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Abstract

In this paper, six new Redheffer-type inequalities involving circular functions and hyperbolic functions are established.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Redheffer [1] proposed the inequality

sin x

x
≥

π2
− x2

π2 + x2 , x ∈ (0, π]. (1)

Chen, Zhao, and Qi [2] obtained the following three Redheffer-type inequalities

cos x ≥
π2

− 4x2

π2 + 4x2 , x ∈

[
0,

π

2

]
, (2)

cosh x ≤
π2

+ 4x2

π2 − 4x2 , x ∈

[
0,

π

2

)
, (3)

sinh x

x
≤

π2
+ x2

π2 − x2 , x ∈ (0, π). (4)

Recently, some extensions of inequalities (2)–(4) for Bessel functions have been shown in Baricz [3].
In this paper, we shall extend and sharpen the inequalities (1) and (2) above, and show a new Redheffer-type

inequality for tan x as follows.
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Theorem 1. Let 0 < x < π . Then(
π2

− x2

π2 + x2

)β

≤
sin x

x
≤

(
π2

− x2

π2 + x2

)α

(5)

holds if and only if α ≤ π2/12 and β ≥ 1.

Theorem 2. Let 0 ≤ x ≤ π/2. Then(
π2

− 4x2

π2 + 4x2

)β

≤ cos x ≤

(
π2

− 4x2

π2 + 4x2

)α

(6)

holds if and only if α ≤ π2/16 and β ≥ 1.

Theorem 3. Let 0 < x < π/2. Then(
π2

+ 4x2

π2 − 4x2

)α

≤
tan x

x
≤

(
π2

+ 4x2

π2 − 4x2

)β

(7)

holds if and only if α ≤ π2/24 and β ≥ 1.

Corresponding to Theorems 1–3, we show three new Redheffer-type inequalities for hyperbolic functions.

Theorem 4. Let 0 < x < r . Then(
r2

+ x2

r2 − x2

)α

≤
sinh x

x
≤

(
r2

+ x2

r2 − x2

)β

(8)

holds if and only if α ≤ 0 and β ≥ r2/12.

Theorem 5. Let 0 ≤ x < r . Then(
r2

+ x2

r2 − x2

)α

≤ cosh x ≤

(
r2

+ x2

r2 − x2

)β

(9)

holds if and only if α ≤ 0 and β ≥ r2/4.

Theorem 6. Let 0 < x < r . Then(
r2

− x2

r2 + x2

)β

≤
tanh x

x
≤

(
r2

− x2

r2 + x2

)α

(10)

holds if and only if α ≤ 0 and β ≥ r2/6.

Remark 1. Let α = 0 in (8) and (10), then

tanh x ≤ x ≤ sinh x, x ≥ 0, (11)

which can be found in Bullen [4, p. 9].

2. Five lemmas

Lemma 1 ([5, Theorem 3.4]). Let B2n be the even-indexed Bernoulli numbers, and ζ(·) the Riemann’s zeta function.
Then

ζ(2n) =
(2π)2n

2(2n)!
|B2n|, n = 1, 2, . . . . (12)

(For further comprehension of the even-indexed Bernoulli numbers B2n , refer to pp. 231–232 in [6].)
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Lemma 2. Let 0 ≤ x < π/2. Then

tan x =

∞∑
n=1

2(22n
− 1)

π2n
ζ(2n)x2n−1. (13)

Proof. The following power series expansion can be found in [7, 1.3.1.4 (3)]:

tan x =

∞∑
n=1

22n(22n
− 1)

(2n)!
(−1)n−1 B2n x2n−1

=

∞∑
n=1

22n(22n
− 1)

(2n)!
|B2n|x2n−1, |x | <

π

2
. (14)

using the relational expression (12), we obtain (13). �

Lemma 3. Let |x | < π . Then

x cot x = 1 −

∞∑
n=1

2ζ(2n)

π2n
x2n . (15)

Proof. The following power series expansion can be found in [7, 1.3.1.4 (2)]:

x cot x = 1 −

∞∑
n=1

22n

(2n)!
|B2n|x2n, |x | < π. (16)

using the relational expression (12), we obtain (15). �

Lemma 4 ([8–11]). Let f, g : [a, b] → R be two continuous functions which are differentiable on (a, b). Further, let
g′

6= 0 on (a, b). If f ′/g′ is increasing (or decreasing) on (a, b), then the functions

f (x) − f (b)

g(x) − g(b)

and

f (x) − f (a)

g(x) − g(a)

are also increasing (or decreasing) on (a, b).

Remark 2. This l’Hospital rule for monotonicity has become a standard tool and found wide application, reader can
refer to [11] and references therein.

Lemma 5 ([12–14]). Let an and bn (n = 0, 1, 2, . . .) be real numbers, and let the power series A(x) =
∑

∞

n=0 an xn

and B(x) =
∑

∞

n=0 bn xn be convergent for |x | < R. If bn > 0 for n = 0, 1, 2, . . ., and if an/bn is strictly increasing
(or decreasing) for n = 0, 1, 2, . . ., then the function A(x)/B(x) is strictly increasing (or decreasing) on (0, R).

3. Proof of Theorem 1

Let f (x) =
π2

12 log π2
−x2

π2+x2 − log sin x
x . Then f (0+) = 0, and

f ′(x) =
sin x − x cos x

x sin x
−

π4x

3(π4 − x4)

=
1

x(π2 + x2)

[
(π2

+ x2)(1 − x cot x) −
π4x2

3(π2 − x2)

]
.
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By Lemma 3, we have

f ′(x) =
1

x(π2 + x2)

[
2(π2

+ x2)

∞∑
n=1

ζ(2n)

π2n
x2n

−
π2

3

∞∑
n=0

( x

π

)2n
x2

]

=
1

x(π2 + x2)

[
2ζ(2)x2

+ 2
∞∑

n=2

ζ(2n) + ζ(2n − 2)

π2n−2 x2n
−

π2

3
x2

−
π2

3

∞∑
n=2

x2n

π2n−2

]

=
2

x(π2 + x2)

∞∑
n=2

ζ(2n) + ζ(2n − 2) − π2/6

π2n−2 x2n .

Since ζ(2n) + ζ(2n − 2) − π2/6 > 1 + 1 − π2/6 > 0, we conclude that f (x) is increasing on (0, π). Then
f (x) > f (0+) = 0 for x ∈ (0, π), and the following inequality

sin x

x
≤

(
π2

− x2

π2 + x2

)π2/12

(17)

holds for x ∈ (0, π).
By Redheffer’s inequality (1) and the inequality (17), we have the double inequality as follows

π2
− x2

π2 + x2 ≤
sin x

x
≤

(
π2

− x2

π2 + x2

)π2/12

, x ∈ (0, π]. (18)

Let F(x) =
log sin x

x

log π2−x2

π2+x2

. Then F(0+) =
π2

12 , and F(π−) = 1. So 1 and π2

12 are the best constants in (18), the proof of

Theorem 1 is complete.

4. Proof of Theorem 2

Let g(x) =
π2

16 log π2
−4x2

π2+4x2 − log cos x . Then g(0) = 0, and

g′(x) = tan x −
π4x

(π2 − 4x2)(π2 + 4x2)
=

1

π2 + 4x2

[
(π2

+ 4x2) tan x −
π4x

π2 − 4x2

]
.

By Lemma 2, we have

g′(x) =
1

π2 + 4x2

[
(π2

+ 4x2)

∞∑
n=1

2(22n
− 1)ζ(2n)

π2n
x2n−1

−

∞∑
n=1

22n−1π2

π2n−2 · 2
x2n−1

]

=
1

π2 + 4x2

[
6ζ(2)x +

∞∑
n=2

2(22n
− 1)ζ(2n) + 8(22n−2

− 1)ζ(2n − 2)

π2n−2 x2n−1

−

(
π2x +

∞∑
n=2

22n−1

π2n−2

π2

2
x2n−1

)]

=
1

π2 + 4x2

∞∑
n=2

2(22n
− 1)ζ(2n) + 8(22n−2

− 1)ζ(2n − 2) − (π2/2)22n−1

π2n−2 x2n−1.

Since 2(22n
− 1)ζ(2n) + 8(22n−2

− 1)ζ(2n − 2) − (π2/2)22n−1 > 2(22n
− 1) + 8(22n−2

− 1) − (π2/2)22n−1
=

22n(4 −
π2

4 ) − 10 > 16(4 −
π2

4 ) − 10 > 0 for n ≥ 2, we conclude that g(x) is increasing on [0, π/2). Then
g(x) ≥ g(0) = 0 for x ∈ [0, π/2), and the following inequality

cos x ≤

(
π2

− 4x2

π2 + 4x2

)π2/16

(19)

holds for x ∈ [0, π/2).
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By inequality (2) and the inequality (19), we have the double inequality

π2
− 4x2

π2 + 4x2 ≤ cos x ≤

(
π2

− 4x2

π2 + 4x2

)π2/16

, x ∈ [0, π/2]. (20)

Let G(x) =
log cos x

log π2−4x2

π2+4x2

. Then G(0+) =
π2

16 , and G(π
2

−) = 1. So 1 and π2

16 are the best constants in (20), and the proof

of Theorem 2 is complete.

5. Proof of Theorem 3

Let h(x) = log tan x
x −

π2

24 log π2
+4x2

π2−4x2 . Then h(0+) = 0, and

h′(x) =
x sec2 x − tan x

x tan x
−

2π4x

3(π2 + 4x2)(π2 − 4x2)

=
1

π2 + 4x2

[
(π2

+ 4x2)

(
tan x +

x cot x − 1
x

)
−

2
3
π4 x

π2 − 4x2

]
.

By Lemmas 2 and 3, we have

h′(x) =
1

π2 + 4x2

[
(π2

+ 4x2)

(
∞∑

n=1

2(22n
− 1)ζ(2n)

π2n
x2n−1

− 2
∞∑

n=1

ζ(2n)

π2n
x2n−1

)
−

∞∑
n=1

22n−1

π2n−2

π2

3
x2n−1

]

=
1

π2 + 4x2

[
4ζ(2)x + 2

∞∑
n=2

(22n
− 2)ζ(2n) + 4(22n−2

− 2)ζ(2n − 2)

π2n−2 x2n−1

−

(
2
3
π2x +

∞∑
n=2

22n−1

π2n−2

π2

3
x2n−1

)]

=
2

π2 + 4x2

∞∑
n=2

(22n
− 2)ζ(2n) + 4(22n−2

− 2)ζ(2n − 2) − (π2/6)22n−1

π2n−2 x2n−1.

Since (22n
− 2)ζ(2n) + 4(22n−2

− 2)ζ(2n − 2) − (π2/6)22n−1 > 22n
− 2 + 4(22n−2

− 2) − (π2/6)22n−1
=

22n(2 −
π2

12 ) − 10 > 16(2 −
π2

12 ) − 10 > 0 for n ≥ 2, we conclude that h(x) is increasing on (0, π/2). Then
h(x) > h(0+) = 0 for x ∈ (0, π/2), and the following inequality(

π2
+ 4x2

π2 − 4x2

)π2/24

≤
tan x

x
(21)

holds for x ∈ (0, π/2).
In a similar way, the inequality

tan x

x
≤

π2
+ 4x2

π2 − 4x2 (22)

holds for x ∈ (0, π/2).
Combining inequality (21) and the inequality (22), we have the double inequality as follows(

π2
+ 4x2

π2 − 4x2

)π2/24

≤
tan x

x
≤

π2
+ 4x2

π2 − 4x2 , x ∈ (0, π/2). (23)

Let H(x) =
log tan x

x

log π2+4x2

π2−4x2

. Then H(0+) =
π2

24 , and H(π
2

−) = 1. So 1 and π2

24 are the best constants in (23), and the proof

of Theorem 3 is complete.
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6. Proof of Theorem 4

Let I (x) =
log sinh x

x

log r2+x2

r2−x2

=
f1(x)
g1(x)

, where f1(x) = log sinh x
x , and g1(x) = log r2

+x2

r2−x2 . Then

f ′

1(x)

g′

1(x)
=

1

4r2

(r4
− x4)(x cosh x − sinh x)

x2 sinh x
=

1

4r2

A(x)

B(x)
,

where

A(x) = (r4
− x4)(x cosh x − sinh x)

=
2r4

3!
x3

+
4r4

5!
x5

+

∞∑
n=3

[
r4

(2n)!
−

r4

(2n + 1)!
−

1
(2n − 4)!

+
1

(2n − 3)!

]
x2n+1

=

∞∑
n=1

an x2n+1,

B(x) = x2 sinh x =
1
1!

x3
+

1
3!

x5
+

∞∑
n=3

x2n+1

(2n − 1)!

=

∞∑
n=1

bn x2n+1,

and

a1 =
2r4

3!
, a2 =

4r4

5!
,

an =
r4

(2n)!
−

r4

(2n + 1)!
−

1
(2n − 4)!

+
1

(2n − 3)!
,

b1 = 1, b2 =
1
3!

, bn =
1

(2n − 1)!
> 0, n ≥ 3, n ∈ N+.

So a1
b1

>
a2
b2

>
a3
b3

, and for n ≥ 3 we have

cn =
an

bn
=

r4

(2n)!
−

r4

(2n+1)!
−

1
(2n−4)!

+
1

(2n−3)!

1
(2n−1)!

=
2nr4

− (2n + 1)2n(2n − 1)(2n − 2)(2n − 4)

2n(2n + 1)
.

We conclude that cn is decreasing for n = 1, 2, . . ., and
f ′

1(x)

g′

1(x)
=

1
4r2

A(x)
B(x)

is decreasing on (0, r) by Lemma 5. Thus

I (x) =
f1(x)
g1(x)

=
f1(x)− f1(0+)

g1(x)−g1(0+)
is decreasing on (0, r) by Lemma 4.

Furthermore, limx→0+ I (x) =
r2

12 , and limx→r I (x) = 0. So the proof of Theorem 4 is complete.

7. Proof of Theorem 5

Let J (x) =
log cosh x

log r2+x2

r2−x2

=
r1(x)
s1(x)

, where r1(x) = log cosh x , and s1(x) = log r2
+x2

r2−x2 . Then

r ′

1(x)

s′

1(x)
=

1

4r2

(r4
− x4) sinh x

x cosh x
=

1

4r2

R(x)

S(x)
,

where

R(x) = (r4
− x4) sinh x =

r4

1!
x +

r4

3!
x3

+

∞∑
n=3

[
r4

(2n − 1)!
−

1
(2n − 5)!

]
x2n−1
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=

∞∑
n=1

an x2n−1,

S(x) = x cosh x = x +
1
2!

x3
+

∞∑
n=3

x2n−1

(2n − 2)!

=

∞∑
n=1

bn x2n−1,

a1 = r4, a2 =
r4

3!
, an =

r4

(2n−1)!
−

1
(2n−5)!

, b1 = 1, b2 =
1
2!

, bn =
1

(2n−2)!
> 0, n ≥ 3, and n ∈ N+.

So a1
b1

>
a2
b2

>
a3
b3

, and for n ≥ 3 we have

cn =
an

bn
=

r4

(2n−1)!
−

1
(2n−5)!

1
(2n−2)!

=
r4

− (2n − 1)(2n − 2)(2n − 3)(2n − 4)

2n − 1
.

We conclude that cn is decreasing for n = 1, 2, . . ., and
r ′

1(x)

s′

1(x)
=

1
4r2

R(x)
S(x)

is decreasing on [0, r) by Lemma 5.

Thus J (x) =
r1(x)
s1(x)

=
r1(x)−r1(0)
s1(x)−s1(0)

is decreasing on [0, r) by Lemma 4. At the same time, limx→0+ J (x) =
r2

4 and
limx→r J (x) = 0. So the proof of Theorem 5 is complete.

8. Proof of Theorem 6

Let K (x) =
log tanh x

x

log r2−x2

r2+x2

=
l1(x)
m1(x)

, where l1(x) = log tanh x
x , and m1(x) = log r2

−x2

r2+x2 . Then

l ′1(x)

m′

1(x)
=

1

r2

(r4
− x4)(sinh 2x − 2x)

(2x)2 sinh 2x
=

1

16r2

L(t)

M(t)
,

where t = 2x ,

L(t) = (16r4
− t4)(sinh t − t) =

16r4

3!
t3

+
16r4

5!
t5

+

∞∑
n=3

[
16r4

(2n + 1)!
−

1
(2n − 4)!

]
t2n+1

=

∞∑
n=1

an t2n+1,

M(t) = t2 sinh t = t3
+

1
3!

t5
+

∞∑
n=3

t2n+1

(2n − 1)!

=

∞∑
n=1

bn t2n+1,

and a1 =
16r4

3!
, a2 =

16r4

5!
, an =

16r4

(2n+1)!
−

1
(2n−4)!

, b1 = 1, b2 =
1
3!

, bn =
1

(2n−1)!
> 0, n ≥ 3, and n ∈ N+.

So a1
b1

>
a2
b2

>
a3
b3

, and for n ≥ 3 we have

cn =
an

bn
=

16r4

(2n+1)!
−

1
(2n−4)!

1
(2n−1)!

=
16r4

− (2n + 1)2n(2n − 1)(2n − 2)(2n − 3)

2n(2n + 1)
.
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We conclude that cn is decreasing for n = 1, 2, . . ., L(t)/M(t) is decreasing on (0, 2r) and
l ′1(x)

m′

1(x)
is decreasing on

(0, r) by Lemma 5. Thus K (x) =
l1(x)
m1(x)

=
l1(x)−l1(0+)

m1(x)−m1(0+)
is decreasing on (0, r) by Lemma 4. At the same time,

limx→0+ K (x) =
r2

6 and limx→r K (x) = 0. So the proof of Theorem 6 is complete.

Remark 3. New researches on Jordan’s inequality which is similar in theme to Redheffer-type inequalities are in
active progress, reader can refer to [15–32].
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