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a b s t r a c t

SIR and SIS epidemic models with information—related changes in contact patterns are
introduced. The global stability analysis of the endemic equilibrium is performed by
means of the Li–Muldowney geometric approach. Biological implications of the stability
conditions are given.
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1. Introduction

Feedbacks and global stability are among the most important features of all mathematical models in biology [1,2].
In Mathematical Epidemiology, however, the vast majority of efforts have been devoted to the study of global stability.
Indeed, determining under which conditions a disease, independently from the initial burden, either remain endemic or get
extinct is probably the most important topic. Recently, however, it is increasingly becoming clear that a realistic epidemic
model must include the feedback (FB) that the information about an infectious disease has on its spreading [3–7]. For
example, a first type of FB is represented by the case of the so-called rational exemption, that is the family’s decision to not
vaccinate children as a consequence of a ‘pseudo-rational’ comparison between the risk from infection and themedia driven
perceived risk from getting damages from the vaccine. This approach has been applied to several epidemic scenarios, see e.g.
[8,9,5,10].

A second type of FB, instead, is the one given by the influence of the information on the behavior of healthy subjects. For
example, in [4] the authors focus on simple endemic models, by modelling the social contact rate as a decreasing function
of the available information on the present and the past disease prevalence. It is shown that social behavior change alone
may trigger sustained oscillations. This indicates that human behavior might be a critical explaining factor of oscillations in
time-series of endemic diseases.

The modelling idea to represent these distinct FBs is that vaccination decisions, for the first type of FB, and behavioral
decisions, for the second type, are formed from an information set, summarised by a new state variable mostly based on the
publicly available information on both present and also on the recent past spreading of the disease.

In this paper we study the global asymptotic stability of the endemic equilibrium for the second case of FB, and for both
SIR and SIS classes of infectious disease models.
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2. The model

The mathematical description of the information dependence is given by a quantity, M , called the information index,
[8,9,4,5,10]. This index is described by the distributed delay

M =

 t

−∞

g(S(τ ), I(τ ))K p
a (t − τ)dτ .

The term K p
a is a delaying kernel, which represents the weight given to past prevalence. Generally, K p

a is the density function
for a gamma distribution:

K p
a (u) =

apup−1e−au

(p − 1)!
, u ≥ 0

with a > 0, p = 1, 2, . . .. In this case the delay is infinite and centered at p/a (see e.g., [11]), which is the average delay. The
function g describes the role played by the state variables in the information dynamics. It may be generally assumed g to
be continuous and increasing respect to the I . No hypotheses on the dependence of g on S are made at this stage (actually g
might be independent on S). However we set g(S, 0) = 0 for all S.

If p = 1, we get K(t) = a e−at , that is a exponentially fading memory. In this case we have,

Ṁ = ag(S(t), I(t)) − aM.

This possibility to transform an infinite dimensional integro-differential systems into a finite dimensional systemof ordinary
differential equations is called linear chain trick, [11].

In [4] the following model has been introducedṠ = µ(1 − S) − β(M)IS
İ = β(M)IS − (µ + ν)I
Ṁ = ag(I) − aM,

(1)

where the state variables are: Susceptible individuals (S), Infectious individuals (I) and the information index (M).
The function β is required to be a positive decreasing function, β ′(M) < 0. The function g is required to be such that

g(0) = 0, and g ′(I) > 0. We will prove the global stability result of the endemic equilibrium for g satisfying:

g ′(I)I ≤ g(I). (2)

The simplest example is g(I) = kI , where k ∈ (0, 1). Another example is g(I) = I/(1 + qI), where q is a positive constant.
The parameters µ, ν, and a, are positive constants.

3. Basic properties

In [4] it has been shown that the set

Ω = {(S, I,M) : S ≥ 0, I ≥ 0, S + I ≤ 1, 0 ≤ M ≤ g(1)}

is positively invariant for model (1). Moreover the disease free equilibrium E0 = (1, 0, 0) is on ∂Ω , as well as its stable
manifold, which is the set {(S, I,M) ∈ Ω : I = 0}. As a consequence, the state variables are strongly persistent, i.e. there
exists a ϵ0 > 0 such that if I(0) > 0, S(0) > 0, and M(0) > 0, then:

lim inf
t→∞

I(t) ≥ ϵ0 > 0; lim inf
t→∞

S(t) ≥ ϵ0 > 0; lim inf
t→∞

M(t) ≥ ϵ0 > 0.

Furthermore, model (1) admits a unique endemic equilibrium,

E = (S∗, I∗,M∗)

where S∗
= (µ + ν)/β(g(I∗)), M∗

= g(I∗) and I∗ is the unique solution of:

µ


µ + ν

β(g(I))


− (µ + ν)I = 0.

In [4] the following stability result has also been shown.

Theorem 3.1. Let R0 = β(0)/(µ+ν). If R0 ≤ 1, then the disease free equilibrium E0 is globally asymptotically stable. If R0 > 1,
then E0 is unstable and the endemic equilibrium E is locally asymptotically stable.
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4. Global stability of the endemic equilibrium

In this section we analyse the global asymptotic stability of E. The following theorem holds,

Theorem 4.1. Assume that g satisfies the inequality (2). If R0 > 1 and

ν > 2β(ϵ0), (3)

where ϵ0 is the constant of uniform persistence, then the endemic equilibrium E of system (1) exists and is globally asymptotically
stable with respect to solutions of (1) initiating in the interior of Ω .

Proof. We first observe that the Jacobian matrix J(S, I,M) corresponding to (1) is:

J =

−µ − β(M)I −β(M)S −β ′(M)IS
β(M)I β(M)S − (µ + ν) β ′(M)IS
0 ag ′(I) −a

 .

The second additive compound matrix J [2](S, I,M) is:

J [2] =


−2µ − ν − β(M)(I − S) β ′(M)IS β ′(M)IS
ag ′(I) −µ − a − β(M)I −β(M)S
0 β(M)I β(M)S − µ − ν − a


.

Now we take the function,

P = P(S, I,M) = diag

1,

I
M

,
I
M


.

It follows that,

Pf P−1
= diag


0,

İ
I

−
Ṁ
M

,
İ
I

−
Ṁ
M


,

and,

PJ [2]P−1
=

−2µ − ν − β(M)(I − S) β ′(M)MS β ′(M)MS

ag ′(I)
I
M

−µ − a − β(M)I −β(M)S
0 β(M)I β(M)S − µ − ν − a

 ,

so that

B = Pf P−1
+ PJ [2]P−1

=


B11 B12
B21 B22


,

where

B11 = −2µ − ν − β(M)(I − S), B12 = [β ′(M)MS, β ′(M)MS], B21 =


ag ′(I)

I
M

, 0
T

and

B22 =

 İ
I

−
Ṁ
M

− µ − a − β(M)I −β(M)S

β(M)I
İ
I

−
Ṁ
M

+ β(M)S − µ − ν − a

 .

Consider now the norm in R3 as: |(u, v, w)| = max {|u|, |v| + |w|}, where (u, v, w) denotes the vector in R3 and denote by
L the Lozinskiı̆ measure with respect to this norm. It follows, [12]:

L(B) ≤ sup{g1, g2} ≡ sup{L1(B11) + |B12|, L1(B22) + |B21|}, (4)

where |B21|, |B12| are matrix norms with respect to the L1 vector norm and L1 denotes the Lozinskiı̆ measure with respect
to the L1 norm1.

L1(B11) = −2µ − ν − β(M)(I − S), (5)

1 i.e., for the generic matrix A = (aij), |A| = max1≤k≤n
n

j=1 |ajk| and L(A) = max1≤k≤n(akk +
n

j=1(j≠k) |ajk|).



B. Buonomo et al. / Applied Mathematics Letters 25 (2012) 1056–1060 1059

|B12| = β ′(M)MS, |B21| = ag ′(I)
I
M

, (6)

L1(B22) =
İ
I

−
Ṁ
M

− µ − a + max{0, 2β(M)S − ν}. (7)

Taking into account of (4)–(7), the general expressions of g1 and g2 for system (1) are thus:

g1 = −2µ − ν − β(M)(I − S) + β ′(M)MS, (8)

and

g2 =
İ
I

−
Ṁ
M

− µ − a + ag ′(I)
I
M

+ max{0, 2β(M)S − ν}. (9)

Observe that system (1) provides the following equalities:

İ
I

= β(M)S − (µ + ν),
Ṁ
M

= a
g(I)
M

− a.

Hence, from (8) one gets,

g1 =
İ
I

− µ − β(M)I + β ′(M)MS,

and from (9),

g2 =
İ
I

− a
g(I)
M

− µ + ag ′(I)
I
M

+ max{0, 2β(M)S − ν}.

Taking into account that β(M) > 0 and β ′(M) ≤ 0 it follows:

g1 ≤
İ
I

− µ.

On the other hand, g2 can be written as

g2 =
İ
I

− µ +
a
M

[g ′(I)I − g(I)] + max{0, 2β(M)S − ν}.

Taking into account that S ≤ 1, β is decreasing and that the state variables are strongly persistent, for large t it follows:

g2 ≤
İ
I

− µ +
a
M

[g ′(I)I − g(I)] + max{0, 2β(ϵ0) − ν}

where ϵ0 is the constant of uniform persistence. From (2) and (3) we obtain, for large t:

g2 ≤
İ
I

− µ.

Hence from (4),

L(B) ≤ sup{g1, g2} =
İ
I

− µ.

Therefore

1
t

 t

0
L(B)ds ≤

1
t
log

I(t)
I(0)

− µ,

which implies

lim sup
t→∞

sup
x0∈Γ

1
t

 t

0
L(B(x(s, x0)))ds < 0,

so the Bendixson criterion given in [13] is thus verified. #

Remark. Note that (3) and R0 > 1 together imply that 2β(ϵ0) < ν < β(0).



1060 B. Buonomo et al. / Applied Mathematics Letters 25 (2012) 1056–1060

5. A SIS case

In this section we briefly analyse the impact of the information-driven behavior of susceptible subjects on the
transmission of a SIS communicable disease.

By including the variable contact rate β(M) in the classical SIS model we obtain the following system:Ṡ = µ(1 − S) − β(M)IS + γ I
İ = β(M)IS − (µ + γ )I
Ṁ = ag(I) − aM.

(10)

We can study the model on the plane (limit set) S + I = 1. Model (10) reduces to:
İ = β(M)I(1 − I) − (µ + γ ) I = F(I,M)

Ṁ = akI − aM = G(I,M).
(11)

System (11) has two equilibrium points: a disease-free one, E0 = (0, 0), and an endemic equilibrium E = (Ie, kIe), where Ie
is the solution of the following equation

β(kI) =
µ + γ

1 − I
,

which exists only if β(0) > µ + γ .
As far as the behaviour of the solutions of system (11), the following proposition holds.

Theorem 5.1. Let R0 = β(0)/(µ+ν). If R0 ≤ 1, then the disease free equilibrium E0 is globally asymptotically stable. If R0 > 1,
then E0 is unstable and the endemic equilibrium E is globally asymptotically stable.

Proof. From the following differential inequality

İ ≤ I[β(0)(1 − I) − (µ + γ )],

it follows that R0 ≤ 1 implies the global stability of E0. On the contrary, simple linearization shows that E0 is unstable for
R0 > 1. The global stability of E may be proven by applying the Bendixson–Dulac criterion. Indeed, by taking the Dulac
function D = 1/I , it follows that:

div

Ṡ
I
,
İ
I


= −β(M)I −

a
I

< 0,

so the locally stable equilibrium E is globally stable. #

6. Conclusions

Our results on the global stability of the endemic equilibrium might have implications of some interest in public health.
Indeed, for diseases where R0 > 1, the health authorities can recommend mass vaccination or make it mandatory if the
disease is severe or causes economic damage. However, anti-vaccination lobbies could claim that modifying the behavior
in the case of an epidemic might be sufficient to eradicate the disease. On the contrary, our results analytically show that
this claim is not true for an SIS transmission mechanism, since independently on the initial state the infection will remain
endemic in the target population. In the SIR case,weprovide the sufficient condition (3),which guarantees the global stability
of the endemic state.
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