NOTE

A NOTE ON SIMILARITY RELATIONS

Volker STREHL
Institut für Mathematische Maschinen und Datenverarbeiturg, Universität Erlangen-Nümberg, D-8520 Erlangen, West Germany

Received 12 April 1976
Revised 31 August 1976

A simple proof is given for the fact that the number of nonsingular similarity relations on $\{1,2, \ldots n\}$, for which the transitive closure consists of k blocks, equals $\binom{(2 n-2 k-1}{n-1}-\binom{2 n-2 k-1}{n}$, $1 \leqslant k \leqslant n / 2$. In particular, this implies a recent result of Shapiro about Catalan numbers and line's sequence.

A similarity relation on the set $[n]=\{1,2, \ldots, n\}$ is a reflexive and symmetric, but not necessarily transitive, binary relation R with the property

$$
\begin{equation*}
x<y<z \text { and } x R z \text { imply } x R y \text { and } y R z, \text { for } x, y, z \in[n] . \tag{1}
\end{equation*}
$$

A similarity relation R will be called nonsingular, if for every $x \in[n]$ there is at least one $y \neq x$ such that $x R y$. Let $A_{m, k}$ denote the set of similarity relations on [n] for which th transitive closure consists of k nonempty classes, $1 \leqslant k \leqslant n$; let $B_{n, k}$ denote the subset of those members of $A_{n, k}$ which are nonsingular. It is obvious that $B_{n, k} \neq 0$ if and only if $1 \leqslant k \leqslant n / 2$.

Similarity relations may be coded as integer sequences in the following manner: if R is any similarity relation on [n], then an integer sequence $\alpha_{R}=\alpha_{1} \alpha_{2} \cdots \alpha_{n}$ is defined by:

$$
\begin{equation*}
x-\alpha_{x} \text { is the smallest } y \in[n] \text { such that } y R x, \text { for } x \in[n] \tag{2}
\end{equation*}
$$

α_{R} will have the following property:

$$
\begin{equation*}
\alpha_{1}=0, \quad 0 \leqslant \alpha_{x+1} \leqslant \alpha_{x}+1, \quad \text { for } 1 \leqslant x \leqslant n-1 . \tag{3}
\end{equation*}
$$

Conversely, for every integer sequence $\alpha=\alpha_{1} \alpha_{2} \cdots \alpha_{n}$ with property (3) there is a unique similarity relation R on [n] with $\alpha_{R}=\alpha: R$ is completely specified by rule (2), reflexivity, symmetry and property (1).

Note that the number of classes in the transitive closure of a similarity relation R equals the rumber of zero-components in the corresponding sequence α_{R}; furthermore, R is nonsingular if and only if every 0 -component of α_{R} is followed by a 1-componeat, in particular: $\alpha_{n} \neq 0$.

Theorem. For $n \geqslant 1,1 \leqslant k \leqslant s n / 2$, there is a bijection between $B_{n, k}$ and $A_{n, 2 k}$.

Proof. Take any sequence $\beta=\beta_{1} \beta_{2} \cdots \beta_{n}$ which represents a member of $B_{n, k}$; this sequence contains k components equal to zero. Let

$$
1=x_{1}<x_{2}<\cdots<x_{k} \leqslant n-1
$$

denote the indices of these components, and put $x_{k+1}=n+1$ for convenience. Define y_{i} to be the largest index y such that $x_{i}<y<x_{i+1}$ ard $\beta_{y}=1,1 \leqslant i \leqslant k$. By the above remark about nonsingularity the y_{i} are well defiried. Now a sequence $\alpha=\alpha_{1} \alpha_{2} \cdots \iota_{n}$ is defined as follows:

$$
\begin{array}{lll}
\alpha_{x_{i}+1}=\beta_{x_{i}+j} & \text { if } 0 \leqslant j<y_{i}-x_{i}, & 1 \leqslant i \leqslant k ; \\
\alpha_{y_{i}+j}=\beta_{y_{i}+1}-1 & \text { if } 0 \leqslant j<x_{i+1}-y_{i}, & 1 \leqslant i \leqslant k . \tag{4}
\end{array}
$$

The sequence α certainly has property (3) and has $2 k$ components equal to zero, thus it represents a member of $A_{\text {n.2k }}$.

Conversely, given any $A_{i, 2 k}$-sequence $\alpha=\alpha_{1} \alpha_{2} \cdots \alpha_{n}$, let

$$
1=x_{1}<y_{1}<x_{2}<y_{2}<\cdots<x_{k}<y_{k} \leqslant n
$$

denote the indices of the zero-components, and again put $x_{k+1}:=n+1$. Use equations (4; to define a $B_{n, k}$-sequence $\beta=\beta_{1} \beta_{2} \cdots \beta_{n}$ - this is just the inverse mapping. This proves the theorem.
Let now

$$
a_{n, k}:=\operatorname{card} A_{n, k} \quad(1 \leqslant k \leqslant n), b_{n, k}:=\operatorname{card} B_{n, k} \quad(1 \leqslant k \leqslant n / 2) .
$$

Lemma.

$$
\begin{array}{ll}
a_{n, k}=\binom{2 n-k-1}{n-1}-\binom{2 n-k-1}{n}, & 1 \leqslant k \leqslant n ; \tag{i}\\
b_{n, k}=\binom{2 n-2 k-1}{n-1}-\binom{2 n-2 k-1}{n}, & 1 \leqslant k \leqslant n / 2 .
\end{array}
$$

Proof. First note that

$$
\begin{equation*}
a_{n, k}=a_{n, k+1}+a_{n-1, k-1}, \quad n \geqslant 2, \tag{5}
\end{equation*}
$$

where it is understood that $a_{n . k}=0$ if $k \notin[n]$.
This can be seen as follows: let $\alpha=\alpha_{1} \alpha_{2} \cdots \alpha_{n}$ be any $A_{n, k}$-sequence; either $\alpha_{n}=0$, then $\alpha_{1} \alpha_{2} \cdots \alpha_{n-1}$ is a $A_{n-1, k-1}$-sequerice, or $\alpha_{n} \neq 0$, then let m denote the largest index such that $\alpha_{m}=1$ and replace α_{x} by $\alpha_{x}-1$ for $m \leqslant x \leqslant n$, which yields a $A_{n, k+1}$-sequence. Both procedures are invertible, hence (5) holds. Now (i) follows by induction, starting with $a_{1,1}=1$. (ii) is a consequence of (i) and the theorem. In particular, note that

$$
a_{n, 1}=a_{n, 2}=\frac{1}{n}\binom{2 n-2}{n-1}=c_{n-1}
$$

the ($n-1$-th Ca alan number; from this observation and (5) it is immediate that

$$
\begin{equation*}
\sum_{1=k=1} a_{n k}=c_{n} . \tag{6}
\end{equation*}
$$

Let d_{n} denote the number of nonsingular similarity relations on [n], $n \geqslant 2$. The first few values of the d_{n}-sequence are: $1,2,6,18,57,186,622,2120, \ldots$. This sequence is called Fine': sequence, [1, p. 352], [2, p. 89], [3, entry 635].

Corollary.

(i) $\quad d_{n}=\sum_{1<k \in n / 2}\binom{2 n-2 k-1}{n-1}-\binom{2 n-2 k-1}{n}, \quad n \geqslant 2$.
(ii) $2 d_{n}+d_{n-1}=c_{n}, \quad n \geqslant 3$.

Proof. (i) follows from the lemma; this is precisely Shapiro's result about the diagonal-sums in his "Catalan-triangle", [2].
(ii) has already been noted by Shapiro; here it is a simple consegence of (5) and (6), in loose notation:

$$
c_{n}=\sum a_{n, 2 j}+\sum a_{n, 2 j-1}=2 \sum a_{n, 31}+\sum a_{n-1,2 j-2}=2 d_{n}+d_{n-1}
$$

References

[1] T. Fine, Extrapolation when very little is known about the source, Information and Control 16 (1970) 331-359.
[2] I. Shapiro, A Catalan triangle, Discrete Math. 14 (1976) 83-90.
[3] N.J.A. Sloane, A Handbook of Integer Sequences (Academic Press, NY, 1973).

