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Recent progress in studies on the proton-pumping and O2 reduction mechanisms of cytochrome c oxidase (CcO)
elucidated by infrared (IR) and resonance Raman (rR) spectroscopy, is reviewed. CcO is the terminal enzyme of
the respiratory chain and its O2 reduction reaction is coupled with H+ pumping activity across the inner
mitochondrial membrane. The former is catalyzed by heme a3 and its mechanism has been determined using a
rR technique, while the latter used the protein moiety and has been investigated with an IR technique. The
number of H+ relative to e− transferred in the reaction is 1:1, and their coupling is presumably performed by
heme a and nearby residues. To perform this function, different parts of the protein need to cooperate with
each other spontaneously and sequentially. It is the purpose of this article to describe the structural details on
the coupling on the basis of the vibrational spectra of certain specified residues and chromophores involved in
the reaction. Recent developments in time-resolved IR and Raman technology concomitant with protein
manipulation methods have yielded profound insights into such structural changes. In particular, the new IR
techniques that yielded the breakthrough are reviewed and assessed in detail. This article is part of a Special
Issue entitled: Vibrational spectroscopies and bioenergetic systems.

© 2014 Published by Elsevier B.V.
1. Introduction

CcO is the terminal enzyme of the respiratory chain and catalyzes O2

reduction coupled with protons being pumping across the inner mito-
chondrial membrane. CcO consists of four redox-active metal centers,
CuA, heme a, heme a3 and CuB [1]. The electrons given to CuA by cyto-
chrome c are transferred to the heme a3–CuB binuclear center (BNC)
through heme a. In order to reduce an O2 molecule trapped at heme a3
to H2O, a single electron transfer from CuA to the BNC is repeated for
four times, and the BNC changes through several intermediate states
denoted by E, R, A, P, F and O as illustrated in Fig. 1 [2]. The electronic
structure and behavior have been studied extensively with the rR
technique [2], and are essentially the same for bovine and bacterial
CcOs. In contrast, there are distinct differences between the two kinds
of enzymes regarding the H+ pathway. For bacteria, the protons used
to generate H2O molecules (chemical H+) and the protons that are
ared; rR, resonance Raman; TR,
total reflectance; FT, Fourier

ence frequency generator; OPA,
phospholipids vesicles; TR3,
e; Mb, myoglobin
nal spectroscopies and bioener-
pumped are both transferred from the negative side of the membrane
to the O2 reduction site through the K- and D-pathways and there is no
other pathway [1]. For bovine heart CcO, however, H+ is pumped
through another network known as the H-pathway, while chemical H+

passes through the K- and D-pathways [3–6].
The crystal structures of many protonmotive CcOs have been

established [4,7–11]. For example, recent progress in structural studies
of bovine heart CcO has revealed not only the resting state, but also
the structures of models of transient species by using various O2 analog
molecules [9]. It has thus become clear that the binding of a strong
ligand to heme a3 induces a conformation change that significantly
narrows the water channel and effectively blocks the back-leakage of
protons from the hydrogen bond network, as discussed below. Fig. 2
shows one portion of the bovine CcO structure that is related to the
reaction site and water channel.

The similarities and differences in the roles of a few key residues
between bovine and bacterial CcOs have been discussed [2,3,12–17].
The 1:1 coupling in H+/e− transfers appears to be essential for the
functioning of CcO. The chemical and physical factors that govern the
coupling are the key points that remain to be solved, and the analysis
requires temporal as well as static traces of the reaction under physio-
logical conditions. Although IR spectroscopy is known as a powerful
technique for meeting such requirements, there has been a serious
problem with applying it to CcO, because solvent H2O potently absorbs
IR light, so the faint signals from the protein are obscured.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbabio.2014.08.002&domain=pdf
http://dx.doi.org/10.1016/j.bbabio.2014.08.002
mailto:teizo@sci.u-hyogo.ac.jp
http://dx.doi.org/10.1016/j.bbabio.2014.08.002
http://www.sciencedirect.com/science/journal/00052728


Fig. 1. Catalytic cycle of cytochrome c oxidase (CcO). The rectangle represents the BNC, which includes heme a3 and CuB.
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In this article, the considerable efforts performedunder these arduous
conditions (Subsection 2.1) and certain ingenious methods developed
recently to overcome them [2,20–22] will be reviewed first (Subsection
2.2). The new technique [18,19], which made a breakthrough in the
observation of a structural change of a single residue from~1800 residues
of bovine CcO upon CO photo-dissociation, will be explained in detail
(Subsection 2.3) and the results obtained from it thus far will be assessed
(Section 4), accompanied by the rR results (Section 3).
2. Infrared spectroscopic studies

IR spectroscopy is a method for probing structural changes of func-
tional groups at a level of a single chemical bond and can provide clear
information on the protonation of a particular residue. Carboxylic acid
side chains in heme as well as glutamic and aspartic acid may play a
key role in intra-proteinH+ transfers by direct protonation or by rotation
around the C\COOHbond [23,24], and such changes have been detected
in the mid-IR range [25–28]. The amide I band reflects the main-chain
structure of a protein and the empirical relationships between the band
positions and secondary structures, such asα-helix, β-sheet and random
coil, have been established [27]. It was reported that a partially disor-
deredα-helix gives an amide-I band at a higher-than-usualwavenumber
[29,30]. Protonatable side chains such as Tyr also yield information about
the intermediate state [31–33]. Furthermore, the ordered H2Omolecules
that form an extended hydrogen bond network which may play an
essential role in H+ transfer were discussed with IR spectra [34–36].
Although IR spectroscopy has a potential to provide such important
structural information, it has fundamental restrictions to hinder the
observation in natural conditions. Many ingenious methods have been
devised to overcome the restrictions and indeed gave fruitful results. In
this section, the restrictions that make IR measurements difficult are
briefly surveyed, and the efforts to overcome them are reviewed.
2.1. Difficulties in utilizing IR spectroscopy for CcO

First, H2O exhibits potent IR absorption at ~1650 cm−1 (bending
mode) and ~3400 cm−1 (symmetric stretching mode). The former
band hides the various important protein bands mentioned above.
Concentrated protein solution in the form of a thin film (b10 μm) may
be used outside of the two bands. An attenuated total reflection (ATR)
method was applied successfully to stable intermediates of hydrated
CcO [37].

Second, the restriction arises from the principle of the Fourier-
Transform (FT) IR technique itself [38], although its advantage compared
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Fig. 2. A part of the bovine CcO structure, which relates to the oxygen reduction reaction site and water channel. The figure shows BNC (heme a3, CuB), heme a, their ligands (His376,
His378, and His61) and certain critical amino acids in the D- (Glu242), K- (Tyr244) and H-pathways (Val380 and Ser382). Structural data were taken from PDB (2EIJ) and the figure
was prepared with VMD (Visual Molecular Dynamics) program.
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with the traditional dispersion type is well recognized and indeed, com-
mercial FTIR spectrophotometers have been developed that yield excel-
lent signal/noise (S/N) ratios and stability. Since the FT method utilizes
a broad band of radiation and all of the bands interfere with each
other, this becomes a serious problem when absorbance of a certain
band exceeds the upper limit. The averaging procedures used are able
to determine the correct spectrum for a weak band buried in a huge
background absorption that is even 105 times greater. Practically, how-
ever, the absorbance of the sample must be less than ~1 O.D. in the
whole range of the band. This means that the thickness of the cell
must be b10 μm for H2O solutions when the spectral range includes
~1650 cm−1 regions, and consequently the protein concentration
must be very high to successfully obtain any signals from the proteins.
Another defect of FTIR is the inability to accumulate spectra for a longer
time for a particular band in question, because it is based on single-
point detection and therefore the spectra in the whole range must be
accumulated for the same period. This takes a long time and there is no
capacity for improving the S/N ratios for a selected band.

The third point to be noted for IR spectroscopy is that all of the
residues have nearly equal absorption rate and it is exceedingly
difficult to assign an observed spectral change to a particular residue.
An observed spectral change is typically infinitesimal comparedwith
the 105 times greater background absorption. So it is desirable to
detect only the localized changes that have been induced in some
way. In other words, it would be preferable to record a difference
in the spectra between two defined states in which the huge
unchanged background was canceled out. To improve the spectral
quality, it is required that the two defined states are generated in
a cyclic and repetitive manner without perturbing other parts of
the protein. Even with such difference spectra, the IR bands of the
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different residues are severely overlapped, so global fitting of the
bands among the correlated spectra is required for analysis.

2.2. Ingenious method in IR studies

To overcome the difficulties mentioned above, various ingenious
techniques have been applied to CcO and they are reviewed here. The
most commonly used method is the utilization of photochemical reac-
tions. Photolysis of heme a3–CO has been applied to transmission differ-
ence IR spectra [39–60]. A spectroelectrochemical IR cell that inserts an
optically transparent thin layer electrode was used to change redox
states of metal centers [20,21,31,61–66]. ATR is an alternative method
for measuring the reaction [22,32,33,59,67–72], in combination with
mutagenesis in the bacterial CcO case.

In the initial IR studies of CcO, COwas used as amarker ligand that can
control the reaction and dynamics of the proteins [39–42] and also for
comparison among the different electronic states, such as fully-reduced
(FR), mixed-valence (MV) and other intermediate states [50–52,56–60].
In the time-resolved measurements using CO-photolysis, the time range
spread was from pico- [43–45] to millisecond [44,53–55]. It became
clear from those observations that CO photo-dissociated from heme a3

2+

binds to CuB that is located just above heme a3 in ~1 ps, and escapes
into the bulk solution in ~2 μs. The rebinding of extraneous CO to heme
a3
2+ occurs within a few tens of ms. The time scales for these events are

quite different and seem to reflect the dynamical properties of the corre-
sponding parts of the protein.

On the other hand, precise IR difference spectra were obtained by
using photo-steady states composed of stable intermediates. For exam-
ple, the differences in the bands between the presence and absence of
photodissociating pump light for the CO-adducts, which were detected
at 1737 and 1749 cm−1, were assigned to the protonation of key
carboxylic acid residues, Asp51 and Glu242, respectively, of bovine
CcO [56] (bovine sequence numbering is used throughout, unless indi-
cated otherwise). By the use of an electrochemical IR cell, the difference
between the reduced and oxidized forms of whole CcO was investigat-
ed; the peaks at 1746 and 1734 cm−1 were assigned to the oxidized
and reduced forms, respectively [61,62]. In the case of bovine heart
CcO, 1738 cm−1 and 1585 cm−1 bands are assignable to COOH and
COO− of Asp51, respectively [4,56,62]. Since there is no redox-coupled
conformational change in the carboxyl groups except for Asp51 is
evident in the X-ray structures, it is assumed that Asp51 is the exit of
the proton in the H-pathway, at least in bovine heart CcO. The infrared
spectral changes were due to a single electron equivalent, and heme a
was able to be assigned as the metal site controlling the conformation
of Asp51 [4]. The carboxyl modes of heme a and heme a3 were also
assigned and it was clarified that the ring-D propionate of heme a is
the likely H+ acceptor upon the reduction of CcO, and that the ring-D
propionate of heme a3 either undergoes conformational changes or,
less likely, acts as a H+ donor [63,64].

With the ATR method [22], the internally reflected IR beam at the
surface of a prism penetrates into the sample attached to the prism as
an evanescent wave. The penetration depth in the mid-IR range is a
few microns. Thus, the IR spectra of protein films on the prism surface
can be observed without the disturbance by H2O bands. This technique
allows easy access to the sample on the prism and particularly enables a
perfusion of reagents over the protein surface. By using this technique
[64–71], the carboxyl bands observed for the PM and F intermediates
were assigned, and Glu242 was confirmed to be deprotonated in PM
and O, and reprotonated in F, suggesting a role for Glu242 as a H+

shuttle in the D-pathway.
Low temperaturemeasurements helped to clarify the IR spectra. The

IR spectra of CcO at−20 °C exhibited a band at 1745 cm−1 in H2O and
this was assigned to Glu242 at the end of the D-pathway [54]. Mutants
that have inhibited reactions [59,60,68,69] were used for real-time
measurements of bacterial CcO by ATR-FTIR spectroscopy; for instance,
a reaction with O2 was investigated with a D124N mutant (Paracoccus
denitrificans number) having a blocked D-pathway of H+ transfer [68].
These observations confirmed that the protons required for the chemis-
try at the BNC are taken from Glu242 in the P to F step.

The information obtained from these experiments is helpful, but
there are questions that remain due to the non-physiological conditions
of the experiments. It is known that CO binds to CuB instead of heme a3
at low temperatures. This means that the protein structure and/or
potential energy minimamust be altered by temperature, and the reac-
tionmechanism is thereby affected. Mutation of a residue important for
the reaction may influence the H+ transfer pathway. Therefore, the
development of new IR technology is needed to obtain information on
the physiological processes that are operative at room temperature.

2.3. Newly developed IR spectroscopy

2.3.1. The advantages of the new method
A novel nanosecond TRIR spectrometer that has demonstrated

excellent performance in investigating the reactions of CcO in H2O solu-
tionwas developed by Nakashima [19] and Kubo [18]. Since this system
is able to overcomemany of the problems mentioned in Subsection 2.1,
this section details certain fundamental features of the new technique.
Fig. 3 depicts the schematic diagram of the apparatus.

A femtosecond IR laser is employed as the IR light source. Concretely,
a femtosecondmid-IR pulse (N10 μJ/pulse, ~50 fs)with a spectralwidth
of 350 cm−1 was produced by a difference frequency generator (DFG)
with an optical parametric amplifier (OPA), which was pumped by the
output of an integrated Ti:sapphire oscillator/regenerative amplifier
system operating at 1 kHz. The advantage of the brightness (a peak
power of 0.2 GW in the mid-IR region) of the femtosecond pulse is in
order to detect a substantial number of photons after transmission
through H2O. Since the pulse duration of the laser is on the order of a
femtosecond, the interaction of IR light with the sample takes place on
a very short time scale. Thus, the effect of photo-damaging the sample
can be safely ignored during observations conducted using this pulse.

The second benefit of employing a femtosecond laser is its broad
bandwidth. An IR spectrum of 350 cm−1 width can be measured in a
single shot using a detector array of MCT elements coupled to a spectro-
graph. Comparedwith FTIR, inwhich a scanning interferometer is neces-
sary, this reduces the accumulation time drastically.When the detector is
a dual-row array, the signals generated by the probe and reference
pulses are detected with the upper and lower arrays independently
and simultaneously. For each laser shot, the spectrum of a sample is
obtained from the intensity ratios of the two simultaneously observed
spectra. This compensates for the laser pulse fluctuation. The dispersive
configuration of the spectrometer is effective in focusing on only a select-
edwavenumber region; for CcO in H2O, themeasurementswere focused
on the 1750–1500 cm−1 rangewith strong absorbance, but eliminated in
theweak absorption region (e.g., 1800–2100 cm−1). This enables the use
of a high power light without saturation of a detector. Furthermore, the
use of a multi-channel detector enables signal amplification with an
adjustable gain for each channel independently. The selection of the
wavenumber regions and gain adjustment for eachwavenumber cannot
be performed with FTIR, because a single channel detector must be used
and the amplifier gain is common to all of them. This is important in
order to achieve a high sensitivity for the amide I band of CcO in H2O
solution. As a result, the resolution of the system is ~2 cm−1, which
is comparable with ordinary FTIR and adequate for identifying general
protein bands.

The third characteristic of the system is associatedwith the improve-
ment of the spectral quality by a measurement algorithm. The second
laser, an Nd:YAG laser 25-ns with 532-nm output (0.15 mJ) at 1 kHz
was used as a pump pulse for initiating the photodissociation reaction.
It is noted that the pulse duration of this laser determines the whole
time-resolution of the system. The pump beam was modulated using
a phase-locked chopper operating at 0.5 kHz, which allowed nearly
simultaneous (1 ms interval) measurements of the pump-on and



Fig. 3. Schematic diagram of the newly developed TRIR spectrometer. See the text for the detail of each component. Abbreviations: VND, variable neutral density filter; BS, beam splitter.
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pump-off spectra. The present algorithm records the difference between
these pump-on and pump-off spectra. As was mentioned in Subsection
2.1, it is important in the case of IR spectra to obtain the difference
between two defined states. Another characteristic emerged from data
analysis, in which statistical and mathematical methods were applied.
Artificial noise, such as that arising from the power supply (60 Hz, west
Japan) was removed completely.

As a result of these combined efforts, spectra with high S/N ratios
were obtained in a relatively rapid accumulation time. Usually a laser
pulse has a 2% peak-to-peak fluctuation, but the dual array detection
compensated for this fluctuation and raised the S/N ratio 10 times.
The algorithm and analysis of the data ensure that the fluctuation of
the data is absolutely stochastic, and this n times accumulation of the
data surely increases the S/N ratio by n1/2 times. As the laser is operated
at 1 kHz, 10 second accumulation corresponds to 10,000 accumulations
of spectra, which increases the S/N ratio by nearly 100 times. On the
whole, a 2% fluctuation of laser shots was reduced to ~0.002% which
corresponds to an ~10 μO.D. absorbance difference, in only 10 s of
accumulation, even for H2O.

The reduction in the data acquisition time brought about resulted in
certain unique features in the analysis. Since many transient spectra
were obtainable with the same sample, precise band shape analysis
for the temporal profile of the spectra was achieved. The obtained
TRIR difference spectra were analyzed in terms of global fit, where
each bandwas supposed to have a Gaussian shape, and the time depen-
dence of its amplitude was fitted by a single exponential rise or decay.
Prior to setting the Gaussian bands, a singular value decomposition
analysis was applied to extract the major principal components of the
spectral changes. These procedures enable detailed band shape analysis
even in regions in which various bands overlap with each other.
Fig. 4.Experimental accuracy in a spectral region against a strongbackgroundabsorption (OD
of 2). The TRIR difference spectrum of CcO at 50 μs after CO photolysis is depicted. The error
bars represent the standarddeviationoffive independent experiments (eachperformedwith
48 s of data accumulation) on different days using differently prepared batches of CcO.
(Reproduced from Ref. [18].)
2.3.2. The performances of the new system
The TRIR system described above yields nanosecond TR spectra with

a sensitivity of 30 μO.D. on the background of 2 O.D. for the amide I
region of CcO in H2O in only a 1 minute accumulation period. Fig. 4
provides an example that shows the sensitivity of the system around
the amide I band region where the strong H2O band is overlapped.
The standard deviations in the figure come from the measurements of
differently prepared batches of CcO on different days. This result clearly
shows that the total S/N ratio of the system, including the different
samples and conditions, is on almost the same order as that calculated
theoretically (Subsection 2.3.1). Thus the performance of the system
canbe regarded as reaching approximately the limit of themeasurability.

Another significant advantage of this system is that the spectral
quality on the nanosecond time scale is as high as the μs time scale.
This is due to the fact that the data acquisition of the TR spectra with
signal amplification and digitization on a nanosecond time resolution
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is not limited by the response speed of the detector electronics, in
contrast to the step-scan FTIR system. The highest performance in the
nanosecond step-scan FTIR system reported thus far is a sensitivity of
100 μO.D. on a background of 1 O.D. in a data accumulation time period
of 2 h [73]. The data accumulation time and allowable background
absorbance are both critical for a practical application of the system to
H2O solutions of CcO. Although extensive efforts have been made to
obtain TRIR spectra with a short laser pulse [74–77], to the best of the
authors' knowledge, there is no other IR system that is applicable
to the investigation of CcO in H2O with the present sensitivity and
time-resolution at an ambient temperature.

2.3.3. The results obtained from the new TRIR system
Here, the results obtained from application of the new system to CcO

in H2O [18,19] are concretely described. They are associated with the
nano- to micro-second dynamics of FR CcO upon CO photodissociation
at ambient temperature, and it is presumed that the reverse process
would correspond to ligand binding. In practice, spectra from 1500 to
2100 cm−1 were observed in a time range from 50 ns to 100 μs.

Fig. 5 shows the TRIR difference spectra, (pump-on)–(pump-off), of
CcO in H2O buffer. The positive and negative peaks appear from the
photodissociated product and the non-photodissociated molecules,
respectively. Accordingly, the negative peak at 1965 cm−1 arises from
Fe-bound C\O stretching and the positive peak at 2063 cm−1 arises
from Cu-bound C\O stretching (Fig. 5A). The peak intensity of the
negative peak remains unaltered between 50 ns and 50 μs after CO-
τ=1.6 μs

A

B

Fig. 5. TRIR difference spectra of CcO in H2O. Red: measured spectra, blue: Fitted spectra, with e
each spectrum. The protein concentration and optical path-length were 0.72 mM and 100 μm f
deviation (S.D.) of three (B) and five (D) independent experiments performed on different day
(Reproduced from Ref. [18].)
photolysis, indicating no geminate recombination of photodissociated
CO (Fig. 5B). In contrast, the intensity of the positive peak decreases
rapidly, indicating that photodissociated CO binds to CuB in a short
time, but is released into the to solvent with a time constant of
~1.6 μs. This pattern of CO dynamics is consistent with previously
reported results [41–44] and it should be emphasized that CO does
not rebind to heme a3 at all, even though it is more stable and hence
better able to bind to heme a3 in the stationary state.

The same types of difference spectra in the amide I region are illus-
trated in Fig. 5C, where 12 different bands were distinguished and
their temporal behaviors analyzed separately. The most prominent
feature is the peak/trough at 1666 cm−1/1655 cm−1. These two bands
appeared just after the photodissociation (b50 ns) and decay with a
time constant of 2.2 μs and 1.8 μs, respectively. Since the S/N ratios of
the spectra are sufficiently high, analysis of the data allowed a determi-
nation of the precise band positions and shapes, so it became possible to
estimate the intensity of these bands quantitatively. The molar absorp-
tion coefficient of the peak/trough is calculated to be 995 M−1 cm−1,
whereas the molar absorption coefficient of amide-I is reported to
range from 200 to 1000 M−1 cm−1, depending on the structures and
microenvironments of the peptide C_O. Therefore, 1–5 C_O groups
are involved in the transition from 1666 to 1655 cm−1.

It has been reported that a partially disordered α-helix with a bulge
structure provides an amide-I band at a higher-than-usual frequency
(N1660 cm−1) [29,30]. This is consistent with the general understand-
ing that engagement of the peptide C_O with a hydrogen bond causes
τ=2.6 μs

τ=1.8 μs

C

D

ach Gaussian component shown as a dotted curve. The fitting residuals are also shown for
or (A) and 0.68mM and 13 μm for (C), respectively. The error bars represent the standard
s using differently prepared batches of CcO.



Fig. 6. TRIR difference spectra of CcO in H2O. in the COOH CO stretching region. Red: measured
spectra, blue: Fitted spectra,with eachGaussian component shownas dotted curve. Theprotein
concentration and optical path-length were 0.78 mM and 50 μm. The inset shows a time trace
of ΔA at 1750 cm−1. Error bars represent the S.D. of three independent experiments.
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a lower frequency shift of amide-I. Thus, the 1666(−)/1655(+) cm−1

transition strongly suggests that the bulge structure was eliminated
and a new hydrogen-bonded C_Owas generated. The X-ray structures
of bovine CcO showed that the structural change related to the bulge
conformation upon CO binding is present only in the segment from
Val380 to Ser382 (separated by three C_O groups) in helix X [4]. This
strongly supports the assignment of the 1666(−)/1655(+) cm−1

band transition to the structural change of Val380 from the bulge to
the helix.

Thus, the bulge transfer from Val380 to Ser382 was found to be
concomitant with transient CO-binding to CuB, and the existence of an
‘information-relay system’ between the CuB site and the gate of the
water channel at Ser382 was suggested. This would ensure the H2O
(H+ source) loading into the hydrogen bond network and timely
closing of thewater channel. The detailedmechanismswill be discussed
in Section 4 in combination with the results obtained from the rR
studies.

Additional important information was obtained from carboxyl C_O
stretching band, as shown in Fig. 6. The peak/trough bands were
observed at 1749/1738 cm−1. Their decay time constants are approxi-
mately the same, being 1.1 and 0.7 μs, respectively. To reconstruct the
band shapes of all of the observed spectra, at least four bands were
necessary, that is, in addition to 1749/1738 cm−1, another two bands
were present at close frequencies, 1750/1745 cm−1. The rise time was
almost the same (~16 μs) for two pairs. Although there has been a
great deal of debate about the number of bands existing in this region
[56], the finding confirmed that at least four bands exist in this region.
It became clear from the assignment of these bands of bovine heart
CcO that the behavior of Glu242 is synchronized with that of helix X,
and that the behavior of Asp51 (the exit of the H+ pump) is slower.
Regardless of the fact that this information does not give us further
insight into the reaction mechanism, such precise experiments and
analysis are potentially able to clarify the detailed behaviors of the res-
idues, even in the region where the bands are complexly overlapped.

3. Resonance Raman spectroscopic studies

In rR spectroscopic studies [78], the excitation wavelength is tuned
to the absorption maxima of chromophores in order to potently
enhance the Raman intensity. By tuning the excitation wavelength,
the vibrational spectra of a proper chromophore can be enhanced,
which enables a consideration of even a single bondof the chromophore
in a huge protein molecule. In addition, the strong enhancement of
Raman intensity allows the study of very dilute solutions of the enzyme
and thus examination of short-lived reaction intermediates in small
amount.

In the CcO case, the resonance with the Soret- and Q-bands and the
CT band [79,80] provides information on the structure around the
hemes and the binding state of O2 toward heme. Furthermore, the elec-
tronic structures of the intermediates during the O2 reduction reaction
have been studied extensively and some of the characteristics of each
of the intermediate states clarified [2,81–91]. Therefore, the coupling
mechanisms between the O2 reduction and the H+ pumping have
become a main subject of interest. The peripheral groups of hemes
make hydrogen bonds with amino acid residues that are related to the
H+ pumping. For example, the formyl group of heme a interacts with
Arg38, and the farnesylethyl group of heme a interacts with Ser382,
with both residues located in the H-pathway [1]. Therefore, it became
evident that it was necessary to observe the interaction between these
heme peripheral groups and the interacting residues during the O2

reduction.
Since aromatic residues display absorption in aUV region, UV excita-

tion of Raman scattering is expected to be useful to explore protein
structural changes involving aromatic residues such as Tyr244 [92]
which is covalently bound to His240 at the ortho position of the
phenoxy ring, and is believed to function in acid/base catalysis for
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dioxygen reduction [93]. Although these aromatic residues can also be
observed by IR spectroscopy, the site-specific enhancement of Raman
spectroscopy can make the analysis relatively simple, even for such a
huge protein.

On the other hand, it is quite important to examinewhether the CcO
in mitochondria reacts in a way similar to that of the isolated one. To
solve this problem, the Raman measurements on intact mitochondria
or the CcO contained in phospholipid vesicles (COV) [94–96] were
recently undertaken. It is essential in the case of CcO to examine the
effects of any electronic field and/or H+-concentration gradient across
the membrane on the protein structure, because the reactivity of CcO is
regulated by such factors. For this purpose, rR spectroscopy provides
much detailed information on the chromophore. In this section, recent
results from rR spectroscopy are briefly reviewed, and then the initial
reaction mechanisms of CcO that were elucidated from the combined
results of the time-resolved IR and Raman experiments will be
summarized.
3.1. Time-resolved resonance Raman (TR3) studies

There are two types of methods in TR3 spectroscopy. One is to use
two continuous wave (CW) lasers separated by a certain distance for a
flowing sample, and the other is to use two pulsed lasers that are fired
with a certain time delay.

In the former case, CcO sample must be passed through a cell at a
certain speed, and the spectrum is measured by the laser on the
down-stream side after the reaction is initiated by the other laser on
the up-stream side. The distance between the two lasers and the flow
speed determine the time delay after the start of the reaction. The rR
scattering is so weak that an extended period of time for accumulation
is required in order to obtain high quality rR spectra of the intermedi-
ates. However, in the mixed-flow experiments, the time available for
accumulation is limited by the amount of the enzyme in the reservoir
and is generally insufficient. In the case of CcO, an ingenious method
was developed by Ogura [82–86]. This method was designed to special-
ly enable the accumulation of the spectra of the reaction intermediates
of O2 over an extended period of timewith a limited amount of enzyme.
By using this apparatus, each intermediate was specified by the
oxygen-isotope sensitive Raman bands as shown in Fig. 1., with the
oxy-species denoted as A (ν(Fe\O2

−) = 571 cm−1), peroxy-species
denoted as P (ν(Fe_O2−) = 804 cm−1), ferryl-species denoted as
F (ν(Fe_O2−) = 785 cm−1) and hydroxyl-species denoted as
O (ν(Fe\OH) = 450 cm−1). When the O2 reduction is subjected to
the MV state (a3+a32+), the reaction stops at the P intermediate [97].
Such techniques have been proven to be indispensable for the rR spectra
of short-lived reaction intermediates with a small population.

The other type of time-resolved measurement is a pump/probe
method using two pulsed lasers. This method can be applied to cyclic
reactions of a sample containing a spinning cell and is initiated by pho-
tolysis due to a pumped pulse. The pulse energy must be low enough
not to destroy the sample, and the repetition of the laser determines
the upper limit of the time delay. Despite these limitations, this tech-
nique has the major advantage of allowing measurements with a
quite short time regime (b10 μs) which cannot be achieved by the
flowmethod. The CO photolysis processing of CcO at ambient tempera-
ture was pursued with the TR3 technique using two ns pulse lasers [98,
99]. It was reported that the Fe\His stretching (νFe–His) mode is located
at 221 cm−1 between 10 and 100 ns after photodissociation of CO
and then exhibits a downshift to 215 cm−1, that which is the frequency
of the equilibrium of the fully-reduced form, with a time constant of
0.6 μs. In the case of Mb, this relaxation process takes place on a
100 ps time scale [101], which indicates that tertiary structural changes
of a monomeric protein occurred in a 100 ps time regime. This strongly
indicates that the Fe\His bond relaxation in CcO is not regulated only
by the movement of the His-containing helix, but also by cooperative
movements of other parts of the protein, presumably those of the H+

pumping pathway.

3.2. Heme peripheral groups and their interactions with the surrounding
amino acid residues

The peripheral groups of both hemes interact with surrounding
amino acid residues that are related to H+ pumping. Hence, effort has
been given to establish the structural markers for the peripheral groups
[99,102,103]. Monitoring the marker bands for the propionate groups,
which undergo conformational change during the catalytic cycle of
CcO, is especially important.

The TR3 results from CO-photodissociation of CcO [99] showed that
the vinyl stretching band (1629 cm−1) of the heme a3 shifts by 2 cm−1

and the vinyl bending mode of heme a appears at 435 cm−1 instanta-
neously upon photolysis. Both of the vinyl groups of heme a3 and
heme a are located near the bulge structure of helix X. The time profile
provides strong evidence for the fact that the conformational change of
heme a is tightly coupled with the conformational change in the vinyl
group of heme a3. Thus, the frequency shift of the heme a vinyl band
is deduced to occur through the structural change of heme a3 upon
the release of CO via the interaction between helix X and the vinyl
group of heme a. These results suggest that both hemes cooperatively
control O2 binding by forming an intermediate conformation for
effective H+ pumping.

Not only the local interactions, but also the effects from the sur-
rounding environment such as those that occur on the membrane, are
considered to influence H+ pump activity. Therefore, the improved rR
method has been applied to intact mitochondria and the O2 activation
reaction by CcO has been successfully detected [94,95]. The coordina-
tion geometries of the three intermediates (A, P, and F) are essentially
the same as the respective species observed for solubilized CcO. Howev-
er, the lifetime of the oxygenated intermediate in mitochondria was
significantly longer than the lifetime of this intermediate determined
for solubilized CcO. This phenomenon is due either to the pH effect of
the mitochondrial matrix, the effect of ΔpH and/or ΔΨ across the
membrane, or the effect of interactions with other membrane compo-
nents and/or phospholipids. These findings indicate that the surround-
ing environment may influence the reaction kinetics, but not the local
structures.

4. Combined structural results of Raman and IR spectroscopy

The phenomena were observed in the CO photolysis reaction, while
what actually occurs physiologically is the reverse process, that is, O2

binding to heme a3 followed by H+ and electron transfer. Although
these two processes are not exactly the reverse processes, investigation
of the CO photolysis process is expected to give valuable information on
the protein response to ligand binding to and dissociation from the BNC
[38–55]. The results obtained from the TRIR and TR3 measurements are
summarized first and then are discussed based on the results from the
initial stage of O2 reduction by CcO.

The TRIR experiments (Fig. 5A) showed that CO moves from Fe
(heme a3) to CuB just after the photodissociation [18,41–45]. The TR3

experiments indicated that the heme a3\His stretching frequency
undergoes no change for the initial 100 ns [98,100]. At this stage, the
bulge structure of helix X at Ser382 was once more eliminated and a
normal α-helix was formed (Fig. 5C, 50 ns). From the MD simulations,
when a ligand binds to CuB and helix X adopts the normal α-helix, the
gate of the water channel is in the “open” state [18]. Therefore, in the
reverse process, a ligand binding to heme a3 changes the helix X
structure from the “open” state (normal α-helix) to the “closed” state
(the bulge structure at Ser382).

While CO was released into bulk solution with a time constant of
1.6 μs, almost simultaneously (2.6 μs) another bulge structure at
Val380 was generated in helix X (Fig. 5C, 1 μs, 2 μs). This indicated
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Fig. 7. Proposed mechanism of initial stage of O2 binding. See the text for details.
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that the escape of CO into the bulk solution and the conversion of the
helix structure from the α-helix to the bulge were synchronized. Here,
heme a3\His stretching gradually shifts from 221 to 215 cm−1 with a
time constant of 0.6 μs [98,100]. It is noted that the CuB-bound CO did
not geminately rebind to heme a3, despite the fact that heme a3–CO is
muchmore stable than CuB–CO in a stationary state at ambient temper-
atures. This is also against common sense for typical heme proteins,
in which several percent of CO geminately rebind to heme after CO-
photolysis. Meanwhile, the Fe\His stretching frequency is known to
correlate with the O2 affinity of heme [104,105]. Considering the results
from deoxyHb, the low frequency shift from 221 to 215 cm−1 corre-
sponds to a 100-fold lowering of the O2 affinity. These results suggest
that in the reverse process in which a ligand that comes into the BNC
site, it first binds to CuB temporarily and then to heme a3 according to
its affinity. This binding to CuB is also thought to cause the structural
change in helix X.

On the other hand, the carboxyl group of Glu242 that locates
between heme a and heme a3 called the H+ shuttle, changed in a way
that almost synchronized with the structural changes mentioned
above, and the carboxyl group of Asp51 located at the exit of the H-
pathway responded later (15 μs). The time-dependent difference spec-
tral changes in the COOH region are shown in Fig. 6, where the weaker
1750 cm−1 band beside the stronger 1749 cm−1 band is evident. The
inset shows the time constant of the intensity change to be 15.7 μs.
The gating of the H+ pathway, presumably at Asp51, which must be
done in such a way as to maintain H+/e− = 1 in terms of individual
electron transfer, is carried out by heme a during the O2 reduction
reactions for four times [4]. Since the processes take place after the O2

binding to heme a3, they are different from the present subject of gating,
but further studies on the short-lived intermediates of the reaction are
required to elucidate the roles of these residues during the reaction.

From the present TRIR and TR3 observations, the scheme illustrated
in Fig. 7 is postulated for the initial process of O2 binding to heme a3. In
the first place, O2 binds to CuB, but it does not bind to heme a3, because
the O2 affinity is low at this step (Fig. 7A). At this stage, the bulge
structure of helix X is eliminated, where the gate for a water channel
is the “open” state, and H2O is able to enter and exit via this gate.
Here, we assume that hydrogen bonding to Ser382 functions as a sensor
of the water channel. When Ser382 forms a hydrogen bond with the
water channel and changes protein structure, it induces a change in
the O2 affinity of heme a3 through the helix X and Fe\His bond
(Fig. 7B). When a sufficient amount of H2O (the H+ source) is supplied
to the water channel, the O2 affinity becomes the highest and O2 moves
from CuB to heme a3 (Fig. 7C). Synchronized with this O2 binding, the
gate of the water channel becomes “closed” and then the O2 reduction
reaction proceeds while the gate retains the closed bulge structure
(Fig. 7D). Compared with the O2 binding kinetics (N10 μs) and the
further reactions, the closure of the gate observed here is substantially
faster (~1 μs). Thus this process ensures the timely closure of the gate
before the reaction starts.

This model shows why the gate is present on the side of the water
channel in helix X. From X-ray structural analysis [9], the gate is closed
while any kind of ligand is bound to heme a3. This means that the water
channel is closed during the H+ pumping processes, so an exchange of
H2O (or H3O+) between the inside hydrogen bond network and the
bulk water on the negative side is possible only when heme a3 is in
the ligand-free FR state. Four H+ equivalents must enter the channel
in the FR state before O2 binds to heme a3. When O2 binds to heme a3,
the gate is closed to prevent backward flow of H2O (or H3O+), until
the reaction at heme a3 is complete.

The model described above may seem to stand in contrast to the
well-known models in which the pumped protons are taken up and
released one-at-a-time in four separate steps of the reaction cycle [6].
Practically, however, there is no contradiction because the gating occurs
before the four separate steps of the reaction. In other words, the
present model explains what is happening at the beginning of the
reaction, but does not describe intermediate states during the proton
pumping reaction process. As has often been observed in the proton
pumping protein [106], the migration of water or proton into the
entrance of the gate takes place by a diffusionary process, and it is also

image of Fig.�7
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the case for CcO [4]. On the other hand since the take-up and release of
H+ are active translocation processes, it is necessary to maintain this
diffusion to prevent the back leakage of the H+ source during the reac-
tion. Thus, gate closure at the initial stage of the reaction and the H+

take-up and release at each step during the reaction are independent
phenomena in the present model. This is distinct from Kubo's model
that was reported recently [18], in which both steps are combined
in a single process.

The reality of hydrogen bond networks on the upper side of the gate
during the reaction is still unknown, since the hydrogen atom is hard to
detect by X-ray structural analysis. In the present model, the source of
the four H+ equivalents must pass the gate before the gate closure,
but we were unable to determine whether the transferred substance
is H2O or H+ (H3O+). The X-ray structure indicates insufficient room
for four free H2O molecules in the upper side of the gate. Kubo et al.
[18] proposed that the substance was H+ without providing sound
structural evidence. If four H+ equivalents were simultaneously in
such a narrow area, the electric repulsion would be excessively large
and it is therefore unlikely. We sought evidence for neutralization
such as protonation of certain residues, in order to propose a means
for the entering of four protons during this process, but it was unsuc-
cessful. It was suggested that the internal watermay be replaced during
the reaction [35].When thewatermolecule is separated intoH+ andOH
− in the pumping reaction, the generated OH− ions need not be stored
there andmay escape from the cavity via dynamicmovement of the pro-
tein side chains.

Although neither the present model nor Kubo's model [18] presents
sufficient evidence, H2O is themore probable substrate at this moment.
As the role of the hydrogen bond network is crucially important for
the elucidation of the proton pumping mechanisms, it is necessary to
perform the experiments that will allow resolution of such questions.
Since H2Omolecules inside the proteinmay be observed independently
of bulk water [35,36] and protonation/deprotonation of a specified
residue is easily distinguished, TRIR measurements during oxygen
reduction reactions are required.

Thus far, the chemical functions of the copper site of CcO have been
left to be clarified in the future except for the redox property of CuB as
a single-electron accepting site. From the new experimental data
described here, it became clear that CuB not only is a simple e− donor
to the Fe-bound O2, but also plays a key role in the timely control of
the gate of the water channel and also in altering the O2 affinity at the
heme a3 site.

These results suggest that the hydrogen bonding of Ser382 to the
water channel triggers an ‘information-relay system’ including CuB,
ligand, heme a3 and two α-helix turns extending to Ser382. This facili-
tates the effective collection of H2O molecules and timely closure of
the water channel by the formation of the Ser382 bulge formation. It
should be emphasized that the unique roles of CuB and the bulge
structure of helix X in the H2O molecule collection and the timely
control of the gate of the water channel for the effective energy trans-
duction would have been impossible to discover without using the
newly developed TRIR system,whichwas designed for the investigation
of proteins in H2O under physiological conditions.

5. Future aspects

Recent developments in time-resolved vibrational spectroscopy
as well as the other cutting-edge techniques explained here are
expected to gain a much more comprehensive picture of the cou-
pling mechanisms underlying CcO function in the future. In particu-
lar, TRIR measurements of the reaction in aqueous solution in real-
time [19] will provide critical information on the role of the residues
and proteins in the H+ pumping process. Furthermore, additional
development in protein manipulationmethods, such as in a flow sys-
tem like the TR3 system, is also going to be essential for examining
the short-lived reaction intermediates.
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