Six new Redheffer-type inequalities for circular and hyperbolic functions

Ling Zhu*, Jinju Sun
Department of Mathematics, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China

Received 25 February 2007; received in revised form 4 January 2008; accepted 4 January 2008

Abstract

In this paper, six new Redheffer-type inequalities involving circular functions and hyperbolic functions are established. (C) 2008 Elsevier Ltd. All rights reserved.

Keywords: Redheffer-type inequalities; Circular functions; Hyperbolic functions

1. Introduction

Redheffer [1] proposed the inequality

$$
\begin{equation*}
\frac{\sin x}{x} \geq \frac{\pi^{2}-x^{2}}{\pi^{2}+x^{2}}, \quad x \in(0, \pi] \tag{1}
\end{equation*}
$$

Chen, Zhao, and Qi [2] obtained the following three Redheffer-type inequalities

$$
\begin{align*}
& \cos x \geq \frac{\pi^{2}-4 x^{2}}{\pi^{2}+4 x^{2}}, \quad x \in\left[0, \frac{\pi}{2}\right] \tag{2}\\
& \cosh x \leq \frac{\pi^{2}+4 x^{2}}{\pi^{2}-4 x^{2}}, \quad x \in\left[0, \frac{\pi}{2}\right) \tag{3}\\
& \frac{\sinh x}{x} \leq \frac{\pi^{2}+x^{2}}{\pi^{2}-x^{2}}, \quad x \in(0, \pi) \tag{4}
\end{align*}
$$

Recently, some extensions of inequalities (2)-(4) for Bessel functions have been shown in Baricz [3].
In this paper, we shall extend and sharpen the inequalities (1) and (2) above, and show a new Redheffer-type inequality for $\tan x$ as follows.

[^0]Theorem 1. Let $0<x<\pi$. Then

$$
\begin{equation*}
\left(\frac{\pi^{2}-x^{2}}{\pi^{2}+x^{2}}\right)^{\beta} \leq \frac{\sin x}{x} \leq\left(\frac{\pi^{2}-x^{2}}{\pi^{2}+x^{2}}\right)^{\alpha} \tag{5}
\end{equation*}
$$

holds if and only if $\alpha \leq \pi^{2} / 12$ and $\beta \geq 1$.
Theorem 2. Let $0 \leq x \leq \pi / 2$. Then

$$
\begin{equation*}
\left(\frac{\pi^{2}-4 x^{2}}{\pi^{2}+4 x^{2}}\right)^{\beta} \leq \cos x \leq\left(\frac{\pi^{2}-4 x^{2}}{\pi^{2}+4 x^{2}}\right)^{\alpha} \tag{6}
\end{equation*}
$$

holds if and only if $\alpha \leq \pi^{2} / 16$ and $\beta \geq 1$.
Theorem 3. Let $0<x<\pi / 2$. Then

$$
\begin{equation*}
\left(\frac{\pi^{2}+4 x^{2}}{\pi^{2}-4 x^{2}}\right)^{\alpha} \leq \frac{\tan x}{x} \leq\left(\frac{\pi^{2}+4 x^{2}}{\pi^{2}-4 x^{2}}\right)^{\beta} \tag{7}
\end{equation*}
$$

holds if and only if $\alpha \leq \pi^{2} / 24$ and $\beta \geq 1$.
Corresponding to Theorems $1-3$, we show three new Redheffer-type inequalities for hyperbolic functions.
Theorem 4. Let $0<x<r$. Then

$$
\begin{equation*}
\left(\frac{r^{2}+x^{2}}{r^{2}-x^{2}}\right)^{\alpha} \leq \frac{\sinh x}{x} \leq\left(\frac{r^{2}+x^{2}}{r^{2}-x^{2}}\right)^{\beta} \tag{8}
\end{equation*}
$$

holds if and only if $\alpha \leq 0$ and $\beta \geq r^{2} / 12$.
Theorem 5. Let $0 \leq x<r$. Then

$$
\begin{equation*}
\left(\frac{r^{2}+x^{2}}{r^{2}-x^{2}}\right)^{\alpha} \leq \cosh x \leq\left(\frac{r^{2}+x^{2}}{r^{2}-x^{2}}\right)^{\beta} \tag{9}
\end{equation*}
$$

holds if and only if $\alpha \leq 0$ and $\beta \geq r^{2} / 4$.
Theorem 6. Let $0<x<r$. Then

$$
\begin{equation*}
\left(\frac{r^{2}-x^{2}}{r^{2}+x^{2}}\right)^{\beta} \leq \frac{\tanh x}{x} \leq\left(\frac{r^{2}-x^{2}}{r^{2}+x^{2}}\right)^{\alpha} \tag{10}
\end{equation*}
$$

holds if and only if $\alpha \leq 0$ and $\beta \geq r^{2} / 6$.
Remark 1. Let $\alpha=0$ in (8) and (10), then

$$
\begin{equation*}
\tanh x \leq x \leq \sinh x, \quad x \geq 0 \tag{11}
\end{equation*}
$$

which can be found in Bullen [4, p. 9].

2. Five lemmas

Lemma 1 ([5, Theorem 3.4]). Let $B_{2 n}$ be the even-indexed Bernoulli numbers, and $\zeta(\cdot)$ the Riemann's zeta function. Then

$$
\begin{equation*}
\zeta(2 n)=\frac{(2 \pi)^{2 n}}{2(2 n)!}\left|B_{2 n}\right|, \quad n=1,2, \ldots \tag{12}
\end{equation*}
$$

(For further comprehension of the even-indexed Bernoulli numbers $B_{2 n}$, refer to pp. 231-232 in [6].)

Lemma 2. Let $0 \leq x<\pi / 2$. Then

$$
\begin{equation*}
\tan x=\sum_{n=1}^{\infty} \frac{2\left(2^{2 n}-1\right)}{\pi^{2 n}} \zeta(2 n) x^{2 n-1} . \tag{13}
\end{equation*}
$$

Proof. The following power series expansion can be found in [7, 1.3.1.4 (3)]:

$$
\begin{equation*}
\tan x=\sum_{n=1}^{\infty} \frac{2^{2 n}\left(2^{2 n}-1\right)}{(2 n)!}(-1)^{n-1} B_{2 n} x^{2 n-1}=\sum_{n=1}^{\infty} \frac{2^{2 n}\left(2^{2 n}-1\right)}{(2 n)!}\left|B_{2 n}\right| x^{2 n-1}, \quad|x|<\frac{\pi}{2} . \tag{14}
\end{equation*}
$$

using the relational expression (12), we obtain (13).
Lemma 3. Let $|x|<\pi$. Then

$$
\begin{equation*}
x \cot x=1-\sum_{n=1}^{\infty} \frac{2 \zeta(2 n)}{\pi^{2 n}} x^{2 n} \tag{15}
\end{equation*}
$$

Proof. The following power series expansion can be found in [7, 1.3.1.4 (2)]:

$$
\begin{equation*}
x \cot x=1-\sum_{n=1}^{\infty} \frac{2^{2 n}}{(2 n)!}\left|B_{2 n}\right| x^{2 n}, \quad|x|<\pi . \tag{16}
\end{equation*}
$$

using the relational expression (12), we obtain (15).
Lemma 4 ([8-11]). Let $f, g:[a, b] \rightarrow \mathbb{R}$ be two continuous functions which are differentiable on (a, b). Further, let $g^{\prime} \neq 0$ on (a, b). If f^{\prime} / g^{\prime} is increasing (or decreasing) on (a, b), then the functions

$$
\frac{f(x)-f(b)}{g(x)-g(b)}
$$

and

$$
\frac{f(x)-f(a)}{g(x)-g(a)}
$$

are also increasing (or decreasing) on (a, b).
Remark 2. This l'Hospital rule for monotonicity has become a standard tool and found wide application, reader can refer to [11] and references therein.

Lemma 5 ([12-14]). Let a_{n} and $b_{n}(n=0,1,2, \ldots)$ be real numbers, and let the power series $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $B(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ be convergent for $|x|<R$. If $b_{n}>0$ for $n=0,1,2, \ldots$, and if a_{n} / b_{n} is strictly increasing (or decreasing) for $n=0,1,2, \ldots$, then the function $A(x) / B(x)$ is strictly increasing (or decreasing) on $(0, R)$.

3. Proof of Theorem 1

Let $f(x)=\frac{\pi^{2}}{12} \log \frac{\pi^{2}-x^{2}}{\pi^{2}+x^{2}}-\log \frac{\sin x}{x}$. Then $f\left(0^{+}\right)=0$, and

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\sin x-x \cos x}{x \sin x}-\frac{\pi^{4} x}{3\left(\pi^{4}-x^{4}\right)} \\
& =\frac{1}{x\left(\pi^{2}+x^{2}\right)}\left[\left(\pi^{2}+x^{2}\right)(1-x \cot x)-\frac{\pi^{4} x^{2}}{3\left(\pi^{2}-x^{2}\right)}\right] .
\end{aligned}
$$

By Lemma 3, we have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{x\left(\pi^{2}+x^{2}\right)}\left[2\left(\pi^{2}+x^{2}\right) \sum_{n=1}^{\infty} \frac{\zeta(2 n)}{\pi^{2 n}} x^{2 n}-\frac{\pi^{2}}{3} \sum_{n=0}^{\infty}\left(\frac{x}{\pi}\right)^{2 n} x^{2}\right] \\
& =\frac{1}{x\left(\pi^{2}+x^{2}\right)}\left[2 \zeta(2) x^{2}+2 \sum_{n=2}^{\infty} \frac{\zeta(2 n)+\zeta(2 n-2)}{\pi^{2 n-2}} x^{2 n}-\frac{\pi^{2}}{3} x^{2}-\frac{\pi^{2}}{3} \sum_{n=2}^{\infty} \frac{x^{2 n}}{\pi^{2 n-2}}\right] \\
& =\frac{2}{x\left(\pi^{2}+x^{2}\right)} \sum_{n=2}^{\infty} \frac{\zeta(2 n)+\zeta(2 n-2)-\pi^{2} / 6}{\pi^{2 n-2}} x^{2 n} .
\end{aligned}
$$

Since $\zeta(2 n)+\zeta(2 n-2)-\pi^{2} / 6>1+1-\pi^{2} / 6>0$, we conclude that $f(x)$ is increasing on $(0, \pi)$. Then $f(x)>f\left(0^{+}\right)=0$ for $x \in(0, \pi)$, and the following inequality

$$
\begin{equation*}
\frac{\sin x}{x} \leq\left(\frac{\pi^{2}-x^{2}}{\pi^{2}+x^{2}}\right)^{\pi^{2} / 12} \tag{17}
\end{equation*}
$$

holds for $x \in(0, \pi)$.
By Redheffer's inequality (1) and the inequality (17), we have the double inequality as follows

$$
\begin{equation*}
\frac{\pi^{2}-x^{2}}{\pi^{2}+x^{2}} \leq \frac{\sin x}{x} \leq\left(\frac{\pi^{2}-x^{2}}{\pi^{2}+x^{2}}\right)^{\pi^{2} / 12}, \quad x \in(0, \pi] \tag{18}
\end{equation*}
$$

Let $F(x)=\frac{\log \frac{\sin x}{x}}{\log \frac{\pi^{2}-x^{2}}{\pi^{2}+x^{2}}}$. Then $F\left(0^{+}\right)=\frac{\pi^{2}}{12}$, and $F\left(\pi^{-}\right)=1$. So 1 and $\frac{\pi^{2}}{12}$ are the best constants in (18), the proof of Theorem 1 is complete.

4. Proof of Theorem 2

Let $g(x)=\frac{\pi^{2}}{16} \log \frac{\pi^{2}-4 x^{2}}{\pi^{2}+4 x^{2}}-\log \cos x$. Then $g(0)=0$, and

$$
g^{\prime}(x)=\tan x-\frac{\pi^{4} x}{\left(\pi^{2}-4 x^{2}\right)\left(\pi^{2}+4 x^{2}\right)}=\frac{1}{\pi^{2}+4 x^{2}}\left[\left(\pi^{2}+4 x^{2}\right) \tan x-\frac{\pi^{4} x}{\pi^{2}-4 x^{2}}\right] .
$$

By Lemma 2, we have

$$
\begin{aligned}
g^{\prime}(x)= & \frac{1}{\pi^{2}+4 x^{2}}\left[\left(\pi^{2}+4 x^{2}\right) \sum_{n=1}^{\infty} \frac{2\left(2^{2 n}-1\right) \zeta(2 n)}{\pi^{2 n}} x^{2 n-1}-\sum_{n=1}^{\infty} \frac{2^{2 n-1} \pi^{2}}{\pi^{2 n-2} \cdot 2} x^{2 n-1}\right] \\
= & \frac{1}{\pi^{2}+4 x^{2}}\left[6 \zeta(2) x+\sum_{n=2}^{\infty} \frac{2\left(2^{2 n}-1\right) \zeta(2 n)+8\left(2^{2 n-2}-1\right) \zeta(2 n-2)}{\pi^{2 n-2}} x^{2 n-1}\right. \\
& \left.-\left(\pi^{2} x+\sum_{n=2}^{\infty} \frac{2^{2 n-1} \pi^{2 n-2}}{\pi^{2}} x^{2 n-1}\right)\right] \\
= & \frac{1}{\pi^{2}+4 x^{2}} \sum_{n=2}^{\infty} \frac{2\left(2^{2 n}-1\right) \zeta(2 n)+8\left(2^{2 n-2}-1\right) \zeta(2 n-2)-\left(\pi^{2} / 2\right) 2^{2 n-1}}{\pi^{2 n-2}} x^{2 n-1}
\end{aligned}
$$

Since $2\left(2^{2 n}-1\right) \zeta(2 n)+8\left(2^{2 n-2}-1\right) \zeta(2 n-2)-\left(\pi^{2} / 2\right) 2^{2 n-1}>2\left(2^{2 n}-1\right)+8\left(2^{2 n-2}-1\right)-\left(\pi^{2} / 2\right) 2^{2 n-1}=$ $2^{2 n}\left(4-\frac{\pi^{2}}{4}\right)-10>16\left(4-\frac{\pi^{2}}{4}\right)-10>0$ for $n \geq 2$, we conclude that $g(x)$ is increasing on $[0, \pi / 2)$. Then $g(x) \geq g(0)=0$ for $x \in[0, \pi / 2)$, and the following inequality

$$
\begin{equation*}
\cos x \leq\left(\frac{\pi^{2}-4 x^{2}}{\pi^{2}+4 x^{2}}\right)^{\pi^{2} / 16} \tag{19}
\end{equation*}
$$

holds for $x \in[0, \pi / 2)$.

By inequality (2) and the inequality (19), we have the double inequality

$$
\begin{equation*}
\frac{\pi^{2}-4 x^{2}}{\pi^{2}+4 x^{2}} \leq \cos x \leq\left(\frac{\pi^{2}-4 x^{2}}{\pi^{2}+4 x^{2}}\right)^{\pi^{2} / 16}, \quad x \in[0, \pi / 2] . \tag{20}
\end{equation*}
$$

Let $G(x)=\frac{\log \cos x}{\log \frac{\pi^{2}-4 x^{2}}{\pi^{2}+4 x^{2}}}$. Then $G\left(0^{+}\right)=\frac{\pi^{2}}{16}$, and $G\left(\frac{\pi}{2}-\right)=1$. So 1 and $\frac{\pi^{2}}{16}$ are the best constants in (20), and the proof of Theorem 2 is complete.

5. Proof of Theorem 3

Let $h(x)=\log \frac{\tan x}{x}-\frac{\pi^{2}}{24} \log \frac{\pi^{2}+4 x^{2}}{\pi^{2}-4 x^{2}}$. Then $h\left(0^{+}\right)=0$, and

$$
\begin{aligned}
h^{\prime}(x) & =\frac{x \sec ^{2} x-\tan x}{x \tan x}-\frac{2 \pi^{4} x}{3\left(\pi^{2}+4 x^{2}\right)\left(\pi^{2}-4 x^{2}\right)} \\
& =\frac{1}{\pi^{2}+4 x^{2}}\left[\left(\pi^{2}+4 x^{2}\right)\left(\tan x+\frac{x \cot x-1}{x}\right)-\frac{2}{3} \pi^{4} \frac{x}{\pi^{2}-4 x^{2}}\right] .
\end{aligned}
$$

By Lemmas 2 and 3, we have

$$
\begin{aligned}
h^{\prime}(x)= & \frac{1}{\pi^{2}+4 x^{2}}\left[\left(\pi^{2}+4 x^{2}\right)\left(\sum_{n=1}^{\infty} \frac{2\left(2^{2 n}-1\right) \zeta(2 n)}{\pi^{2 n}} x^{2 n-1}-2 \sum_{n=1}^{\infty} \frac{\zeta(2 n)}{\pi^{2 n}} x^{2 n-1}\right)-\sum_{n=1}^{\infty} \frac{2^{2 n-1}}{\pi^{2 n-2}} \frac{\pi^{2}}{3} x^{2 n-1}\right] \\
= & \frac{1}{\pi^{2}+4 x^{2}}\left[4 \zeta(2) x+2 \sum_{n=2}^{\infty} \frac{\left(2^{2 n}-2\right) \zeta(2 n)+4\left(2^{2 n-2}-2\right) \zeta(2 n-2)}{\pi^{2 n-2}} x^{2 n-1}\right. \\
& \left.-\left(\frac{2}{3} \pi^{2} x+\sum_{n=2}^{\infty} \frac{2^{2 n-1}}{\pi^{2 n-2}} \frac{\pi^{2}}{3} x^{2 n-1}\right)\right] \\
= & \frac{2}{\pi^{2}+4 x^{2}} \sum_{n=2}^{\infty} \frac{\left(2^{2 n}-2\right) \zeta(2 n)+4\left(2^{2 n-2}-2\right) \zeta(2 n-2)-\left(\pi^{2} / 6\right) 2^{2 n-1}}{\pi^{2 n-2}} x^{2 n-1} .
\end{aligned}
$$

Since $\left(2^{2 n}-2\right) \zeta(2 n)+4\left(2^{2 n-2}-2\right) \zeta(2 n-2)-\left(\pi^{2} / 6\right) 2^{2 n-1}>2^{2 n}-2+4\left(2^{2 n-2}-2\right)-\left(\pi^{2} / 6\right) 2^{2 n-1}=$ $2^{2 n}\left(2-\frac{\pi^{2}}{12}\right)-10>16\left(2-\frac{\pi^{2}}{12}\right)-10>0$ for $n \geq 2$, we conclude that $h(x)$ is increasing on $(0, \pi / 2)$. Then $h(x)>h\left(0^{+}\right)=0$ for $x \in(0, \pi / 2)$, and the following inequality

$$
\begin{equation*}
\left(\frac{\pi^{2}+4 x^{2}}{\pi^{2}-4 x^{2}}\right)^{\pi^{2} / 24} \leq \frac{\tan x}{x} \tag{21}
\end{equation*}
$$

holds for $x \in(0, \pi / 2)$.
In a similar way, the inequality

$$
\begin{equation*}
\frac{\tan x}{x} \leq \frac{\pi^{2}+4 x^{2}}{\pi^{2}-4 x^{2}} \tag{22}
\end{equation*}
$$

holds for $x \in(0, \pi / 2)$.
Combining inequality (21) and the inequality (22), we have the double inequality as follows

$$
\begin{equation*}
\left(\frac{\pi^{2}+4 x^{2}}{\pi^{2}-4 x^{2}}\right)^{\pi^{2} / 24} \leq \frac{\tan x}{x} \leq \frac{\pi^{2}+4 x^{2}}{\pi^{2}-4 x^{2}}, \quad x \in(0, \pi / 2) \tag{23}
\end{equation*}
$$

Let $H(x)=\frac{\log \frac{\tan x}{x}}{\log \frac{\pi^{2}+4 x^{2}}{\pi^{2}-4 x^{2}}}$. Then $H\left(0^{+}\right)=\frac{\pi^{2}}{24}$, and $H\left(\frac{\pi}{2}^{-}\right)=1$. So 1 and $\frac{\pi^{2}}{24}$ are the best constants in (23), and the proof of Theorem 3 is complete.

6. Proof of Theorem 4

Let $I(x)=\frac{\log \frac{\sinh x}{(2)}}{\log \frac{r_{2}^{2}+x^{2}}{r^{2}-x^{2}}}=\frac{f_{1}(x)}{g_{1}(x)}$, where $f_{1}(x)=\log \frac{\sinh x}{x}$, and $g_{1}(x)=\log \frac{r^{2}+x^{2}}{r^{2}-x^{2}}$. Then

$$
\frac{f_{1}^{\prime}(x)}{g_{1}^{\prime}(x)}=\frac{1}{4 r^{2}} \frac{\left(r^{4}-x^{4}\right)(x \cosh x-\sinh x)}{x^{2} \sinh x}=\frac{1}{4 r^{2}} \frac{A(x)}{B(x)}
$$

where

$$
\begin{aligned}
A(x) & =\left(r^{4}-x^{4}\right)(x \cosh x-\sinh x) \\
& =\frac{2 r^{4}}{3!} x^{3}+\frac{4 r^{4}}{5!} x^{5}+\sum_{n=3}^{\infty}\left[\frac{r^{4}}{(2 n)!}-\frac{r^{4}}{(2 n+1)!}-\frac{1}{(2 n-4)!}+\frac{1}{(2 n-3)!}\right] x^{2 n+1} \\
& =\sum_{n=1}^{\infty} a_{n} x^{2 n+1}, \\
B(x) & =x^{2} \sinh x=\frac{1}{1!} x^{3}+\frac{1}{3!} x^{5}+\sum_{n=3}^{\infty} \frac{x^{2 n+1}}{(2 n-1)!} \\
& =\sum_{n=1}^{\infty} b_{n} x^{2 n+1},
\end{aligned}
$$

and

$$
\begin{aligned}
& a_{1}=\frac{2 r^{4}}{3!}, \quad a_{2}=\frac{4 r^{4}}{5!}, \\
& a_{n}=\frac{r^{4}}{(2 n)!}-\frac{r^{4}}{(2 n+1)!}-\frac{1}{(2 n-4)!}+\frac{1}{(2 n-3)!}, \\
& b_{1}=1, \quad b_{2}=\frac{1}{3!}, \quad b_{n}=\frac{1}{(2 n-1)!}>0, \quad n \geq 3, n \in \mathbb{N}^{+} .
\end{aligned}
$$

So $\frac{a_{1}}{b_{1}}>\frac{a_{2}}{b_{2}}>\frac{a_{3}}{b_{3}}$, and for $n \geq 3$ we have

$$
\begin{aligned}
c_{n} & =\frac{a_{n}}{b_{n}}=\frac{\frac{r^{4}}{(2 n)!}-\frac{r^{4}}{(2 n+1)!}-\frac{1}{(2 n-4)!}+\frac{1}{(2 n-3)!}}{\frac{1}{(2 n-1)!}} \\
& =\frac{2 n r^{4}-(2 n+1) 2 n(2 n-1)(2 n-2)(2 n-4)}{2 n(2 n+1)} .
\end{aligned}
$$

We conclude that c_{n} is decreasing for $n=1,2, \ldots$, and $\frac{f_{1}^{\prime}(x)}{g_{1}^{\prime}(x)}=\frac{1}{4 r^{2}} \frac{A(x)}{B(x)}$ is decreasing on $(0, r)$ by Lemma 5. Thus $I(x)=\frac{f_{1}(x)}{g_{1}(x)}=\frac{f_{1}(x)-f_{1}\left(0^{+}\right)}{g_{1}(x)-g_{1}\left(0^{+}\right)}$is decreasing on $(0, r)$ by Lemma 4.

Furthermore, $\lim _{x \rightarrow 0^{+}} I(x)=\frac{r^{2}}{12}$, and $\lim _{x \rightarrow r} I(x)=0$. So the proof of Theorem 4 is complete.

7. Proof of Theorem 5

Let $J(x)=\frac{\log \cosh x}{\log \frac{r^{2}+x^{2}}{r^{2}-x^{2}}}=\frac{r_{1}(x)}{s_{1}(x)}$, where $r_{1}(x)=\log \cosh x$, and $s_{1}(x)=\log \frac{r^{2}+x^{2}}{r^{2}-x^{2}}$. Then

$$
\frac{r_{1}^{\prime}(x)}{s_{1}^{\prime}(x)}=\frac{1}{4 r^{2}} \frac{\left(r^{4}-x^{4}\right) \sinh x}{x \cosh x}=\frac{1}{4 r^{2}} \frac{R(x)}{S(x)},
$$

where

$$
R(x)=\left(r^{4}-x^{4}\right) \sinh x=\frac{r^{4}}{1!} x+\frac{r^{4}}{3!} x^{3}+\sum_{n=3}^{\infty}\left[\frac{r^{4}}{(2 n-1)!}-\frac{1}{(2 n-5)!}\right] x^{2 n-1}
$$

$$
\begin{aligned}
& =\sum_{n=1}^{\infty} a_{n} x^{2 n-1}, \\
S(x) & =x \cosh x=x+\frac{1}{2!} x^{3}+\sum_{n=3}^{\infty} \frac{x^{2 n-1}}{(2 n-2)!} \\
& =\sum_{n=1}^{\infty} b_{n} x^{2 n-1},
\end{aligned}
$$

$a_{1}=r^{4}, a_{2}=\frac{r^{4}}{3!}, a_{n}=\frac{r^{4}}{(2 n-1)!}-\frac{1}{(2 n-5)!}, b_{1}=1, b_{2}=\frac{1}{2!}, b_{n}=\frac{1}{(2 n-2)!}>0, n \geq 3$, and $n \in \mathbb{N}^{+}$.
So $\frac{a_{1}}{b_{1}}>\frac{a_{2}}{b_{2}}>\frac{a_{3}}{b_{3}}$, and for $n \geq 3$ we have

$$
\begin{aligned}
c_{n} & =\frac{a_{n}}{b_{n}}=\frac{\frac{r^{4}}{(2 n-1)!}-\frac{1}{(2 n-5)!}}{\frac{1}{(2 n-2)!}} \\
& =\frac{r^{4}-(2 n-1)(2 n-2)(2 n-3)(2 n-4)}{2 n-1}
\end{aligned}
$$

We conclude that c_{n} is decreasing for $n=1,2, \ldots$, and $\frac{r_{1}^{\prime}(x)}{s_{1}^{\prime}(x)}=\frac{1}{4 r^{2}} \frac{R(x)}{S(x)}$ is decreasing on $[0, r)$ by Lemma 5 . Thus $J(x)=\frac{r_{1}(x)}{s_{1}(x)}=\frac{r_{1}(x)-r_{1}(0)}{s_{1}(x)-s_{1}(0)}$ is decreasing on [0,r) by Lemma 4. At the same time, $\lim _{x \rightarrow 0^{+}} J(x)=\frac{r^{2}}{4}$ and $\lim _{x \rightarrow r} J(x)=0$. So the proof of Theorem 5 is complete.

8. Proof of Theorem 6

Let $K(x)=\frac{\log \frac{\tanh x}{x}}{\log \frac{r^{2}-x^{2}}{r^{2}+x^{2}}}=\frac{l_{1}(x)}{m_{1}(x)}$, where $l_{1}(x)=\log \frac{\tanh x}{x}$, and $m_{1}(x)=\log \frac{r^{2}-x^{2}}{r^{2}+x^{2}}$. Then

$$
\frac{l_{1}^{\prime}(x)}{m_{1}^{\prime}(x)}=\frac{1}{r^{2}} \frac{\left(r^{4}-x^{4}\right)(\sinh 2 x-2 x)}{(2 x)^{2} \sinh 2 x}=\frac{1}{16 r^{2}} \frac{L(t)}{M(t)}
$$

where $t=2 x$,

$$
\begin{aligned}
L(t) & =\left(16 r^{4}-t^{4}\right)(\sinh t-t)=\frac{16 r^{4}}{3!} t^{3}+\frac{16 r^{4}}{5!} t^{5}+\sum_{n=3}^{\infty}\left[\frac{16 r^{4}}{(2 n+1)!}-\frac{1}{(2 n-4)!}\right] t^{2 n+1} \\
& =\sum_{n=1}^{\infty} a_{n} t^{2 n+1}, \\
M(t) & =t^{2} \sinh t=t^{3}+\frac{1}{3!} t^{5}+\sum_{n=3}^{\infty} \frac{t^{2 n+1}}{(2 n-1)!} \\
& =\sum_{n=1}^{\infty} b_{n} t^{2 n+1}
\end{aligned}
$$

and $a_{1}=\frac{16 r^{4}}{3!}, a_{2}=\frac{16 r^{4}}{5!}, a_{n}=\frac{16 r^{4}}{(2 n+1)!}-\frac{1}{(2 n-4)!}, b_{1}=1, b_{2}=\frac{1}{3!}, b_{n}=\frac{1}{(2 n-1)!}>0, n \geq 3$, and $n \in \mathbb{N}^{+}$.
So $\frac{a_{1}}{b_{1}}>\frac{a_{2}}{b_{2}}>\frac{a_{3}}{b_{3}}$, and for $n \geq 3$ we have

$$
\begin{aligned}
c_{n} & =\frac{a_{n}}{b_{n}}=\frac{\frac{16 r^{4}}{(2 n+1)!}-\frac{1}{(2 n-4)!}}{\frac{1}{(2 n-1)!}} \\
& =\frac{16 r^{4}-(2 n+1) 2 n(2 n-1)(2 n-2)(2 n-3)}{2 n(2 n+1)}
\end{aligned}
$$

We conclude that c_{n} is decreasing for $n=1,2, \ldots, L(t) / M(t)$ is decreasing on $(0,2 r)$ and $\frac{l_{1}^{\prime}(x)}{m_{1}^{\prime}(x)}$ is decreasing on $(0, r)$ by Lemma 5. Thus $K(x)=\frac{l_{1}(x)}{m_{1}(x)}=\frac{l_{1}(x)-l_{1}\left(0^{+}\right)}{m_{1}(x)-m_{1}\left(0^{+}\right)}$is decreasing on $(0, r)$ by Lemma 4. At the same time, $\lim _{x \rightarrow 0^{+}} K(x)=\frac{r^{2}}{6}$ and $\lim _{x \rightarrow r} K(x)=0$. So the proof of Theorem 6 is complete.

Remark 3. New researches on Jordan's inequality which is similar in theme to Redheffer-type inequalities are in active progress, reader can refer to [15-32].

References

[1] R. Redheffer, Problem 5642, Amer. Math. Monthly 76 (1969) 422.
[2] C.P. Chen, J.W. Zhao, F. Qi, Three inequalities involving hyperbolically trigonometric functions, RGMIA Res. Rep. Coll. 6 (3) (2003) 437-443. Art. 4.
[3] A. Baricz, Redheffer type inequality for Bessel functions, J. Inequal Pure Appl. Math. 8 (1) (2007) 6. Art. 11 (electronic).
[4] P.S. Bullen, Handbook of Means and their Inequalities, Kluwer Academic Publishers, 2003.
[5] W. Scharlau, H. Opolka, From Fermat to Minkowski, Springer-Verlag, New York Inc., 1985.
[6] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, 2nd ed., Springer-Verlag, New York, Berlin, Heidelberg, 1990.
[7] A. Jeffrey, Handbook of Mathematical Formulas and Integrals, 3rd ed., Elsevier Academic Press, 2004.
[8] G.D. Anderson, M.K. Vamanamurthy, M. Vuorinen, Inequalities for quasiconformal mappings in space, Pacific J. Math. 160 (1) (1993) 1-18.
[9] G.D. Anderson, S.-L. Qiu, M.K. Vamanamurthy, M. Vuorinen, Generalized elliptic integral and modular equations, Pacific J. Math. 192 (2000) 1-37.
[10] I. Pinelis, L'Hospital type rules for monotonicity, with applications, J. Inequal Pure Appl. Math. 3 (1) (2002) 5. Article 5 (electronic).
[11] I. Pinelis, "Non-strict"l'Hospital-type rules for monotonicity: Intervals of constancy, J. Inequal Pure Appl. Math. 8 (1) (2007) 8. Article 14 (electronic).
[12] M. Biernacki, J. Krzyz, On the monotonicity of certain functionals in the theory of analytic functions, Ann. Univ. M. Curie-Sklodowska 2 (1955) 134-145.
[13] S. Ponnusamy, M. Vuorinen, Asymptotic expansions and inequalities for hypergeometric functions, Mathematika 44 (1997) $278-301$.
[14] H. Alzer, S.L. Qiu, Monotonicity theorems and inequalities for the complete elliptic integrals, J. Comput. Appl. Math. 172 (2004) $289-312$.
[15] F. Qi, L.H. Cui, S.L. Xu, Some inequalities constructed by Tchebysheff's integral inequality, Math. Inequalities Appl. 4 (1999) 517-528.
[16] F. Qi, Jordan's inequality: Refinements, generalizations, applications and related problem, RGMIA Res. Rep. Coll. 9 (3) (2006) Art.12. Available online at: http://rgmia.vu.edu.au/v9n3.html.
[17] F. Qi, Q.D. Hao, Refinements and sharpenings of Jordan's and Kober's inequality, Math. Inform. Quarterly 8 (3) (1998) 116-120.
[18] Feng Qi, Da-Wei Niu, Jian Cao, Shou-Xin Chen, A general generalization of Jordan's inequality and a refinement of L. Yang's inequality, Math. Inequal. Appl. 11 (2008) (in press).
[19] F. Qi, D.W. Niu, J. Cao, A general generalization of Jordan's inequality and a refinement of L.Yang's inequality, RGMIA Res. Rep. Coll. 10 (Suppl.) (2007) Art. 2.
[20] A.Y. Ozban, A new refined form of Jordan's inequality and its applications, Appl. Math. Lett. 19 (2006) 155-160.
[21] L. Debnath, C.J. Zhao, New strengthened Jordan's inequality and its applications, Appl. Math. Lett. 16 (4) (2003) 557-560.
[22] S.H. Wu, On generalizations and refinements of Jordan type inequality, Octogon Math. Mag. 12 (1) (2004) 267-272.
[23] S.H. Wu, L. Debnath, A new generalized and sharp version of Jordan's inequality and its applications to the improvement of the Yang Le inequality, Appl. Math. Lett. 19 (2006) 1378-1384.
[24] S.H. Wu, L. Debnath, A new generalized and sharp version of Jordan's inequality and its applications to the improvement of the Yang Le inequality, II, Appl. Math. Lett. 20 (2007) 1414-1417.
[25] S.H. Wu, H.M. Srivastava, A further refinement of a Jordan type inequality and its application, Appl. Math. Comput. 197 (2008) $914-923$.
[26] S.H. Wu, L. Debnath, Jordan type inequalities for differentiable functions and their applications, Appl. Math. Lett. (2007), doi:10.1016/j.aml.2007.09.001.
[27] J. Sandor, On the concavity of $\frac{\sin x}{x}$, Octogon Math. Mag. 13 (1) (2005) 406-407.
[28] J.L. Li, An identity related to Jordan's inequality, Internat. J. Math. Math. Sci. (2006), doi:10.1155/IJMMS/2006/76782. Article ID 76782, 6 pages.
[29] L. Zhu, Sharpening Jordan's inequality and Yang Le inequality, Appl. Math. Lett. 19 (2006) 240-243.
[30] L. Zhu, Sharpening Jordan's inequality and Yang Le inequality II, Appl. Math. Lett. 19 (2006) 990-994.
[31] L. Zhu, Sharpening of Jordan's inequalities and its applications, Math. Inequalities Appl. 9 (2006) 103-106.
[32] L. Zhu, A general refinement of Jordan-type inequality, Comput. Math. Appl. (2007), doi:10.1016/j.camwa.2007.10.004.

[^0]: * Corresponding author.

 E-mail address: zhuling0571@163.com (L. Zhu).

