-1
domain of ZO-1 since a 14 a.a. peptide corresponding to this region
showed binding capacity to the PDZ-1 domain of ZO-1 and behaved in



Table 2
Reported interactions of gap junction proteins with tight junction components.

TJ protein Via its Cx Cx motif Main approachesa Cell typesb References

ZO-1 PDZ-2 Cx30 cl ci at Mouse brain and spinal cord [95]
PDZ-2 Cx31.9 The most C-terminal residues cl ci HEK 293 cells [38]

Cx32 cl ci Cultured rat hepatocytes [22]
PDZ-1 Cx35 Last 15 a.a. of C-terminus cl ci at Goldfish hindbrain [45]
PDZ-1 Cx36 Four C-terminal residues (SAYV) cl ci em at Mouse brain, HeLa cells [43]
PDZ-1 A 14-residue C-terminal fragment cl ci at HeLa cells, βTC-3, mouse pancreas and adrenal gland cells [44]

cl ci PC12 cells [118]
Cx40 cl ci Porcine vascular endothelial cells [24]

PDZs Cx43 C-terminal 5 residues cl ci at HEK 293 cells, rat cardiomyocytes [55]
PDZ-2 Extreme C-terminal cl ci dh COS-7, Rat-1, mink lung epithelial cells [56]
PDZ-2 C-terminal 5 residues cl ci em Rat adult ventricular myocytes [119]

cl ci 42GPA9 cells, rat testis lysates [120]
PDZ-2 C-terminal ci at C57B16 mouse cortical astrocytes [121]
PDZ-2 Last 19 C-terminal residues nmr [35]
PDZ-2 C-terminal (residues at the −3 position) cl ci dh MDCK cells [37]
PDZ-2 cl ci at Mouse brain and spinal cord [95]
PDZ-2 C-terminal (amino acids 374–382) cl at HeLa cells, rat cardiomyocytes [52]

cl ci Porcine vascular endothelial cells [24]
PDZ-2 cl ci NRK and HEK293 cells [98]

cl ci Newborn rat ventricular myocytes [53]
Cx43, Cx45 cl ci at ROS 17/2.8 cells [48,122]

PDZs Cx45 Four C-terminal residues (SVWI) cl ci dh MDCK cells [39]
PDZs 12 most C-terminal residues cl ci at ROS 17/2.8 cells [57,123]
PDZ-2 cl ci em at HeLa cells [29]
PDZ-2 Cx46, Cx50 Most C-terminal residues cl ci Mouse lens [40]
PDZ-2 Most C-terminal residues cl ci em at Mouse lens [42]
PDZ-2 Cx47 cl ci em at Mouse brain, HeLa cells [41]

ZO-2 Cx43 C-terminal end at NRK cells [124]
PDZ-2 Cx43 C-terminal end cl ci at NRK, HEK 293T cells, heart tissues [125]

ZO-3 PDZs Cx45 C-terminal 4 residues cl ci dh MDCK cells [39]
Occludin Cx26 at Human intestinal cell line T84 [23]

Cx40, Cx43 cl ci Porcine vascular endothelial cells [24]
Cx32 cl ci CHST8 cells [21]

cl ci Cultured rat hepatocytes [22]
Claudin-1 Cx32 cl ci Cultured rat hepatocytes [22]
Claudin-5 Cx40, Cx43 cl ci Porcine vascular endothelial cells [24]

a bt: biochemical techniques (cell-free assays, chimeras, truncated connexins, mimetic peptides, oligomerization assays, chemical cross-linking tests, etc); cl: colocalization; ci: co-
immunoprecipitation; dh: double hybrid; em: electron microscopy immuno labelling: at: affinity techniques (pull-down, affinity binding assays, surface plasmon resonance); nmr:
nuclear magnetic resonance.

b In roman characters, cells where Cxs were endogenously expressed; in italics, cells where Cxs were exogenously expressed, surexpressed or mutated.
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vitro as a competitive inhibitor of Cx36/ZO-1 [44] or Cx35/ZO-1 [45]
interaction whereas a 10 a.a., with the same sequence except lacking
the 4 a.a. forming the PDZ binding motif did not [45]. Sequence
analysis and immunocytochemical data suggested that Cx36 might
directly interact with ZO-2 at mouse retinal gap junctions; however,
an indirect association, via a partner protein (e.g. ZO-1) remained
possible [47]. As ZO-1 was able to bind to a truncated Cx45 protein
lacking the canonical PDZ binding domain present at the C-tail, Laing
et al. [48] suggested that Cx45 may have a large and complex binding
site for ZO-l, comprising the residues between a.a. 357 and the Cx45 C-
terminus, an alternative possibility being the existence of 2 distinct
binding sites, one involving the C-tail and the second the amino acids
proximal to amino acid 360. The authors however did not exclude
either the possibility of an artefactual ZO-1/Cx45 binding or of an
indirect interaction (e.g. an association of Cx45 with Cx43 bound to
ZO-1). An indirect interaction was also proposed for the formation of
CAR/Cx45 protein complex [16]. The cytoplasmic domains of both
proteins possess PDZ-binding motifs able to link PDZ-domain-
containing proteins such as ZO-1. The four C-terminal residues
(SVWI) of Cx45 and the PDZ-binding domain (ITVV) of CAR appear
required for this interaction [16].

Several other apical junction proteins such as cadherins, the major
transmembrane protein of AJs, are indirectly linked to ZOs through
protein linkages, for example via α-catenin, which establishes
linkages between the cadherin/β-catenin complex and the actin
cytoskeleton via adapter proteins (e.g. ZOs) (for recent review, see
[12]).α-catenin appears to interact with the SH3-hinge-GUK region of
ZO-1 as well as with ZO-2 with the N-terminus of ZO-2 (see [26]). In
vitro, ZO-1 and ZO-3 bind F-actin via their proline rich C-termini but
ZO-2 would not directly interact with actin (see [26]).

6. Physiological importance of protein–protein interactions in
intercellular junction functions

6.1. Reciprocal influence of GJs and AJs in their respective formations

A number of studies have indicated that formation of gap junctions
and of anchoring junctions are intimately linked: Meyer et al. [49]
observed in Novikoff cells that antibodies directed against either
extracellular domain of Cx43 or N-cadherin prevented both gap
junction and adherens junction formation. The clustering of cell
surface proteins is routinely assumed to be due to relatively static
interactions with scaffolding proteins that in turn are attached to
cytoskeletal components.

6.1.1. Importance of scaffolding proteins
Cytoplasmic scaffold proteins appear to play key roles in the

assembly of membrane specialised areas (e.g. cellular junctions,
channel or receptor clusters, etc), organizing membrane proteins
into specialised membrane domains (Fig. 1). Cytoskeletal-based
perimeter fences were for example seen to selectively corral a
membrane-protein sub-population of potassium channels (Kv2.1
channels) to generate stable 1–3 μ2 clusters [50]. These authors
noticed that despite the stability of these microdomains, the channels
retained within the cluster perimeter were surprisingly mobile,
showing that the clustering did not result from a static scaffolding-



Table 3
Reported effects of the expression of connexins on the structure and/or functions of tight junctions.

Connexin Action TJ protein Effects on Cell types References

Protein expression Barrier functiona Ouabain effectsb

Cx26 Expression Claudin-4 Caco-2 cells [83]
Expression Claudin-14 P Calu-3 cells [84]

P [85]
Cx32 Expression Occludin, Claudin-1, Claudin-2, MAGI-1 Cx32-deficient hepatocytes [20]

Expression Occludin, Claudin-1, Claudin-2, MAGI-1 Cx32-deficient hepatocytes [21]
Expression Occludin, Claudin-1, ZO-1 Cx32-deficient hepatocytes [80,85]
Expression Occludin, Claudin-1 Cx32-deficient hepatocytes

(CHST8 and Cx32KOH)
[126]

Expression Occludin, Claudin-1, Claudin-2, MAGI-1 Cx32-deficient hepatocytes [81]

a An increase in the barrier function of tight junctions corresponds to either an increase in transepithelial electrical resistance (TER) or a lowered paracellular flux of a solute.
b P: protect disruption of barrier and fence functions of TJs by the Na+/K+-ATPase inhibitor ouabain.
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based structure. Connexin channels clustered in gap junctional
plaques share these characteristics, where ZO-1 is preferentially
localized at the periphery of the plaques [51–53], suggesting that a
ZO-1-actin perimeter fence could selectively corral gap junction
channels. G protein signalling cascades have emerged as one of the
primary cellular mechanisms for controlling membrane channels, and
RhoA was recently seen to dynamically modulate the permeability of
Cx43-made channels presumably via its pivotal role in regulating the
actin cytoskeleton since its stabilization by phalloidin markedly
reduced the consequences of RhoA activation or inactivation. The
last ones were accompanied by alterations in the Cx43/ZO-1
interactions [53].

As ZO-1 interacts with both occludin and different Cxs, for example
Cx32, chimeras were created by combining C-terminal end of occludin
with transmembrane portions of Cx32, and such chimeras were able
to localize with ZO-1-containing cell contacts, suggesting an impor-
tant role for cytoplasmic proteins in the targeting of these chimeras to
the appropriate membrane subdomain [54].

ZO-1 was suggested to provide a docking that temporarily secures
the different connexins in gap junction plaques at the cell–cell
boundary [55–57]. The overexpression of the N-terminal domain of
ZO-1, which lacked the ability to localize at cell–cell interfaces,
disrupted the transport of Cx43-FLAG to the target site [55]. The level
of incorporation of Cx43 lacking the ZO-1 binding domain into the cell
surface was however reduced by about 30–40% compared to wild-
type Cx43 in cardiac myocytes [34] and also markedly reduced in mice
fibroblasts whereas significant levels of truncated Cx43were observed
within the cell cytoplasm [58]. These observations show that the
Cx43–ZO-1 interaction is important although not indispensable for
the formation of functional Cx43 channels. The reduction of Cx43–ZO-
1 interaction significantly increased the size of Cx43 plaques [52,59]
with, in the latter study, a concomitant reduction in their overall
number.

6.1.2. GJ formation depends on the assembly of anchoring junctions
The assembly of adherens junction proteins (particularly of N-

cadherin, α-catenin and β-catenin) was observed at cell contacts
before Cx43 formed gap junctions [60,61] and seems to be a
prerequisite for subsequent GJ formation [61]. The latter authors
suggested that cell-to-cell contact sites made by cadherin–catenin
complexes as well as tight junctional strands may then act as foci for
gap junction formation. The influence of cadherins in gap junction
formation however might be context or cell-type dependent, the
expression of exogenous cadherin investigated for example in mouse L
and rat Morris hepatoma cells inhibited GJIC in the first case but
enhanced it in the second [62]. In cardiomyocytes of new-born rat,
intracellular applications ofβ-catenin,α-catenin or ZO-1perturbed the
formation of the catenin–ZO-1–Cx43 complex and inhibited the Cx43
transport to the plasma membrane and the assembly of gap junction
plaques [15]. Normal cardiac functions depends on the proper
organization of the different junctional complexes tomediatemechan-
ical and electrical coupling between individual myocytes, and varied
defects in intercalated disc proteins are linked to different cardiac
arrhythmias in human and animal models (for review, see [63]).

In a α-catenin-deficient prostate cancer cell line, the forced
expression of α-catenin not only triggered the trafficking and
assembly of Cx32 and -43 into gap junctions but also recruited ZO-1
to the cell surface [64]. Antibody-mediated disruptions of cadherin-
containing cell adhesion contacts altered GJIC; for example, antibodies
directed against N-cadherin prevented gap junction formation in
embryonic chick neuro-ectoderm [65] or lens [66] cells, whereas
antibodies to E-cadherin interrupted GJIC between cultured terato-
carcinoma PCC3 cells [67]. Both deletion of the N-cadherin gene in
mouse [68] and transfection of dominant negative N-cadherin cDNA
into adult rat cardiomyocytes [60] disrupted cardiac gap junctions.
Given that N-cadherin and catenins are assembled into cadherin–
catenin complexes in the endoplasmic reticulum/Golgi compart-
ments, prior to localization at the plasma membrane [69], this raises
the possibility that Cx43 is assembled as part of a multi-protein
complex that may coordinately regulate adherens and gap junction
assembly [13].

In corneal epithelial cells, the presence of E-cadherin was not a
prerequisite for the assembly of Cx43 gap junctions [70] whereas in
mouse epithelial cells stable transfection of E-cadherin cDNA
increased GJIC [71]. Adherens junctions formed by E-cadherin were
suggested to trigger actin cable formation, allowing the transport of
both Cx26 and Cx43 to the plasma membrane of murine skin
papilloma cells [72]. In rat cardiomyocytes, intracellular application
of antisera against α- or β-catenin prevented Cx43 targeting to the
plasma membrane and the formation of GJ plaques, suggesting that
binding of catenins to ZO-1 would be required for Cx43 transport to
the plasma membrane during the assembly of gap junctions [15]. In
the mouse early embryo, cell contact asymmetry, required for TJ
biogenesis, appeared to provoke a spontaneous decrease in GJIC [73].

The assembly of adherens junctions was found to trigger a
dramatic decrease in RhoA activity and a stimulation of Rac1 and
Cdc42 activity [74,75] suggesting that, in cardiac myocytes, the
localization of Cx43 was determined through the Rac1 pathway
downstream of N-cadherin. In rat cardiac myocytes for example, RhoA
activity dynamically modulates the permeability of Cx43-made
channels since RhoA activation markedly enhanced the cell-to-cell
diffusion of a fluorescent dye whereas opposite effects was observed
after specific RhoA inhibition [53]. Rho GTPase being known to be
downstream signal transducers of cadherins [76], cadherins could
influence GJIC via this pathway.

6.1.3. AJ formation depends on the assembly of GJs
Chung et al. [77] observed, in cultured Sertoli cells, that a transient

induction of Cx33 coincided with an induction of N-cadherin
expression. After blockage of the connexin functions using a Cx31
and Cx33 pan-connexin peptide, an induction and dys-localization of
N-cadherin were observed [78]. In mouse hepatocytes derived from
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Cx32-deficient mice, the expression of exogenous Cx32 induced the
formation and functions of TJ whereas the expression of Cx26, Cx43 or
C-tail truncated Cx32 had no effect [79]. An up-regulation of
membrane-associated guanylate kinase with inverted orientation-1
(MAGI-1, a TJ protein) caused by Cx32 protein expression and/or
Cx32-mediated GJIC was observed by Murata et al. [80], and these
authors suggested that MAGI-1might act as a scaffold protein for both
adherens and tight junctions. During early embryo development, the
initiation of GJIC coincides with the initiation of TJ membrane
assembly at compaction but however Eckert and Fleming [81] did
not find evidence supporting the notion that GJIC may be involved in
regulating de novo TJ biogenesis at this stage.

6.2. Reciprocal influence of GJs and AJs in their respective functions

6.2.1. Connexin expression affects barrier and fence functions of tight
junctions

Connexin expressions (particularly the ones of Cx26 and Cx32)
influence the structure and/or functions of different TJs, as summar-
ized in Table 3. Transfection of Cx32 into immortalized mouse
hepatocytes derived from Cx32-deficient mice was associated with
the induction of TJ strands and of the integral proteins occludin,
claudin-1, and ZO-1, strengthening the TJ functionality [79]. The 18α-
glycyrrhetinic acid (AGA)-induced disruption of GJIC between Cx26-
transfected Caco-2 cells resulted in an increase in paracellular per-
meability of the cell monolayer, suggesting that reduced paracellular
permeability in the Cx26 transfectants, via claudin-4 up-regulation,
was mainly due to enhanced GJIC [82]. In Calu-3 cells, the expression
of claudin-14 was significantly increased in Cx26 transfectants
compared to parental cells, and in some cells, Cx26 was co-localized
with claudin-14. However, in this cell type, GJIC uncouplers (AGA or
oleamide) did not affect the changes induced by Cx26 transfection,
suggesting that Cx26 expression, but not the mediated intercellular
communication, may regulate tight junction barrier and fence
functions [83,84]. In different brain and lung endothelial cell types,
the same GJIC uncouplers also inhibited the barrier function of tight
junctions, findings suggesting that Cx40- and/or Cx43-based GJs might
be required to maintain the endothelial barrier function without
altering the expression and localization of the tight-junction compo-
nents analyzed (namely occludin, claudin-5, ZO-1, JAM-A,-B or -C [24]).

A pan-connexin peptide corresponding to the extracellular binding
domain of testis Cxs (Cx31 and Cx33), able to impede the formation of
functional intercellular channels, caused a disintegration of occludin-
associated protein complexes [78]. The fact that the level of N-
cadherin at the basal seminiferous epithelium remained relatively
unaffected suggested that these connexins are immediate and
preferential regulators of occludin-based TJ instead of N-cadherin-
based AJ at the sites of blood-testis barrier see [85]. In contrast, in a
42GPA9 Sertoli cell line assay, lindane (gamma-hexachlorocyclohex-
ane, a lipid-soluble pesticide that exerts carcinogenic and reprotoxic
effects) abolished GJIC and dislocated GJ plaques of Cx43 without
modification of occludin localization [86].

In interleukin-1β-treated primary human astrocytes, upregulation
of claudin-1 was accompanied with down regulation of Cx43 and
occludin, suggesting a reciprocal relationship between GJ and TJ
proteins [87]. When human nasal epithelial (HNE) cells are cocultured
with primary human nasal fibroblasts in a non-contact system, a
differentiation of HNE cells occurred, accompanied by a down-
regulation of Cx26 and an upregulation of Cx30.3 and Cx31, together
with the development of extensive GJIC. This switch in connexin
expression was accompanied by an increase in claudin-1, claudin-4,
occludin and ZO-2 expression [88]. Mice lacking either Cx37 or Cx40,
the predominant gap junction proteins present in vascular endothe-
lium, are viable and exhibit phenotypes that are largely non-blood
vessel related but animals lacking both Cx37 and Cx40 display severe
vascular abnormalities, with localized hemorrhages in skin, testis,
gastrointestinal tissues, and lungs, and die perinatally [89]. These
studies suggest that the expression of these connexins plays a major
role in establishing and maintaining the paracellular permeability
barrier. Rapid mobilization of leucocytes through endothelial and
epithelial barriers, a key in immune system reactivity, is a complex
multistep process, which includes leucocyte tethering, rolling, tight
adhesion and extravasation (see for example [90]). Once activated,
leucocytes migrate to the junctional region; their extravasation or
diapedesis via paracellular transmigration requires rapid opening and
closing of intercellular junctions, essential to maintain the integrity of
the epithelial barrier. These processes are regulated by adhesion
molecules such as PECAM-1 (platelet-endothelial cell adhesion
molecule 1), CD99, VE-cadherin (vascular endothelial cadherin) and
JAMs (see [90]). The establishment of GJIC between activated
leucocytes and endothelial cells, allowing a heterocellular commu-
nication, would be critical for the adhesion and extravasation of
leucocytes [91]. Heterocellular GJIC between breast tumor cells and
endothelial cells was also shown to up-regulate diapedesis of tumor
cells [92].

6.2.2. Connexin expression affects other functions of apical junction
components

The armadillo repeat protein β-catenin is recognized as a
component of functional adherens junctions and an intermediate in
the “canonicalWnt signalling pathway”, activating the transcription of
crucial target genes responsible for cellular proliferation and differ-
entiation. The expression of the mammary Cxs and their association
with α, and β-catenins and ZO-2 proteins to form functional GJs was
for example found to be crucial for mammary epithelial cell
differentiation as monitored by β-casein expression since protein
complex in heterocellular cultures would indeed recruit β-catenin and
inhibit its entry to the nucleus favouring a differentiated phenotype
(see [93]).

The transcription factor ZO-1-associated Nucleic Acid Binding
protein (ZONAB), the canine homologue of mouse Y-box transcription
factor 3 (MsY3) and of human DbpA (an E2F target gene found
overexpressed in different carcinomas), is known to associate with
SH3 domains of ZO-1. The binding of ZONAB to ZO-1 results in its
membrane sequestration at intercellular junction level (see [94]) and
hence the inhibition of its transcriptional activity. As MsY3 co-
localizes with oligodendrocytic Cx47 and Cx32 as well as with
astrocytic Cx43 [95]) and with Cx36 in mouse retina [47]), such
sequestration of ZONAB would inhibit its transcriptional activity.

6.2.3. Apical junctions affect GJIC
Nectins first form cell–cell adhesions, which then induce, via the

activation of small GTPases (Rap1, Cdc42 and Rac), a reorganization of
the underlying actin cytoskeleton, which then recruits cadherins to
the nectin-based cell–cell adhesion sites. Moreover, during or after the
formation of AJs, nectins recruit, first, JAM and then claudin and
occludin to the apical side of AJs in cooperation with cadherin, which
results in the formation of TJs (see [96]).

In tumorigenic mouse sarcoma cells (S180), which do not express
the Ca2+-dependent liver cell adhesion molecule (L-CAM), fluores-
cent dye microinjected into cells virtually did not spread to adjacent
cells, but after cells were transfected with cDNA for L-CAM, an
extensive cell-to-cell dye diffusion was observed [97]. In chick
neuroectoderm, Keane et al. [65] noticed that the differentiating
cells formed discrete fields of expression, where fields of junctional
communication correlated with fields of Neural-CAM (N-CAM)
expression. The fact that in primary human astrocytes, GJ and TJ
proteins seem inversely regulated by interleukin-1β suggests that, in
pathological conditions, increases of this proinflammatory cytokine
might alter astrocyte-to-astrocyte connectivity [87].

The extent of GJIC is a direct measurement of the number and
functionality of GJ channels, influenced by a number of factors as
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transcriptional control, post-transcriptional modifications (e.g. phos-
phorylation) and rapid degradation of Cxs by both the proteasomal
and lysosomal systems. In NRK and HEK293 cells, proteasome
inhibition resulted in a reduction of Cx43–ZO-1 association and an
accumulation of Cx43 forming large GJ plaques at plasma mem-
branes, and Girao and Pereira [98] hypothesized that proteasome
inhibition could prevent Cx43–ZO-1 interaction by preventing
degradation of a putative Cx43-interacting protein. In rabbit lens
epithelial cells, ZO-1 down-regulation resulted in loss of dye transfer
activity without altering the total amount of Cx43 protein in the cells,
as if aggregated Cx43 gap junction channels were not able to transfer
dye without ZO-1 located in the specific “ring” arrangement around
the plaque [99].

7. Physiological consequences of reciprocal GJs/AJs influences on
cell functions

Interconnection of individual cardiac cells through gap junction
channels plays a pivotal role for the velocity and the safety of
impulse propagation in cardiac tissues. Most of the intercellular
channels are packed at the ends of cardiac myocytes in intercalated
discs, where gap junction plaques are intertwined with adherens
junctions, desmosomes and CARs. CAR expression is essential for
early cardiac development (CAR-null mice die in utero with cardiac
defects (see [100]) and it remains robustly expressed in adults [101].
CAR presence is essential to maintain normal AV conduction [16,102].
In the latter study, authors suggested that, given the difference in
morphology between AV-nodal cells and myocardial cells, CAR and
ZO-1 protein complex is required to localize Cx 45 to the cell–cell
junction of AV-nodal tissue but that they are not required for
localization of Cx40 and -43 in the intercalated disc. Coxsackieviruses
and adenoviruses are the pathogens most commonly associated with
inflammatory heart disease; the fact that these viruses have evolved
independently to interact with a receptor normally inaccessible from
the epithelial surface is not unprecedented: JAMs were also
identified as receptors for mammalian reoviruses [103].

In the gap junction remodeling observed after human heart failure,
ZO-1 (specifically localized at the intercalated discs) was up-regulated
in parallel with the reduced expression of Cx43, and these changes
were accompanied by an increase in the proportion of Cx43
interacting with ZO-1 [104].

In adherens junctions (see [12]), transmembrane proteins (parti-
cularly N-cadherins) link actin cytoskeletons via intracellular linker
proteins (e.g, plakoglobin, γ-catenin, β-catenin, and α-actinin)
whereas desmosome transmembrane molecules (desmocollins and
desmogleins, members of the cadherin family) are linked to the
intermediate filaments (mainly desmin in cardiac myocytes) by
desmoplakin and the armadillo proteins plakoglobin and plakophilin
(see [105]). Adherens junctions appears to nucleate GJs, and disrup-
tion of mechanical coupling has been suggested to lead, via the loss of
GJIC, to different cardiomyopathies [106,107]. Mutations in genes
encoding different desmosomal proteins (plakoglobin, desmoplakin,
plakophilin 2 and desmoglein 2) have for example been identified in
patients with arrhythmogenic right ventricular dysplasia/cardiomyo-
pathy (see [108] for references). Cardiac-specific deletion of N-
cadherin led to alteration in Cx40 and Cx43, disassembly of the
intercalated disc structure and conduction slowing and arrhythmo-
genesis in adult mice [109,110]. As ectopic expression of cadherins is
associated with changes in tumor cell behaviour and pathology,
Ferreira-Cornwell et al. [111] examined the effect of expression of
either E-cadherin or N-cadherin in the heart of transgenic mice.
Misexpression of E-cadherin led to cardiomyopathy, with earlier onset
and increased mortality compared with N-cadherin mice, with a
dramatic decrease in Cx43. Silencing of plakophilin 2 expression with
siRNA resulted in cardiomyocytes of new-born rat in a drastic loss of
Cx43 gap junction plaques, a significant redistribution of Cx43 and a
decrease in intercellular dye coupling [112]. Structural and functional
links via tight and gap junction were suggested to be temporarily
established between heterologous cell types, for example between
axon and regenerating Schwann cells, during mammalian peripheral
nerve regeneration [113].

The exact mechanisms mediating these sorts of molecular cross-
talk remain to be identified but have important consequences to the
synchronization of different cellular events; it was for example
observed that Cx43 or N-cadherin knockdown similarly inhibited
cell motility of NIH3T3 cells [13]. N-cadherin and Cx43 were proposed
to modulate neural crest cell motility by engaging in a dynamic cross-
talk with the cell's locomotory apparatus through p120-catenin
signalling [114].

Interactions of gap junction proteins with proteins of other
membrane junctions appear to have been conserved through
evolution, between connexins and cadherins in vertebrates, between
innexins and core proteins of adherens and septate junctions (the
latter providing some of the functions ascribed to tight junctions in
vertebrate tissues, see [115]). In the latter study, such interaction was
suggested to play an essential role in epithelial morphogenesis.

8. Conclusions

Cell–cell-interactions play key roles in the regulation of tissue
integrity, the generation of barriers between different tissues and
body compartments. Intercellular junctional complexes are composed
of the tight junctions or zonula occludens, the adherens junctions or
zonula adherens, and desmosomes or macula adherens, whereas gap
junctions provide for intercellular communication. There is an
intimate spatial relationship between the different types of junctions.
These different junctions, sharing common adaptor molecules,
particularly ZO-1, frequently present intermingled relationships, the
proteins coassemble into macromolecular complexes and their
expressions are coordinately regulated.

A close membrane–membrane apposition is required for gap
junction formation and maintenance. The structural alterations that
are seen in cardiomyocytes from failing hearts reflect the importance
of intercalated discs in the heart, where they are involved in both
mechanical force transmission and intercellular communication,
explaining the fact that in radical acute disease (such as sepsis),
both these junctional types are disrupted (see [116,117]). In the heart,
defects in cell–cell adhesion, or the presence of discontinuities
between adhesion junctions and the cytoskeleton may, as recently
emphasized by Saffitz [107], destabilize GJs, reducing electrical
coupling and contributing to the high incidence of ventricular
arrhythmias and sudden death observed in these cardiomyopathies.
In conclusion, gap junctions are not only structurally but also
functionally associated with anchoring and tight junction structures.
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