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Abstract

The main di�culty in the implementation of most standard implicit Runge–Kutta (IRK) methods applied to (sti�)
ordinary di�erential equations (ODEs) is to e�ciently solve the nonlinear system of equations. In this article we propose
the use of a preconditioner whose decomposition cost for a parallel implementation is equivalent to the cost for the
implicit Euler method. The preconditioner is based on the W-transformation of the RK coe�cient matrices discovered
by Hairer and Wanner. For sti� ODEs the preconditioner is by construction asymptotically exact for methods with an
invertible RK coe�cient matrix. The methodology is particularly useful when applied to super partitioned additive Runge–
Kutta (SPARK) methods. The nonlinear system can be solved by inexact simpli�ed Newton iterations: at each simpli�ed
Newton step the linear system can be approximately solved by an iterative method applied to the preconditioned linear
system. c© 1999 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

This article is concerned with the implementation of implicit Runge–Kutta (IRK) methods such
as those based on Gauss, Radau, and Lobatto points applied to (sti�) ordinary di�erential equations
(ODEs) [20]. The main di�culty is to e�ciently solve the nonlinear system of equations. For an
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s-stage IRK method and a di�erential system of dimension n, the nonlinear system is of size s · n
and it is usually solved by simpli�ed Newton iterations. A direct decomposition of the s · n × s · n
simpli�ed Jacobian matrix is generally ine�cient when s¿2. The diagonalization of the RK co-
e�cient matrix can drastically reduce the number of operations and it also allows for parallelism.
Nevertheless, the presence in general of pairs of complex eigenvalues in the RK coe�cient matrix
for most standard IRK methods not only impairs their parallelism, but also signi�cantly increases
the decomposition cost of the simpli�ed Jacobian. Moreover, if several distinct IRK methods are
used in a partitioned and=or additive way, this diagonalization procedure cannot be applied since the
di�erent RK matrices generally possess distinct eigenvectors. In this article we propose the use of a
preconditioner requiring s independent decompositions of submatrices of dimension n, i.e., whose de-
composition cost for a parallel implementation is equivalent to the cost for the implicit Euler method.
The preconditioner is based on the W-transformation of the RK coe�cient matrices discovered by
Hairer and Wanner [20]. For sti� ODEs the preconditioner is by construction asymptotically exact
for methods with an invertible RK coe�cient matrix. The methodology is particularly useful when
applied to super partitioned additive Runge–Kutta (SPARK) methods [22]. The nonlinear system can
be solved by inexact simpli�ed Newton iterations: at each simpli�ed Newton step the linear system
can be approximately solved by an iterative method applied to the preconditioned linear system.
In Section 2 we give the de�nition of IRK methods, we discuss the approximate Jacobian matrix

used in the simpli�ed Newton iterations, and we succinctly describe the W -transformation. In Section
3 we present the preconditioner used for the solution of the linear systems occurring in the simpli�ed
Newton iterations. The preconditioner is analyzed on the scalar linear test equation y′ = �y in
Section 4. In Section 5 we show how to extend the preconditioner from IRK to SPARK methods. In
Section 6 we present some numerical results illustrating the behavior of the considered preconditioner
using di�erent iterative methods.

2. IRK methods, approximate Jacobian, and W-transformation

We consider the system of (sti�) ODEs

y′ = f(t; y); (1)

where y = (y1; : : : ; yn)T ∈ Rn. The de�nition of IRK methods is as follows.

De�nition 1. One step of an s-stage implicit Runge–Kutta (IRK) method applied to the system (1)
with initial values y0 at t0 and stepsize h reads

Yi − y0 − h
s∑
j=1

aijf(t0 + cjh; Yj) = 0 for i = 1; : : : ; s;

y1 = y0 + h
s∑
i=1

bif(t0 + cih; Yi):

(2)

Eqs. (2) de�ne a nonlinear system of dimension s · n to be solved for the s internal stages Yi. The
numerical approximation at t0 + h is then given by y1. The RK coe�cients are usually expressed
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using a Butcher–tableau notation

where b= (b1; : : : ; bs)T is the weight vector, c= (c1; : : : ; cs)T is the node vector, and A= (aij)i; j=1;:::; s
is the RK coe�cient matrix. A detailed presentation of the construction of IRK methods can be
found in [20, Section IV.5]. We will assume s¿2 for the remainder of the article. The nonlinear
system can be solved by simpli�ed Newton iterations with approximate Jacobian matrix

Is ⊗ In − hA⊗ J with J :=
@f
@y
(t0; y0); (3)

where ⊗ is the tensor product and Im denotes the identity matrix in Rm. Each iteration requires
the solution of an (s · n)-dimensional linear system with matrix (3) whose direct decomposition is
generally ine�cient for s¿2 as it can be drastically improved by exploiting its special structure. By
diagonalizing the RK coe�cient matrix A

S−1AS = �= diag(�1; : : : ; �s);

the linear system can be transformed into a decoupled linear system with block-diagonal matrix

S−1 ⊗ In (Is ⊗ In − hA⊗ J ) S ⊗ In = Is ⊗ In − h�⊗ J =
 In − �1hJ O

. . .
O In − �shJ

 : (4)

Nevertheless, the presence in general of pairs of complex eigenvalues in the RK coe�cient matrix
for most standard IRK methods, not only impairs the parallelism, but also signi�cantly increases the
decomposition cost of (4) [20, Section IV.8]. This cost for such methods should be ideally equivalent
to s independent decompositions of submatrices of dimension n, as for diagonally implicit Runge–
Kutta (DIRK) methods [1,10,23] and multi-implicit Runge–Kutta (MIRK) methods [2,5,24] where
the eigenvalues are real. Various iteration schemes have been proposed, some of them requiring the
decomposition of only one submatrix of dimension n [8,9,16,17] or of s submatrices of dimension n
[21,27]. These methods do not usually iterate at the linear algebra level and they can be considered
as modi�ed Newton iterations. Unfortunately, none of these methods is asymptotically exact for sti�
systems, whereas the method that we present here gives by construction an asymptotically exact
result in this situation.
In this article we propose a di�erent approach aimed at reducing the amount of computations. In-

stead of solving exactly a linear system at each simpli�ed Newton step, we apply an iterative method
to a corresponding preconditioned linear system. The use of iterative methods for the numerical so-
lution of sti� ODEs was already considered in [3,7,12], with an emphasis on preconditioning in [4].
Inexact Newton methods are generally considered to be among the most e�cient ways to solve
nonlinear system of equations [11,25]. We construct here a preconditioner requiring s independent
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Table 1
Missing coe�cients of the transformed matrix X for some IRK methods,
� = (2s− 1)=(s− 1)

IRK method �s;s−1 �s−1; s �ss ds

Gauss �s−1 −�s−1 0 1
Radau IA �s−1 −�s−1 1

4s−2 1
Radau IIA �s−1 −�s−1 1

4s−2 1
Lobatto IIIA �s−1� 0 0 �
Lobatto IIIB 0 −�s−1� 0 �
Lobatto IIIC �s−1� −�s−1� �

2s−2 �
Lobatto IIIC∗ �s−1� −�s−1� − �

2s−2 �

decompositions of matrices of dimension n, i.e., whose decomposition cost for a parallel implemen-
tation is equivalent to the cost for the implicit Euler method. The preconditioner is based on the
W -transformation of the RK coe�cient matrices discovered by Hairer and Wanner [18,19]. This
transformation is given by

X :=W TBAW; (5)

where B=diag(b1; : : : ; bs) and the coe�cients of the matrix W are given by wij=Pj−1(ci) with Pk(x)
being the kth-shifted Legendre polynomial

Pk(x) =

√
2k + 1
k!

· d
k

dxk
(
xk(x − 1)k)=√

2k + 1
k∑
j=0

(−1) j+k
(
k
j

)(
j + k
j

)
x j:

For more details about the W -transformation we refer the reader to [20, Section IV.5,6,13]. In the
remainder of the article we will assume that

X :=W TBAW is tridiagonal; D :=W TBW is diagonal and nonsingular;

two conditions which are satis�ed for most IRK methods of interest, such as Gauss, Radau IA & IIA,
Lobatto IIIA & IIIB & IIIC & IIIC∗ schemes [6,13,20,22]. For these IRK methods the transformed
matrix X and the matrix D read

X =



1=2 −�1 O

�1 0
. . .

. . . . . . −�s−2
�s−2 0 �s−1; s

O �s; s−1 �ss

 ; D = diag(1; 1; : : : ; 1; ds); (6)

where �k=1=(2
√
4k2 − 1) and the missing coe�cients �s; s−1; �s−1; s; �ss; ds are given in Table 1. Note

that the inverse of W is simply given by W−1 = D−1W TB. We will actually assume the speci�c
forms (6) in the remainder of the article.
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3. Preconditioning the linear system

Using the W -transformation (5) in (3), at each simpli�ed Newton step we should solve a linear
system

Kx = b: (7)

for a block-tridiagonal matrix

K = D ⊗ In − hX ⊗ J =


E1 F1 O
G1 E2 F2

. . . . . . . . .
Gs−2 Es−1 Fs−1

O Gs−1 Es

 (8)

with n× n blocks given as follows:
E1 = In − 1

2hJ; Ei = In for i = 2; : : : ; s− 1; Es = dsIn − �sshJ; (9a)

Fi = �ihJ for i = 1; : : : ; s− 2; Fs−1 =−�s−1; shJ; (9b)

Gi =−�ihJ for i = 1; : : : ; s− 2; Gs−1 =−�s; s−1hJ: (9c)

A way to solve (7) would be to use the block-LU decomposition [14,15] of (8)

K =


In O

G1H−1
1 In
. . . . . .
Gs−2H−1

s−2 In
O Gs−1H−1

s−1 In




H1 F1 O
H2 F2

. . . . . .
Hs−1 Fs−1

O Hs

 ;

where the blocks Hi are recursively given by

H1 = E1; Hi = Ei − Gi−1H−1
i−1Fi−1 for i = 2; : : : ; s (10)

and are assumed to be nonsingular. Subdividing the solution vector x, the right-hand side b of (7),
and an intermediate vector y into s n-dimensional subvectors

x =


x1
x2
...
xs−1
xs

 ; b=

b1
b2
...
bs−1
bs

 ; y =

y1
y2
...

ys−1
ys

 ; xi; bi; yi ∈ Rn for i = 1; : : : ; s;

the linear system (7) can be solved using block forward and backward substitutions

y1 = b1; yi = bi − Gi−1H−1
i−1yi−1 for i = 2; : : : ; s;

xs = H−1
s ys; xi = H−1

i (yi − Fixi+1) for i = s− 1; : : : ; 1:
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From (9) and (10) the blocks Hi are given in our situation by

H1 = In − 1
2hJ; Hi = In + �2i−1h

2JH−1
i−1J for i = 2; : : : ; s− 1;

Hs = dsIn − �sshJ − �s; s−1�s−1; sh2JH−1
s−1J:

Since each block Hi for i¿2 depends on H−1
i−1 the above recursion is not parallelizable. Moreover,

we should also assume that all blocks Hi are nonsingular, a condition which can actually be violated
even if In − hJ is supposed to be invertible for all h¿0. In terms of computational cost at each
step i for i¿2 we should compute JH−1

i−1J . For example if the LU decomposition of Hi−1 would
be performed, this would require 7n3=3 operations (n3=3 operations for the LU decomposition and
2n3 operations for the two matrix-matrix multiplications). Thus, the total block-LU decomposition
of K would require (7s − 6)n3=3 operations. This is clearly ine�cient as it would still be a factor
from 3.5 to 7 more costly than if the block-diagonal-LU decomposition of (4) would be used (3:5
at best if all the eigenvalues of the RK coe�cient matrix consist only of conjugate complex pairs,
7 at worst if all those eigenvalues are real).
We now present the main idea of this article. Instead of solving (7) directly, we apply an iterative

method for example to the left-preconditioned linear system

P−1Kx = P−1b: (11)

We choose the preconditioner P to be given by the approximate block-LU decomposition of K based
on independent approximations H̃ i of Hi, i.e., we set

P :=



In O
G1H̃

−1
1 In

. . . . . .

Gs−2H̃
−1
s−2 In

O Gs−1H̃
−1
s−1 In




H̃ 1 F1 O

H̃ 2 F2
. . . . . .

H̃ s−1 Fs−1
O H̃ s

 (12)

with

H̃ i := In − 
ihJ for = 1; : : : ; s− 1; H̃ s :=dsIn − 
shJ; (13)

where


1 =
1
2
; 
i =

�2i−1

i−1

for i = 2; : : : ; s− 1; 
s = �ss − �s; s−1�s−1; s

s−1

: (14)

Each H̃ i can be formed and decomposed independently, making these operations fully parallelizable.
The coe�cients 
i have been chosen so that H̃

−1
i Hi ≈ In when (In − hJ )−1(−hJ ) ≈ In for all

h¿h0¿ 0. Hence, if the RK coe�cient matrix is invertible, i.e., if 
s 6= 0, the preconditioner is
asymptotically exact for sti� systems. Note that for the Lobatto IIIA, IIIB, and IIIC∗ coe�cients we
have 
s = 0. Since the Lobatto IIIC∗ methods behave like explicit RK methods, they should not be
considered to treat sti� terms. For the Lobatto IIIA and IIIB methods the last block is H̃ s=dsIn and
need not be decomposed.
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We can interpret the above preconditioner P by obtaining an explicit expression from the above
formulas and we get

P =


Ẽ1 F1 O
G1 Ẽ2 F2

. . . . . . . . .
Gs−2 Ẽs−1 Fs−1

O Gs−1 Ẽs

 ;

where the blocks Ẽi are recursively given by

Ẽ1 = H̃ 1 = H1 = E1; Ẽi = H̃ i + Gi−1H̃
−1
i−1Fi−1 for i = 2; : : : ; s:

We note that the above preconditioner is consistent in the sense that for h=0 we have P=K=Is⊗In.
It is also asymptotically exact for y′ = �y when |h�| → ∞ if 
s 6= 0 (see also next section). We
would like to stress the point that this preconditioner cannot be interpreted as being of the form

Is ⊗ In − hÃ⊗ J
for a modi�ed coe�cient matrix Ã as considered in [21,27]. Note that the Jacobian matrix J in
(13) can be replaced by an approximation Ĵ provided In − h �J is a good preconditioner to In − hJ .
Actually the Jacobian matrix J can also be directly replaced by an approximation Ĵ in the original
system of linear equations (3), hence also in (8), (9), etc.

4. Linear analysis of the preconditioner

We consider the scalar linear test equation y′ = �y and we denote z := h�. The preconditioner
presented in the previous section is by construction exact for z = 0 and asymptotically exact for
large |z| if 
s 6= 0, i.e., P−1(z)K(z)→ Is when |z| → ∞, with P(z) and K(z) given below. Here, we
consider intermediate values Re(z)60. The matrix K(z) (8) is given by

K(z) =



1− z=2 �1z O

−�1z 1
. . .

. . . . . . �s−2z
−�s−2z 1 −�s−1; sz

O −�s; s−1z ds − �ssz

 :

The left-preconditioned linear system (11) reads

P−1(z)K(z)x = P−1(z)b;

where

P(z) =



1 O

g1(z)h̃
−1
1 (z) 1

. . . . . .

gs−2(z)h̃
−1
s−2(z) 1

O gs−1(z)h̃
−1
s−1(z) 1


×
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Fig. 1. Condition number �∞(P−1(z)K(z)) for the 2-stage Lobatto IIIC method.


h̃1(z) f1(z) O

h̃2(z) f2(z)
. . . . . .

h̃s−1(z) fs−1(z)
O h̃s(z)



=



ẽ1(z) f1(z) O

g1(z) ẽ2(z)
. . .

. . . . . . fs−2(z)
gs−2(z) ẽ s−1(z) fs−1(z)

O gs−1(z) ẽ s(z)


with function coe�cients given by

fi(z) = �iz for i = 1; : : : ; s− 2; fs−1(z) =−�s−1; sz;
gi(z) =−�iz for i = 1; : : : ; s− 2; gs−1(z) =−�s; s−1z;
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Fig. 2. Condition number �∞(P−1(z)K(z)) for the 5-stage Lobatto IIIB method.

h̃i(z) = 1− 
iz for i = 1; : : : ; s− 1; h̃s(z) = ds − 
sz;
ẽ1 = h̃1(z); ẽ i(z) = h̃i(z) + gi−1(z)h̃

−1
i−1(z)fi−1(z) for i = 2; : : : ; s:

The quality of the preconditioner can be measured by �(P−1(z)K(z)) where � denotes the condition
number of a matrix. The closer to one this quantity is, the better the preconditioner is. For the
2-stage Lobatto IIIA and IIIB methods we trivially have �(P−1(z)K(z))=1 since the preconditioner
is exact for those two methods, i.e., P=K for any J . For the 2-stage Lobatto IIIC method we have

P−1(z)K(z) =

(
1

√
3z2

(z−1)(z−2)2
0 1 + z

(z−1)(z−2)

)
:

Hence, we get

�∞(P−1(z)K(z)) =max

(
1 +

√
3|z|2

|z − 1| · |z − 2|2 ;
∣∣∣∣1 + z

(z − 1)(z − 2)
∣∣∣∣
)

×max
(
1 +

√
3|z|2

|z − 2| · |z2 − 2z + 2| ;
|z − 1| · |z − 2|
|z2 − 2z + 2|

)
:
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For |z| → ∞ we thus have �∞(P−1(z)K(z)) = 1 + 2
√
3=|z| + O(1=|z|2). In Fig. 1 we have plotted

this condition number for purely negative values z = −r and purely imaginary values z = ir with
r = |z|. In Fig. 2 we give a similar plot for the 5-stage Lobatto IIIB method.

5. A preconditioner for SPARK methods

The methodology described in this article to solve the nonlinear system of equations for IRK
methods is particularly useful when considering SPARK methods such as the Lobatto IIIA-B-C-C∗

methods [22]. In this section we consider the following system of (sti�) ODEs:

y′ = f(t; y) =
M∑
m=1

fm(t; y); (15)

where y=(y1; : : : ; yn)T ∈ Rn. Such a decomposition ∑M
m=1 f

m(t; y) may come from a splitting and=or
a partitioning of f(t; y) into di�erent terms. The functions fm(t; y) are supposed to have distinct
properties and may therefore be numerically treated di�erently. Several motivations were given in
[22] to introduce a more general class of methods than IRK methods. The de�nition of SPARK
methods applied to (15) is as follows.

De�nition 2. One step of an s-stage super partitioned and additive Runge–Kutta (SPARK) method,
based on the same underlying quadrature formula (bi; ci)si=1, applied to system (15) with initial value
y0 at t0 and stepsize h reads

Yi − y0 − h
M∑
m=1

s∑
j=1

a(m)ij f
m(t0 + cjh; Yj) = 0 for i = 1; : : : ; s;

y1 = y0 + h
s∑
i=1

bif(t0 + cih; Yi):
(16)

Eqs. (16) de�ne a nonlinear system of dimension s · n to be solved for the s internal stages Yi.
The numerical approximation at t0 + h is then given by y1. This system can be solved by simpli�ed
Newton iterations with approximate Jacobian matrix

Is ⊗ In − h
L∑
m=1

A(m) ⊗ Jm with Jm :=
@fm

@y
(t0; y0) for m= 1; : : : ; L; (17)

where L6M and the sti� terms are treated with the L �rst RK methods. Since in general the
RK coe�cient matrices A(m) possess distinct eigenvectors the diagonalization procedure can not
be applied. However, using the same W -transformation for all RK coe�cient matrices we can
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assume that

X (m) :=W TBA(m)W =



1=2 −�1 O

�1 0
. . .

. . . . . . −�s−2
�s−2 0 �(m)s−1; s

O �(m)s; s−1 �(m)ss


for possibly distinct �(m)s; s−1; �

(m)
s−1; s; �

(m)
ss , an assumption which is satis�ed for the Lobatto IIIA, IIIB,

and IIIC coe�cients (L = 3) of the Lobatto IIIA-B-C-C∗ methods (M = 4). We thus obtain a
block-tridiagonal matrix (8) with n×n blocks given by (9) for J := ∑L

m=1 J
m except for the following

blocks:

Es = dsIn −
L∑
m=1

�(m)ss hJ
m; Fs−1 =−

L∑
m=1

�(m)s−1; shJ
m; Gs−1 =−

L∑
m=1

�(m)s; s−1hJ
m:

As described in Sections 3 for IRK methods we can solve (7) using an iterative method on the
left-preconditioned linear system (11) with the preconditioner P given by (12). The blocks H̃i can
be chosen as in (13) except for the last block

H̃ s :=dsIn −
L∑
m=1


(m)s hJ
m with 
(m)s = �(m)ss − �(m)s; s−1�

(m)
s−1; s


s−1
:

As mentioned before, note that we have 
(m)s = 0 for the Lobatto IIIA and IIIB coe�cients.

6. Numerical results

The linear system (7) can be solved by an iterative method applied to the left-preconditioned
system (11) using the preconditioner described in Section 3. Starting from x0 := 0, the simplest
iterative method is given by the preconditioned Richardson iterations (PRI)

xk+1 := (I − P−1K)xk + P−1b for k = 0; 1; 2; : : : (18)

If �(I − P−1K)¡ 1 where � denotes the spectral radius of a matrix then the method converges
linearly, otherwise the method diverges [15]. Another possibility is to use iterative Krylov-type
methods such as the GMRES method [26]. Note that for such methods, convergence is ensured
but the convergence behavior greatly depends on the spectral distribution of the matrix K or P−1K
depending on whether the preconditioner is applied or not. In this section we illustrate the good
quality of the preconditioner. All experiments in this section are done for Lobatto IIIC methods. The
matrix J is set as follows

J :=


−� 1 : : : 1

−2� . . .
...

. . . 1
O −n�

 ;
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Table 2
Some measures of the quality of the preconditioner

� �2(K) �2(P−1K) ‖K−1 − P−1‖2 k (PRI)

101 5.40 3.40 9:5× 10−1 83
102 28.90 10.62 9:8× 10−1 77
103 156.80 9.53 6:1× 10−1 44
104 191.35 2.49 3:0× 10−2 13
106 194.38 1.59 1:6× 10−4 5
108 194.41 1.58 1:6× 10−6 3

Table 3
GMRES versus PGMRES

Tdec Tsol Ttot k ‖x̃ − x‖∞
GMRES(5) − 147.77 147.77 325 2:1× 10−13
PGMRES(5) 15.13 37.01 52.14 30 3:9× 10−14

where the parameter � allows to tune the size of the eigenvalues of J , hence to increase sti�ness. Note
that the eigenvalues of the matrix In−hJ are all comprised in the interval [�min; �max]=[1+h�; 1+nh�].
All computations have been done on an SGI IRIX 5.3 workstation.
For a block size n=25 and s=4 blocks, Table 2 shows some results for h=10−2 and increasing

values of �. When � increases, the eigenvalues of In − hJ become larger and far apart from 1.
Hence, the approximate submatrices H̃ i become closer to the exact submatrices Hi, and therefore
P−1 becomes a better approximation to K−1. This is �rst illustrated in the columns labelled �2(K)
and �2(P−1K) showing that the condition number of the preconditioned matrix P−1K becomes closer
to 1 as the parameter � increases, whereas the condition number of the original matrix K remains
large. In the column labelled ‖K−1−P−1‖2 we see that P−1 tends to K−1 as � increases. In the last
column labelled k (PRI) we give the number k of PRI iterations (18) to solve the system (7) for
x = (1; : : : ; 1)T, the right-hand side being given by b= Kx. The error tolerance is set to 100 · � · ‖b‖
where � is the machine precision. The error is measured by ‖x̃ − x‖∞ where x̃ is the computed
solution. We observe that the number k of PRI iterations decreases as the sti�ness parameter �
increases.
To illustrate the improvement that the use of the preconditioner can provide, we have run the

non-preconditioned GMRES(m) method and the preconditioned PGMRES(m) method where m is
the size of the Krylov subspace when the method is restarted. As before the exact solution is chosen
to be x = (1; : : : ; 1)T. We have used the same type of matrix J of size n = 200, with s = 10 and
parameters h = 10−4 and � = 103. As shown in Table 3 for this example, using the GMRES(5)
method with the preconditioner P−1 roughly divides the total running time Ttot by a third and takes
about 10 times less iterations (see column labelled k) than the unpreconditioned method. In Table 3
Tdec corresponds to the time in seconds to compute the decomposition of the preconditioner P, Tsol
corresponds to the time in seconds for the resolution by the (P)GMRES(5) methods, and Ttot is the
total computational time.
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Table 4
Comparison between block-LU, PRI, and PGMRES

Tdec Tsol Ttot k ‖x̃ − x‖∞
block-LU 1391.64 3.92 1395.56 − 2:9× 10−14
PRI 156.00 11.96 167.96 3 2:3× 10−13
PGMRES(2) 156.00 17.32 173.32 4 2:9× 10−13

Finally, we have applied the direct block-LU method (see (10)), PRI, and PGMRES(2) with the
matrix J of size n= 500, with s= 4 and parameters h= 10−4 and �= 109, in order to compare the
e�ciency of the preconditioned iterative methods toward the direct block-LU method. Some results
are shown in Table 4. Tdec corresponds to the time in seconds of the factorization for the direct
block-LU method whereas for PRI and PGMRES(2) this corresponds to the time to decompose the
preconditioner P. Tsol corresponds to the time in seconds for the resolution by the three di�erent
methods. The preconditioner is good since the eigenvalues of In − hJ are large. Thus only a few
iterations (see column labelled k) are needed by the two preconditioned iterative methods to solve the
linear system. We can see that for the same level of accuracy, the preconditioned iterative methods
take much less time than the direct method (see column labelled Ttot), this is simply because the
computational e�ort needed to decompose P is much smaller than for the block-LU factorization of
K . Obviously, the block-LU decomposition of the block-tridiagonal matrix K is not the optimal way
to solve the system, since by diagonalizing the RK coe�cient matrix we could improve the cost of
the decomposition by a factor close to 4. Nevertheless, this is an interesting measure in our context
since for the implementation of SPARK methods this diagonalization procedure cannot be applied.
It is interesting to note that the simple PRI method is as e�cient as the PGMRES(2) method. Since
the direct block-LU method provides a residual ‖Kx̃ − b‖ close to C · � · ‖b‖ for a constant C, for
comparison reasons we have set the stopping criterion for PRI and PGMRES(2) to a similar level.
For the numerical solution of (sti�) ODEs such an accuracy is not needed, because the stopping
criterion within the simpli�ed Newton iterations can be relaxed and be based on the preconditioned
residual error ‖P−1(Kx̃−b)‖ [4]. Moreover, nonsti� components need not be solved very accurately
since the Newton iterations on top of the iterative linear solver make these components to converge
su�ciently rapidly.
To conclude shortly, the new preconditioning technique proposed in this paper can save, in term

of matrix decompositions and for most standard IRK methods, a factor two or more of operations
over the classical approach of diagonalizing the RK coe�cient matrix. Moreover, this new approach
can also be easily extended to deal with SPARK methods.
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