
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
J. Math. Anal. Appl. 336 (2007) 1287–1304

www.elsevier.com/locate/jmaa

Positive sesquilinear form measures and generalized
eigenvalue expansions

Tuomas Hytönen a, Juha-Pekka Pellonpää b,∗, Kari Ylinen c

a Department of Mathematics and Statistics, University of Helsinki, Gustaf Hällströmin katu 2b,
FI-00014 Helsinki, Finland

b Department of Physics, University of Turku, FI-20014 Turku, Finland
c Department of Mathematics, University of Turku, FI-20014 Turku, Finland

Received 15 January 2007

Available online 24 March 2007

Submitted by Richard M. Aron

Abstract

Positive operator measures (with values in the space of bounded operators on a Hilbert space) and their
generalizations, mainly positive sesquilinear form measures, are considered with the aim of providing a
framework for their generalized eigenvalue type expansions. Though there are formal similarities with ear-
lier approaches to special cases of the problem, the paper differs e.g. from standard rigged Hilbert space
constructions and avoids the introduction of nuclear spaces. The techniques are predominantly measure
theoretic and hence the Hilbert spaces involved are separable. The results range from a Naimark type di-
lation result to direct integral representations and a fairly concrete generalized eigenvalue expansion for
unbounded normal operators.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Sesquilinear form; Normal operator; Generalized eigenvector; Naimark dilation; Direct integral;
(Semi)spectral measure

* Corresponding author. Fax: +358 2 333 5070.
E-mail addresses: tuomas.hytonen@helsinki.fi (T. Hytönen), juhpello@utu.fi (J.-P. Pellonpää), ylinen@utu.fi

(K. Ylinen).
0022-247X/$ – see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2007.03.051

https://core.ac.uk/display/81188476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1288 T. Hytönen et al. / J. Math. Anal. Appl. 336 (2007) 1287–1304
1. Introduction

There is a long history of various approaches to the mathematical clarification and justifica-
tion of the well-known and heuristically appealing formulation of Quantum Mechanics due to
P.A.M. Dirac [8]. Rather than try to recount this history, we refer to the recent article [13] for
references to, and a unification of, several classical approaches based on the notion of rigged
Hilbert spaces, and to [11] for a completely different framework of trajectory spaces. In Dirac’s
work, the notions of an “eigenvalue” λ and a corresponding “eigenvector” |λ〉 of an operator rep-
resenting a physical observable are in a key role. In general these notions cannot be understood
in their conventional mathematical sense, and it is the task of the ancillary mathematical theories
to create a rigorous framework for their interpretation.

The present article contributes to this line of study by providing a relatively easily accessi-
ble setting for the analysis—spectral in a wide sense of the word—of a class of mathematical
objects generalizing the positive operator measures which have been successfully used to repre-
sent physical observables in situations where the more traditional self-adjoint operators and their
spectral measures have proved inadequate [2,3,6,14,15,18]. These generalizations, the so-called
sesquilinear form measures or generalized operator measures were introduced in [23] in order to
describe measurement situations where only a restricted class of state preparations are available.
They also arise naturally in the quantization of classical phase variables [23].

Despite the physical background, our study is mathematically motivated and addresses e.g.
some technical measurability issues interesting in their own right. The organization of the pa-
per is as follows. In Section 2 we introduce sesquilinear form measures in an abstract (“test”)
vector space and give an illustrative concrete example. Section 3 contains a general representa-
tion theorem for positive sesquilinear form measures. Some further analysis leads to a pointwise
representation theorem in Section 4, and we relate this result to so-called direct integral represen-
tations in Section 5. In Section 6 we show that the operations in the previous sections naturally
extend from the original test space to a larger space with a Hilbert structure. Positive operator
measures in a Hilbert space are then considered in Section 7. This section deals with a special
case of the abstract results, but we also give an alternative approach. In Section 8 we further
specialize our results to spectral measures of normal operators, showing that the functionals in
our general direct integral expansion indeed admit the interpretation as generalized eigenvectors
in this case. The concluding Section 9 addresses the question of the relationship between the
spectrum of an operator and the set of complex numbers eligible as generalized eigenvalues in
some natural sense. An example is provided showing that even in the case of bounded self-adjoint
operators complications arise thus indicating the need for further analysis.

When compared with much of the earlier work in this field, our approach appears as predom-
inantly measure theoretic and, in particular, avoids any consideration of nuclear spaces. Inherent
in the measure theoretic setting and especially in the use of direct integrals is the separability
of the Hilbert spaces involved. As a byproduct of the constructions of Section 3 we obtain a
generalization of the (separable Hilbert space version of ) the Naimark dilation theorem.

2. Preliminaries on sesquilinear form measures

Let V and W be vector spaces. The scalar field of all vector spaces will be C. A mapping
Φ : V ×V → W is said to be sesquilinear, if it is antilinear (i.e., conjugate linear) in the first and
linear in the second variable. If, in addition, W = C, we call Φ a sesquilinear form. It is positive,
if V (φ,φ) � 0 for all φ ∈ V . We let S(V ) (respectively PS(V )) denote the set of sesquilinear
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forms (respectively positive sesquilinear forms) on V × V . It is sometimes useful to observe
that S(V ) may be naturally identified with the space of all linear maps from V to V × where
V × is the space of antilinear functionals on V . Any sesquilinear map Φ on V × V satisfies
the polarization identity Φ(φ,ψ) = 1

4

∑3
k=0 ikΦ(φ + ikψ,φ + ikψ). A positive sesquilinear

form Φ : V × V → C also satisfies the equation Φ(φ,ψ) = Φ(ψ,φ) and the Cauchy–Schwarz
inequality |Φ(φ,ψ)|2 � Φ(φ,φ)Φ(ψ,ψ) for all φ,ψ ∈ V .

Let (Ω,Σ) be a measurable space, i.e., Σ is a σ -algebra of subsets of Ω .

Definition 2.1. Let E : Σ → S(V ) be a mapping and denote E(X) = EX for X ∈ Σ . We call E a
sesquilinear form measure if the mapping X �→ EX(φ,ψ) is σ -additive, i.e. a complex measure,
for all φ,ψ ∈ V . If, in addition, E(Σ) ⊂ PS(V ), E is called a positive sesquilinear form measure
(or a PSF measure or just a PSFM for short). A PSF measure E : Σ → PS(V ) is called strict, if
EΩ(φ,φ) > 0 for all φ ∈ V \ {0}.

In view of the polarization identity, in the above definition it suffices to require that X �→
EX(φ,φ) be σ -additive for all φ ∈ V . For any positive sesquilinear form measure E : Σ →
PS(V ), the set N = {φ ∈ V | EΩ(φ,φ) = 0} is, by virtue of the Cauchy–Schwarz inequality,
a linear subspace of V , and the mapping Ẽ : Σ → PS(V/N) which is (unambiguously) defined
by the formula ẼX(φ + N,ψ + N) = EX(φ,ψ), is a strict PSFM. It is sometimes convenient to
assume that a PSFM is strict. In view of the above observation, in many situations this assumption
does not detract essentially from generality.

Positive sesquilinear form measures may be viewed as a generalization of some notions which
we now recall. The inner product of any Hilbert space in this paper is linear in the second variable
and usually denoted by 〈·|·〉. We let L(H) denote the space of bounded linear operators on H ,
and L+(H) = {T ∈ L(H) | T � 0}. We shall later also encounter (the space of ) the trace class
(operators) on H , denoted by L1(H), and its positive cone L1+(H). The Hilbert space of the
Hilbert–Schmidt operators on H is denoted by L2(H). For a possibly unbounded operator A in
H , we denote by D(A) ⊂ H its domain of definition, and by R(A) = {Aφ | φ ∈ D(A)} its range.

Definition 2.2. Let H be a Hilbert space and E0 : Σ → L+(H) a mapping. We call E0 a positive
operator (valued) measure or a POM for short, if it weakly σ -additive, i.e. the mapping X �→
〈φ|E0(X)ψ〉 is σ -additive for all φ,ψ ∈ H . If here E0(X)2 = E0(X) = E0(X)∗ for all X ∈ Σ ,
E0 is called a projection (valued) measure. A POM E0 : Σ → L(H) is called normalized if
E0(Ω) = I , the identity operator on H . A normalized POM is also called a semispectral measure
and a normalized projection measure a spectral measure.

Every POM E0 can be identified with a PSF measure E by setting EX(φ,ψ) := 〈φ|E0(X)ψ〉.
Next we exhibit a concrete example of sesquilinear form measures. We show that, for any

weighted shift operator, there exists a unique (shift covariant [4,23]) sesquilinear form measure
on the circle which is determined by a unique complex matrix. From the structure of the matrix
one can easily see when the corresponding sesquilinear form measure is positive and defines a
POM. This is the case exactly when the shift operator is contractive. As a byproduct we get the
well-known result that the powers of a contractive shift operator are the moment operators of a
unique semispectral measure [21, p. 235].

Example 2.3. Consider a Hilbert space H with an orthonormal basis (en)n∈Z and a weighted
shift operator S : en �→ cn−1en−1 where (cn)n∈Z ⊂ C. Let V := lin(en)n∈Z and define a matrix
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(cmn)m,n∈Z by cmm := 1, cmn := ∏n−1
l=m cl and cnm := cmn for all m < n. For any sesquilinear

form Φ :V × V → C we use the formal notation
∑

m,n∈Z Φ(em, en)|em〉〈en| which we under-
stand as

∑
m,n∈Z Φ(em, en)〈ϕ|em〉〈en|ψ〉 = Φ(ϕ,ψ) for all ϕ,ψ ∈ V .

Let B(T) be the Borel σ -algebra of the unit circle T, and let ν :B(T) → [0,1] be the normal-
ized Haar measure of T. Define a sesquilinear form measure ES :B(T) → S(V ) by

ES(X) :=
∑

m,n∈Z

cmn

∫
X

λm−n dν(λ)|em〉〈en|, X ∈ B(T),

and, for all k ∈ Z, the kth moment form by

E
(k)
S :=

∑
m,n∈Z

cmn

∫
T

λkλm−n dν(λ)|em〉〈en| ∈ S(V ).

Since
∫

T
λkλm−n dν(λ) = 1 when k + m − n = 0 and 0 otherwise, it is easy to see that, for all

ϕ,ψ ∈ V ,

E
(k)
S (ϕ,ψ) =

⎧⎨
⎩

〈ϕ|Skψ〉, k > 0,

〈ϕ|(S∗)−kψ〉, k < 0,

〈ϕ|ψ〉, k = 0,

so that the moment forms of ES can be (uniquely) extended to the powers of S and S∗. By
analyzing the structure of ES one can derive the following result:

Proposition 2.4. ES is positive if and only if S is a contraction, i.e., |cn| � 1 for all n ∈ Z. In this
case ES has a (unique) extension to the semispectral measure B(T) → L(H) which is a spectral
measure if and only if |cn| = 1 for all n ∈ Z (if and only if S is unitary).

Proof. It can be shown (see e.g. [4] or [23]) that ES is positive (and, moreover, has a unique
extension to a semispectral measure) if and only if the Hermitian matrix (cmn) is positive semi-
definite. Since (cmn) is positive semidefinite if and only if the principal minors of (cmn) are
nonnegative, it is easy to show that (cmn) is positive semidefinite if and only if S is a con-
traction. Indeed, let s ∈ {2,3,4, . . .} and {k1, k2, . . . , ks} ⊂ Z where k1 < k2 < · · · < ks . Since
cmn = ∏n−1

l=m cl , m < n, by induction (see [19, Theorem 4.1]), the principal minor can be com-
puted as∣∣∣∣∣∣∣∣

1 ck1,k2 . . . ck1,ks

ck1,k2 1 . . . ck2,ks

...
...

. . .
...

ck1,ks ck2,ks . . . 1

∣∣∣∣∣∣∣∣
=

s−1∏
l=1

[
1 − |ckl ,kl+1 |2

]
.

Hence, (cmn) is positive semidefinite if and only if |cmn| = ∏n−1
l=m |cl | � 1 for all m < n, and the

claim follows. If ES is positive, then its extension is a spectral measure if and only if |cn| = 1 for
all n ∈ Z [4, Proposition 3]. �
3. Representing positive sesquilinear form measures

For the rest of the paper, unless otherwise specified, we assume that (en)
∞
n=0 is a (count-

ably infinite) Hamel basis of V , indexed by N = {0,1,2, . . .}, and E : Σ → PS(V ) is a positive
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sesquilinear form measure. We fix a sequence of positive numbers αn with
∑∞

n=0 αn < ∞ and
write

μ(X) =
∞∑

n=0

αnEX(en, en)
[
1 + EΩ(en, en)

]−1 (3.1)

for all X ∈ Σ . Then μ is a finite positive measure, and an application of the Cauchy–Schwarz
inequality shows that for X ∈ Σ , μ(X) = 0 if and only if EX(φ,ψ) = 0 whenever φ,ψ ∈ V .
The Radon–Nikodým theorem thus yields for any φ,ψ ∈ V a unique element C(φ,ψ) ∈ L1(μ)

such that EX(φ,ψ) = ∫
X

C(φ,ψ)dμ for all X ∈ Σ . Clearly the mapping (φ,ψ) �→ C(φ,ψ) on
V × V is sesquilinear, and C(φ,φ) � 0 in the L1-sense for all φ ∈ V .

We let F denote the vector space of Σ -simple V -valued functions on Ω . If A ⊂ Ω , χA is the
characteristic function of A, and for any φ ∈ V , we denote by φχA the function x �→ χA(x)φ.

Lemma 3.2. There is a unique sesquilinear form θ : F × F → C satisfying θ(φχA,ψχB) =∫
A∩B

C(φ,ψ)dμ for all A,B ∈ Σ , φ,ψ ∈ V . For any f = ∑m
i=1 φiχAi

and g = ∑n
j=1 ψjχAj

,
there holds

θ(f, g) =
m∑

i=1

n∑
j=1

∫
Ai∩Bj

C(φi,ψj ) dμ, (3.3)

and θ is a positive sesquilinear form.

Proof. For f,g ∈ F , choose representations f = ∑m
i=1 φiχAi

and g = ∑n
j=1 ψjχBj

with e.g.
all the φi distinct and the Ai disjoint, and define θ(f, g) by the formula (3.3). Then θ is well
defined, and obvious refinement arguments yield the remaining statements. �

We denote N = {f ∈F | θ(f,f ) = 0}. Then N is, by the Cauchy–Schwarz inequality, a vec-
tor subspace of F , and we get a well-defined inner product of F/N via 〈[f ]|[g]〉 = θ(f, g)

where e.g. [f ] = f + N . We let K denote the Hilbert space completion of this inner product
space and use the notation 〈·|·〉 for the inner product of K . We refer to K as the associated
Hilbert space of the PSF measure E (relative to the basis (en) and the sequence (αk)).

Lemma 3.4. For each X ∈ Σ there is a unique bounded linear operator F(X) : K → K sat-
isfying 〈[φχA]|F(X)[ψχB ]〉 = ∫

X∩A∩B
C(φ,ψ)dμ for all A,B ∈ Σ , φ,ψ ∈ V . Moreover,

F(X)2 = F(X)∗ = F(X) and F(X)[f ] = [χXf ] for all X ∈ Σ , f ∈ F .

Proof. If X ∈ Σ , f ∈F and g ∈ [f ], then θ(χXf − χXg,χXf − χXg) � θ(f − g,f − g) = 0,

and so the definition F0(X)[f ] = [χXf ] is unambiguous. It is also clear that〈
F0(X)[f ]∣∣F0(X)[f ]〉 � 〈[f ]∣∣[f ]〉.

Thus F0(X) extends uniquely to a bounded linear map F(X) : K → K . The remaining state-
ments are immediate. �
Lemma 3.5. The map X �→ F(X) on Σ is a spectral measure.

Proof. Clearly F(Ω) = I , and since ‖F(X)‖ � 1, for weak σ -additivity it is sufficient to note
that the map X �→ 〈[φχA]|F(X)[ψχB ]〉 = ∫

X∩A∩B
C(φ,ψ)dμ on Σ is σ -additive for all A,B ∈

Σ , φ,ψ ∈ V . �
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We now define J : V → K by the formula Jφ = [φχΩ ]. Then J is a linear map. We collect
and complement the above arguments in the following theorem.

Theorem 3.6. Let E : Σ → PS(V ) be a PSFM.

(a) There is a Hilbert space K with a spectral measure F : Σ → L(K) and a linear map J :
V → K such that 〈Jφ|F(X)Jψ〉 = EX(φ,ψ) for all X ∈ Σ and φ,ψ ∈ V , and moreover,
the linear span of the set {F(X)Jφ | X ∈ Σ, φ ∈ V } is dense in K .

(b) This representation of E is essentially unique in the sense that if the triple (K1,F1, J1) gives
another representation with these properties, there is a unique unitary map U : K → K1
such that UF(X)Jφ = F1(X)J1φ for all X ∈ Σ , φ ∈ V ; in particular, UJφ = J1φ for all
φ ∈ V . Moreover, UF(X) = F1(X)U for all X ∈ Σ .

(c) In the situation of (a), J is injective if and only if E is strict.

Proof. (a) In the above construction,〈
Jφ

∣∣F(X)Jψ
〉 = 〈[φχΩ ]∣∣F(X)[φχΩ ]〉 = ∫

X

C(φ,ψ)dμ = EX(φ,ψ).

The density statement is also an immediate consequence of the construction.
(b) The uniqueness of U is clear since it is determined on a dense subspace of K . On the other

hand, if X1, . . . ,Xn ∈ Σ and φ1, . . . , φn ∈ V , then∥∥∥∥∥
n∑

i=1

F(Xi)Jφi

∥∥∥∥∥
2

=
n∑

i=1

n∑
j=1

〈
F(Xi)Jφi

∣∣F(Xj )Jφj

〉 = n∑
i=1

n∑
j=1

〈
Jφi

∣∣F(Xi ∩ Xj)Jφj

〉

=
n∑

i=1

n∑
j=1

EXi∩Xj
(φi, φj ) =

∥∥∥∥∥
n∑

i=1

F1(Xi)J1φi

∥∥∥∥∥
2

.

Thus there is a well-defined isometric linear map sending each
∑n

i=1 F(Xi)Jφi to∑n
i=1 F1(Xi)J1φi , and this map extends by continuity to a unitary U : K → K1. In partic-

ular, UJφ = UF(Ω)Jφ = F1(Ω)J1φ = J1φ for all φ ∈ V . Moreover, UF(X)F(Y )Jφ =
UF(X ∩ Y)Jφ = F1(X ∩ Y)J1φ = F1(X)F1(Y )J1φ = F1(X)UF(Y )Jφ for all X,Y ∈ Σ ,
φ ∈ V , from which the equation UF(X) = F1(X)U follows.

(c) Suppose first that the triple (K,F,J ) is obtained by the measure theoretic construction
preceding the theorem. Then

‖Jφ‖2 = ∥∥[φχΩ ]∥∥2 = θ(φχΩ,φχΩ) =
∫
Ω

C(φ,φ)dμ = EΩ(φ,φ), (3.7)

so in particular Jφ vanishes if and only if EΩ(φ,φ) does, and the claim follows. In the case of
another triple (K1,F1, J1), let U : K → K1 be as in (b). Since UJφ = J1φ and U is bijective,
Jφ = 0 if and only if J1φ = 0. �
Remark 3.8. The uniqueness part of the above result shows, in particular, that the choice of
the basis (en) and the sequence (αn) does not essentially influence the resulting structure. In
fact μ could be replaced by any finite positive measure ν such that every complex measure
X �→ EX(φ,ψ) is absolutely continuous with respect to ν.
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Remark 3.9. Let H be a separable Hilbert space, (en)
∞
n=0 an orthonormal basis of H , and

V := lin(en)
∞
n=0 its linear span. Suppose that E0 : Σ → L(H) is a semispectral measure and

let E : Σ → PS(V ) be the PSFM defined by EX(φ,ψ) = 〈φ|E0(X)ψ〉 for X ∈ Σ , φ,ψ ∈ V .
Retaining the notation of the general case, now J : V → K is isometric, because ‖Jφ‖2 =
EΩ(φ,φ) = ‖φ‖2 by (3.7).

In this case the spectral measure F : Σ → L(K) is the minimal Naimark dilation of E0 (see
e.g. [22]). It follows form an observation made in [20, p. 171] that the original semispectral
measure E0 is a spectral measure if and only if J (V ) is dense in K , or equivalently, (J en)

∞
n=0 is

an orthonormal basis of K .

4. Pointwise representation

In the previous section we obtained the representation EX(φ,ψ) = ∫
X

C(φ,ψ)dμ, where
C : V × V → L1(μ) is sesquilinear and C(φ,φ) � 0 in the L1(μ) sense. As a step towards the
main result of this section, let us now provide a pointwise version of this formula. We use the
notion of μ-measurability as in [9] and often call it just measurability. Since μ is a finite measure,
for scalar function this simply means measurability with respect to the Lebesgue extension of Σ

with respect to μ. We say that Ω � ω �→ Cω ∈ PS(V ) is a (μ-)measurable family of forms if
ω �→ Cω(φ,ψ) is μ-measurable for all φ,ψ ∈ V .

Lemma 4.1. For a PSF measure E : Σ → PS(V ), there is a measurable family of forms Ω �
ω �→ Cω ∈ PS(V ), such that for all φ,ψ ∈ V , the function ω �→ Cω(φ,ψ) is a representative of
C(φ,ψ) ∈ L1(μ).

Proof. For all m,n ∈ N, let us pick a function representative gmn ∈ C(em, en). For every ω ∈ Ω

and any φ,ψ ∈ V , we define

Cω(φ,ψ) :=
∞∑

m,n=0

āmgmn(ω)bn, (4.2)

where φ = ∑∞
m=0 amem, ψ = ∑∞

n=0 bnen are the unique expansions in the Hamel basis (en)
∞
n=0,

and only finitely many of the coefficients am,bn ∈ C are non-zero. Then it is immediate that
Cω : V × V → C is a sesquilinear form, and the (measurable) function ω �→ Cω(φ,ψ) is a
representative of C(φ,ψ). In particular Cω(φ,φ) � 0 for μ-a.e. ω ∈ Ω . If we only consider
the countable set W := linQ+iQ(en)

∞
n=0, we can choose a single μ-null set Z ⊂ Ω such that

Cω(φ,φ) � 0 for all ω ∈ Ω \ Z and φ ∈ W . But for a general φ ∈ V , we may approximate
the finitely many non-zero coefficient am in (4.2) by complex rationals, getting the same result
for all φ ∈ V . Thus Cω ∈ PS(V ) for all ω ∈ Ω \ Z. If we redefine Cω(φ,ψ) := 0 for ω ∈ Z

(which is achieved by changing, if necessary, the functions gmn to have the value zero in Z), we
have Cω ∈ PS(V ) for all ω ∈ Ω , and ω �→ Cω(φ,ψ) is still a representative of C(φ,ψ) for all
φ,ψ ∈ V . �

We now introduce some notational conventions which depend on the choice of the fixed
Hamel basis (en)

∞
n=0 of V . If φ,ψ ∈ V have the basis expansions φ = ∑∞

n=0 anen and ψ =∑∞
n=0 bnen (with only finitely many non-zero terms), we write 〈φ|ψ〉 = ∑∞

n=0 ānbn. Then V be-
comes an inner-product space, and each φ ∈ V gives rise to the linear form ψ �→ 〈φ|ψ〉, denoted
by 〈φ|, and to the antilinear form ψ �→ 〈ψ |φ〉, denoted by |φ〉. Clearly, the space of all linear
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functionals on V , i.e., the algebraic dual V ∗ of V , is in a bijective antilinear correspondence
with the vector space of all complex sequences (dn), when d = (dn) is made to correspond to the
functional ψ = ∑∞

n=0 bnen �→ ∑∞
n=0 d̄nbn, denoted also by 〈d| in the sequel; we may write this

as 〈d|ψ〉 = ∑∞
n=0 d̄nbn. In this kind of situations we also allow the notation 〈ψ |d〉 = ∑∞

n=0 b̄ndn,

so that 〈ψ |d〉 = 〈d|ψ〉. These notations are consistent when we use the identification of a vector
φ = ∑∞

n=0 anen ∈ V with the sequence (an) of its coefficients. Extending this identification, we
sometimes consider V embedded (linearly) in the space of all sequences (an)

∞
n=0 and identify

a sequence (an)
∞
n=0 with the formal series

∑∞
n=0 anen. In particular note that 〈en| is the linear

functional on V which maps φ = ∑∞
k=0 akek into an. It is sometimes convenient to denote by

the formal series
∑∞

n=0 an〈en| the element of V ∗ corresponding in our convention to the se-
quence (ān). If φ = ∑∞

n=0 anen ∈ V , i.e., the series is not just formal, then 〈φ| = ∑∞
n=0 ān〈en|.

If 〈d1|, 〈d2| ∈ V ∗, we denote by |d1〉〈d2| the sesquilinear form (φ,ψ) �→ 〈φ|d1〉〈d2|ψ〉; it can
equivalently be viewed as the antilinear map φ �→ 〈φ|d1〉〈d2| from V to V ∗. Note that |d〉〈d| ∈
PS(V ) for any 〈d| ∈ V ∗.

In the sequel, we make various measurability assertions concerning vector-valued functions.
When saying that a V -valued function ω �→ F(ω) is measurable, unless otherwise specified,
we mean weak measurability with respect to the dual pair 〈V,V ∗〉, i.e., that the scalar-valued
functions ω �→ 〈d|F(ω)〉 are measurable for all 〈d| ∈ V ∗.

Lemma 4.3. A V -valued function ω �→ F(ω) is measurable if and only if all the coordinate
functions ω �→ 〈en|F(ω)〉, n ∈ N, are measurable.

Proof. One direction is clear, since 〈en| ∈ V ∗. But if the coordinate functions are measurable
and 〈d| = ∑∞

k=0 ck〈ek| ∈ V ∗, then also 〈d|F(ω)〉 = ∑∞
k=0 ck〈ek|F(ω)〉 is measurable as the sum

of an everywhere convergent series of measurable functions. �
Lemma 4.4. For a μ-measurable family of forms Cω ∈ PS(V ), ω ∈ Ω , there exist μ-measurable
mappings ω �→ n(ω) ∈ N ∪ {∞} and ω �→ gk(ω) ∈ V , k ∈ N, such that for all ω ∈ Ω :

• Cω(gk(ω), g�(ω)) = δk�χ{ω′|k<n(ω′)}(ω).

• Cω(φ,ψ) = ∑n(ω)−1
k=0 Cω(φ,gk(ω))Cω(gk(ω),ψ) for all φ,ψ ∈ V , and only finitely many

terms are non-zero for fixed φ and ψ even when n(ω) = ∞.
• ω �→ Cω(gk(ω),φ) is μ-measurable for every φ ∈ V .

Proof. For every ω ∈ Ω , we denote Nω := {φ ∈ V | Cω(φ,φ) = 0}. In complete analogy with
the space N of the previous section, we see that this is a linear subspace of V , and on V/Nω we
get a well-defined inner-product 〈[φ]ω|[ψ]ω〉ω := Cω(φ,ψ), where e.g. [φ]ω := φ +Nω.

We now apply the Gram–Schmidt procedure on (V/Nω, 〈·|·〉ω), starting from the spanning
sequence ([en]ω)∞n=0. Instead of doing this at the completely abstract level, however, we work
with concrete representatives in V in order to keep track of the μ-measurability of our operations.
We also do not discard possible zero-vectors in the first place.

Denote {φ}0
ω := Cω(φ,φ)−1/2φ if [φ]ω �= 0 and {φ}0

ω := 0 otherwise. Then let

f0(ω) := {e0}0
ω, fn(ω) :=

{
en −

n−1∑
Cω

(
fk(ω), en

)
fk(ω)

}0

, n = 1,2, . . . .
k=0 ω
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It is easily seen that fn(ω) ∈ lin{e0, . . . , en} and

lin
{
f0(ω), . . . , fn(ω)

} +Nω = lin
{
e0, . . . , en

} +Nω

for all n ∈ N and ω ∈ Ω . Moreover, the functions ω �→ fn(ω) are μ-measurable.
Next, we remove the possible zero-vectors in a measurable way: Let n−1(ω) := −1 and

nk(ω) := inf
{
n ∈ N

∣∣ n > nk−1(ω), fn(ω) �= 0
} ∈ N ∪ {∞}, k ∈ N,

n(ω) := 1 + sup
{
k ∈ N ∪ {−1} ∣∣ nk(ω) < ∞} ∈ N ∪ {∞},

where inf∅ := ∞. Finally, we set gk(ω) := fnk(ω)(ω) for 0 � k < n(ω). These are the non-zero

vectors from the Gram–Schmidt procedure, and hence ([gk(ω)]ω)
n(ω)−1
k=0 is an orthonormal Hamel

basis of (V/Nω, 〈·|·〉ω). This implies the first two claims after setting gk(ω) := 0 for k � n(ω).
The last claim follows from the formula

Cω

(
gk(ω),φ

) =
nk(ω)−1∑

j=0

f̄nk(ω),j (ω)Cω(ej ,φ),

where fnk(ω),j (ω) stands for the j th coordinate of fnk(ω)(ω), and from the measurability of sums
and products of measurable functions. �

In the above representation, φ �→ Cω(gk(ω),φ) is a linear functional on V . There is a unique
complex sequence dk(ω) such that this functional equals 〈dk(ω)| ∈ V ∗. By the measurability
of V ∗-valued functions, we understand the weak∗ measurability, i.e., the measurability of their
pointwise duality pairings with all φ ∈ V . By an argument similar to, but even easier than,
Lemma 4.3, this is seen to be equivalent to the measurability of all the coordinate functions,
i.e., it suffices to test the pairings with all φ = en, n ∈ N. For ω �→ 〈dk(ω)| this measurability
condition is precisely the last claim of the previous lemma. With these remarks, and a combina-
tion of Lemmas 4.1 and 4.4, we have the following result, in which E : Σ → PS(V ) is a PSFM,
and all our earlier choices and notations apply.

Theorem 4.5. There are μ-measurable mappings ω �→ n(ω) ∈ N ∪ {∞}, ω �→ gk(ω) ∈ V and
ω �→ 〈dk(ω)| ∈ V ∗, k ∈ N, such that 〈dk(ω)|g�(ω)〉 = δk�χ{ω′|k<n(ω′)}(ω) for all ω ∈ Ω , and the
following representation holds for all φ,ψ ∈ V :

EX(φ,ψ) =
∫
X

n(ω)−1∑
k=0

〈
φ
∣∣dk(ω)

〉〈
dk(ω)

∣∣ψ 〉
dμ(ω),

where only finitely many terms in the sum are non-zero for each ω, even when n(ω) = ∞. In
particular,

EX(φ,φ) =
∫
X

n(ω)−1∑
k=0

∣∣〈dk(ω)
∣∣φ〉∣∣2

dμ(ω). (4.6)

5. Relation to direct integrals

In this section we make some comments on the relation of Theorem 4.5 to the direct integral
representations which are popular in some of the related literature. We use the following nota-
tional conventions. As usual, �2 is the Hilbert space of square summable sequences (an)

∞ , and
n=0
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L2(Ω,μ, �2) is the Hilbert space consisting of the (μ-equivalence classes of ) μ-measurable �2-
valued functions f for which the function ω �→ ‖f (ω)‖2 is μ-integrable. For any k ∈ N ∪ {∞}
we denote �2

k = {(an) ∈ �2 | an = 0 for all n � k}. In particular, �2
0 = {0} and �2∞ = �2.

Let now ω �→ n(ω) be a μ-measurable map from Ω into N ∪ {∞}. We denote by
L2

n(·)(Ω,μ, �2) the subset of L2(Ω,μ, �2) consisting of those f for which f (ω) ∈ �2
n(ω)

μ-almost everywhere. A routine argument based on the fact that a sequence converging in
L2(Ω,μ, �2), and hence in μ-measure, contains an almost everywhere convergent subsequence
shows that L2

n(·)(Ω,μ, �2) is a closed subspace of L2(Ω,μ, �2).

The above construction of the space L2
n(·)(Ω,μ, �2) is a relatively simple way of making

rigorous the heuristic idea of an L2 space of functions taking their pointwise values in Hilbert
spaces of different dimensions. This type of space is often referred to as the direct integral of
Hilbert spaces and denoted by

∫ ⊕
Ω

�2
n(ω) dμ(ω).

We now return to Theorem 4.5 and its notation; in particular, let ω �→ n(ω) henceforth
stand for the fixed map appearing in that theorem. If φ ∈ V , define J1φ to be the element
ω �→ (〈dk(ω)|φ〉)∞k=0 of L2

n(·)(Ω,μ, �2). This produces a linear map J1 : V → L2
n(·)(Ω,μ, �2).

For X ∈ Σ , let F1(X) be the restriction of the multiplication map f �→ χXf to the invariant sub-
space L2

n(·)(Ω,μ, �2) of L2(Ω,μ, �2). Then F1 : Σ → L(L2
n(·)(Ω,μ, �2)) is a spectral measure.

Theorem 5.1. The linear span of the set {F1(X)J1φ | X ∈ Σ, φ ∈ V } is dense in K1 :=
L2

n(·)(Ω,μ, �2), and 〈J1φ|F1(X)J1ψ〉 = EX(φ,ψ) for any X ∈ Σ and φ,ψ ∈ V . Thus the triple
(K1,F1, J1) is unitarily equivalent to the triple (K,F,J ) in the sense of Theorem 3.6.

Proof. To prove the density statement, let G = [ω �→ (Gk(ω))∞k=0] ∈ L2
n(·)(Ω,μ, �2) be orthog-

onal to F1(X)J1em for all m ∈ N and X ∈ Σ . This means that

∫
X

n(ω)−1∑
k=0

Ḡk(ω)
〈
dk(ω)

∣∣em

〉
dμ(ω) = 0 for all X ∈ Σ, m ∈ N.

But this implies that
∑n(ω)−1

k=0 Ḡk(ω)〈dk(ω)|em〉 = 0 for all m ∈ N and μ-a.e. ω ∈ Ω, where
the exceptional μ-null set, say Z, may be taken independent of m ∈ N. Recall that g�(ω) ∈
V = lin(em)∞m=0. By linearity, we obtain

∑n(ω)−1
k=0 Ḡk(ω)〈dk(ω)|g�(ω)〉 = 0 for all � ∈ N and all

ω ∈ Ω \ Z. But the left-hand side is Ḡ�(ω), and hence we have shown that G vanishes as an
element of L2

n(·)(Ω,μ, �2). This proves our first claim. If X ∈ Σ and φ,ψ ∈ V , then

〈
J1φ

∣∣F1(X)J1ψ
〉 = ∫

X

n(ω)−1∑
k=0

〈
φ
∣∣dk(ω)

〉〈
dk(ω)

∣∣ψ 〉
dμ(ω) = EX(φ,ψ)

by Theorem 4.5. The asserted unitary equivalence now follows from Theorem 3.6. �
As a consequence of Theorem 5.1 and Remark 3.9, we have:

Corollary 5.2. Let EX(φ,ψ) = 〈φ|E0(X)ψ〉 for a semispectral measure E0. Then E0 is a spec-
tral measure if and only if

ω �→ (〈
dk(ω)

∣∣en

〉)∞
k=0, n ∈ N, is an orthonormal basis of L2

n(·)
(
Ω,μ,�2). (5.3)
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6. Extension of the test vector space

Our considerations so far have taken place in the space V , which only has an algebraic vector
space structure. We now show that the operations on V that we have been dealing with actually
extend to a Hilbert space completion of this initial space that we started with. Let us denote

H :=
{

ψ =
∞∑

n=0

bnen

∣∣∣ ‖ψ‖2
H :=

∞∑
n=0

|bn|2 < ∞
}

.

Then H is a Hilbert space with the orthonormal basis (en)
∞
n=0, whose linear span is V .

Recall the definition of the measure μ from (3.1). We use the same quantities from this defin-
ition to introduce the linear operator Λ : H → H , given by

Λ :=
∞∑

n=0

βn|en〉〈en|, βn := αn

1 + EΩ(en, en)
. (6.1)

This operator is positive and injective, and its range is dense in H . We shall also use the functional
calculus of Λ, i.e., the operators η(Λ) := ∑∞

n=0 η(βn)|en〉〈en| for functions η : R+ → C. Note
that η(Λ)V ⊂ V .

Let us now consider the form Cω(Λ1/2·,Λ1/2·) ∈ PS(V ). We define its trace by

tr
(
Cω

(
Λ1/2·,Λ1/2·)) :=

∞∑
n=0

Cω

(
Λ1/2en,Λ

1/2en

) =
∞∑

n=0

βnCω(en, en).

Integration over an arbitrary X ∈ Σ gives∫
X

tr
(
Cω

(
Λ1/2·,Λ1/2·))dμ(ω) =

∞∑
n=0

βnEX(en, en) = μ(X).

This means that tr(Cω(Λ1/2·,Λ1/2·)) = 1 for μ-a.e. ω ∈ Ω , say for ω ∈ Ω \Z, where μ(Z) = 0.
Let us momentarily restrict ourselves to a finite dimensional space VN := lin(en)

N
n=0, which

we make into a Hilbert space such that (en)
N
n=0 is an orthonormal basis. The restriction of

Cω(Λ1/2·,Λ1/2·) to VN × VN belongs to PS(VN) and defines a positive operator, say TN(ω),
on VN in a natural way. The computation of the previous paragraph implies that the (usual) trace
of TN(ω), and hence its norm in L(VN), is at most 1, for all ω ∈ Ω \ Z. This uniform estimate,
and the density of V = ⋃∞

n=0 VN in H , imply by a standard limiting argument the existence of
an operator T (ω) ∈ L(H) such that 〈φ|T (ω)ψ〉 = Cω(Λ1/2φ,Λ1/2ψ) for all φ,ψ ∈ V , and this
operator is positive with trace 1. For definiteness, let us define T (ω) := 0 ∈ L(H) for all ω in the
exceptional set Z.

We now have the equations

Cω(φ,ψ) = 〈
Λ−1/2φ

∣∣T (ω)Λ−1/2ψ
〉
, EX(φ,ψ) =

∫
X

〈
Λ−1/2φ

∣∣T (ω)Λ−1/2ψ
〉
dμ(ω)

for all φ,ψ ∈ V , but we can see that the right-hand sides are meaningful for all φ,ψ ∈
D(Λ−1/2) = R(Λ1/2) =: H1, where we define

Hγ :=
{

φ =
∞∑

anen

∣∣∣ ‖φ‖2
Hγ

:=
∞∑ |an|2

β
γ
n

< ∞
}

, γ ∈ R. (6.2)

n=0 n=0
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Since
∑n(ω)−1

k=0 |〈dk(ω)|φ〉|2 = Cω(φ,φ) = 〈Λ−1/2φ|T (ω)Λ−1/2φ〉 � ‖Λ−1/2φ‖2, we also
find that the functionals 〈dk(ω)| ∈ V ∗ in fact extend by continuity to continuous linear func-
tionals on H1. Observe that under the natural duality of sequence spaces we have H ∗

1 � H−1. In
particular, the coordinate sequences satisfy(〈

dk(ω)
∣∣en

〉
β

1/2
n

)∞
n=0 ∈ �2. (6.3)

We collect the results from the above discussion in the following:

Proposition 6.4. The sesquilinear forms EX,Cω ∈ PS(V ), X ∈ Σ , ω ∈ Ω , and the functionals
〈dk(ω)| ∈ V ∗ extend continuously to the Hilbert space completion H1 of V (defined in (6.2)),
which is associated with the PSFM E.

On the larger Hilbert space H = H0, which is canonically related to V and independent of E,
they admit representations as unbounded forms with common dense domain:

EX(φ,ψ) =
∫
X

Cω(φ,ψ)dμ(ω), Cω(φ,ψ) = 〈
Λ−1/2φ

∣∣T (ω)Λ−1/2ψ
〉
,

φ,ψ ∈ R
(
Λ1/2) = H1,

with an injective Λ ∈ L1+(H) (defined in (6.1)) and

T (ω) =
n(ω)−1∑

k=0

Λ1/2
∣∣dk(ω)

〉〈
dk(ω)

∣∣Λ1/2 =:
n(ω)−1∑

k=0

∣∣hk(ω)
〉〈
hk(ω)

∣∣ ∈ L1+(H),

where hk(ω) ∈ H is defined with the help of the Riesz representation theorem in terms of the
linear functional 〈hk(ω)|φ〉 := 〈dk(ω)|Λ1/2φ〉, φ ∈ H . Moreover,

trT (ω) =
n(ω)−1∑

k=0

∥∥hk(ω)
∥∥2

H
= 1, rankT (ω) = n(ω) for a.e. ω ∈ Ω,

and the maps Ω � ω �→ Tω ∈ L1(H) and Ω � ω �→ hk(ω) ∈ H are Bôchner μ-measurable.

Rest of the proof. What remains to show is in the last two lines of the assertions. Concerning
the rank of T (ω), we know that δk�χ{ω′∈Ω|k�n(ω′)}(ω) = 〈dk(ω)|g�(ω)〉 = 〈hk(ω)|Λ−1/2g�(ω)〉,
where g�(ω) ∈ V ⊂ R(Λ1/2) so that Λ−1/2g�(ω) ∈ H . This shows that the vectors hk(ω),
0 � k < n(ω), are linearly independent.

As for measurability, we know that ω �→ 〈hk(ω)|ψ〉 = 〈dk(ω)|Λ−1/2ψ〉 is measurable for all
ψ ∈ V . By the density of V in H , the measurability extends to all ψ ∈ H , and the weak mea-
surability thus established is equivalent to the (strong) Bôchner measurability in the separable
Banach space H by the Pettis measurability theorem (see e.g. [7, Theorem II.1.2] or [9, Theo-
rem III.6.11]). This implies the measurability of the finite sums

∑min(N,n(ω)−1)
k=0 |hk(ω)〉〈hk(ω)|

convergent to T (ω) (pointwise in the norm of L1(H)), which is hence measurable also. �
7. Positive operator measures

In this section we consider an important special case of the above theory, where the PSFM
is defined on the whole Hilbert space H from the beginning. Now (en)

∞
n=0 is an orthonormal

basis of H , but we continue to denote V = lin(en)
∞ as in the previous sections. Every POM
n=0
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E0 : Σ → L(H) can be identified with a PSF measure E by setting EX(φ,ψ) := 〈φ|E0(X)φ〉.
Thus the general results give:

Proposition 7.1. Given a POM E0 : Σ → L(H) and defining a measure μ by (3.1), there exists
the following representation:

〈
φ
∣∣E0(X)ψ

〉 = ∫
X

〈
Λ−1/2φ

∣∣T (ω)Λ−1/2ψ
〉
dμ(ω), φ,ψ ∈ R

(
Λ1/2),

where Λ ∈ L1+(H) is injective,

T (ω) =
n(ω)−1∑

k=0

∣∣hk(ω)
〉〈
hk(ω)

∣∣ ∈ L1+(H), trT (ω) = 1, rank
(
T (ω)

) = n(ω),

and all functions of ω are Bôchner μ-measurable in their natural range spaces.

Proof. While the result is a specialization of what we showed for general PSF measures, we
provide another proof, which is considerably shortened by the use of the well-established Hilbert
space operator theory.

Let us define Λ ∈ L1+(H) by (6.1), and consider the positive trace class operator valued mea-
sure F(X) := Λ1/2E0(X)Λ1/2. The total variation of F is

sup
n∑

i=1

∥∥F(Xi)
∥∥
L1(H)

= sup
n∑

i=1

trF(Xi) = trF(Ω) � trΛ · ∥∥E0(Ω)
∥∥,

where the supremum is over all finite partitions Ω = ⋃n
i=1 Xi , and we made use of the positivity

of F(Xi) and Λ, and basic properties of the trace.
Thus F is of bounded total variation. It also has the same null-sets as E0, which in turn has

the same null-sets as the measure μ constructed in (3.1). Since L1(H), as a separable (for a
reference and an easy direct proof see e.g. [16, p. 794]) dual space has the Radon–Nikodým
property (e.g. [7, Theorem III.3.1]), we may apply the vector-valued Radon–Nikodým theorem
to deduce the existence of an L1(H)-valued Bôchner-integrable density ω �→ T (ω) such that
F(X) = ∫

X
T (ω)dμ(ω) for all X ∈ Σ . Since F(X) is a positive operator, also T (ω) must be for

a.e. ω ∈ Ω ; this follows in our separable situation from the corresponding result for scalar-valued
measures and densities, since the positivity of an operator A ∈ L(H) can be tested in terms of
the positivity of 〈φ|Aφ〉, where φ goes through a countable dense subset of H . Moreover,∫

X

trT (ω)dμ(ω) = trF(X) =
∞∑

n=1

αn

1 + 〈en|E0(Ω)en〉
〈
en

∣∣E0(X)en

〉 = μ(X),

and this implies that trT (ω) = 1 for a.e. ω ∈ Ω .
What remains is the decomposition of T (ω). For each single operator, this of course is well

known from the Hilbert space operator theory, but the point is now to have this in a measurable
way. Such a measurable decomposition is proved in [5, Proposition 1.8], based on a classical
theorem on measurable selectors [17]. The result in [5] also gives the additional properties
‖hk−1(ω)‖ � ‖hk(ω)‖ > 0 for 1 � k < n(ω) and 〈hk(ω)|h�(ω)〉 = 0 for k �= �, in addition to
those stated in the assertions. �
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Remark 7.2. Part of the information in the above proposition was obtained in a different way
in [1, Proposition 27, Remark 28 and the proof of Theorem 79].

8. Generalized eigenvectors of normal operators

Here we make a further specialization of the general theory to the case of a spectral measure
associated to a normal operator T in a Hilbert space. We are going to show that in this situation
the functionals |dk(ω)〉 may be interpreted as generalized eigenvectors of T , in a precise sense to
be defined below. Results of this kind have a long history; instead of attempting a comprehensive
record, we would only like to mention the general setting for much of the early theory provided
by C. Foiaş [12] and the more recent approach due to S.J.L. van Eijndhoven and J. de Graaf [10],
from which we borrow an auxiliary result. The technique based on the use of the measure μ and
the Radon–Nikodým theorem in our approach bears a certain resemblance to some ideas already
present in [12]. Operator densities in connection with positive operator measures are also used
in [1], but the generalized eigenvalue problem is not treated there.

Now, let H be a Hilbert space and V a dense subspace of H . Every φ ∈ H determines a
continuous antilinear functional ψ �→ 〈ψ |φ〉. We denote this functional, and also its restriction
to V , by |φ〉. Thus |φ〉 belongs to V ×, the linear space of all antilinear functionals on V , and the
mapping φ �→ |φ〉 is a linear injection from H into V ×. We often write simply V ⊂ H ⊂ V ×.

In the following definition we assume that T : D(T ) → H is a densely defined linear map in
H and let T ∗ : D(T ∗) → H be its adjoint. We assume that V ⊂ D(T ∗) and T ∗(V ) ⊂ V . Let us
denote by T̃ : V × → V × the linear map defined by

(T̃ F )(ψ) := F
(
T ∗ψ

)
, F ∈ V ×, ψ ∈ V. (8.1)

With F = |φ〉 ∈ D(T ) and ψ ∈ V , this yields (T̃ |φ〉)(ψ) = 〈T ∗ψ |φ〉 = 〈ψ |T φ〉 Thus T̃ may be
regarded as an extension of T under the interpretation V ⊂ H ⊂ V ×.

Definition 8.2. If F ∈ V × \ {0} and λ ∈ C satisfy T̃ F = λF, then F is called a generalized
eigenvector of T belonging to the generalized eigenvalue λ of T (relative to V ).

The discussion preceding the definition justifies this terminology: any eigenvalue of T is a
generalized eigenvalue.

Let then T : D(T ) → H be a normal operator. According to the well-known spectral theorem
(see e.g. [24]), associated to T there is a uniquely determined spectral measure E0 : B(C) →
L(H), supported on the spectrum of T , such that

〈φ|T ψ〉 =
∫
C

λ
〈
φ
∣∣E0(dλ)ψ

〉
, φ ∈ H, ψ ∈ D(T ). (8.3)

The following result is based on (8.3) and the application of our diagonalization results to E0.
The existence of invariant subspaces V for T and T ∗, as required in the theorem, is always
guaranteed by results at the end of the section.

Theorem 8.4. Let T : D(T ) → H be a normal operator as in (8.3) with V ⊂ D(T ) ∩ D(T ∗)
and T V ⊂ V , T ∗V ⊂ V . Then there exist a finite positive Borel measure μ on σ(T ) having
the same null-sets as E0, and a sequence of μ-measurable mappings λ �→ |dk(λ)〉 ∈ V × such
that, for μ-almost every λ ∈ σ(T ) and every k ∈ N, |dk(λ)〉 is either zero or a simultaneous
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generalized eigenvector of T and T ∗ relative to V belonging to their generalized eigenvalues λ

and λ̄, respectively. Moreover,

〈φ|T ψ〉 =
∫

σ(T )

λ

n(λ)−1∑
k=0

〈
φ
∣∣dk(λ)

〉〈
dk(λ)

∣∣ψ 〉
dμ(λ), φ,ψ ∈ V. (8.5)

Proof. From (8.3) we have 〈φ|T ψ〉 = 〈T ∗φ|ψ〉 = ∫
C

λ〈φ|E0(dλ)ψ〉, φ,ψ ∈ V. On the other
hand, we know the existence of μ and |dk(λ)〉 so that

〈
φ
∣∣E0(dλ)ψ

〉 = n(λ)−1∑
k=0

〈
φ
∣∣dk(λ)

〉〈
dk(λ)

∣∣ψ 〉
dμ(λ), φ,ψ ∈ V,

and hence

〈φ|T ψ〉 = 〈
T ∗φ

∣∣ψ 〉 = ∫
C

λ

n(λ)−1∑
k=0

〈
φ
∣∣dk(λ)

〉〈
dk(λ)

∣∣ψ 〉
dμ(λ), φ,ψ ∈ V. (8.6)

Since E0(C) = I , we also have

〈φ|ψ〉 =
∫
C

n(λ)−1∑
k=0

〈
φ
∣∣dk(λ)

〉〈
dk(λ)

∣∣ψ 〉
dμ(λ), φ,ψ ∈ V. (8.7)

Comparing (8.6) and (8.7) with φ replaced by T ∗φ (still in V by the assumption that T ∗V ⊂ V ),
and recalling that the functions λ �→ (〈dk(λ)|ψ〉)∞k=0, ψ ∈ V , are dense in L2

n(·)(Ω,μ, �2), we
deduce that there must hold, for μ-a.e. λ ∈ C,〈

T ∗φ
∣∣dk(λ)

〉 = λ
〈
φ
∣∣dk(λ)

〉
, φ ∈ V. (8.8)

By choosing a null-set N such that (8.8) holds in its complement for all φ = en, n ∈ N, it also
holds, by linearity, for all φ ∈ V . Thus, for μ-a.e. λ ∈ σ(T ), we have the generalized eigenvector
equations T̃ |dk(λ)〉 = λ|dk(λ)〉. Making a similar comparison of (8.6) and (8.7) with ψ replaced
by T ψ (where the assumption T V ⊂ V appears), and proceeding analogously, we deduce the
adjoint equation T̃ ∗|dk(λ)〉 = λ̄|dk(λ)〉, which completes the proof. �
Remark 8.9. In the construction of the measure μ in (3.1), any positive sequence (αn)

∞
n=0 ∈ �1

could be chosen. For a spectral measure E0, we have 〈en|E0(C)en〉 = 1 for all n ∈ N, so that the
eigenvalues βn of the operator Λ ∈ L1+(H) in (6.1) are just βn = αn/2. Since we know that the

action of the |dk(λ)〉 can be extended boundedly to R(Λ1/2), and since (βn)
∞
n=0 �→ (β

1/2
n )∞n=0

is a bijection between the positive cones of �1 and �2, we have the following information
concerning the size of the generalized eigenvectors (cf. (6.3)): For any positive (�n)

∞
n=0 ∈ �2,

for a.e. λ ∈ σ(T ) (with respect to the spectral measure of the normal operator T ), there exist
|dk(λ)〉 ∈ V ×, 0 � k < n(λ), which are simultaneous generalized eigenvectors of T and T ∗, and
satisfy (�n〈en|dk(λ)〉)∞n=0 ∈ �2.

The generalized eigenvector equations can be used, at least in principle, to solve for the dk(λ),
from which one may try to construct the spectral decomposition of T . We illustrate this in a toy
example below, but also point out in the following section some intrinsic problems related to this
approach.
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Example 8.10. Consider, as in Example 2.3, a Hilbert space H with an orthonormal basis
(en)n∈Z and the simplest shift operator S : en �→ en−1 (hence S∗ : en �→ en+1). Clearly S is
unitary, in particular normal, so that the theory developed in this section applies to it. Writing
|d〉 = ∑∞

j=−∞ dj |ej 〉 for |dk(λ)〉, (8.8) reads for φ = en as dn+1 = λdn, giving the unique (up to

normalization) solution dj = d0λ
j , except for the case λ = 0, where dj ≡ 0 is the only solution.

Thus, for every λ ∈ C\{0}, there corresponds a one-dimensional generalized eigenspace spanned
by |d(λ)〉 = ∑∞

j=−∞ λj |ej 〉.
The eigenvector equation for the adjoint S∗ gives similarly dn−1 = λ̄dn, yielding the solu-

tion dj = λ̄−j d0. This can only coincide with the generalized eigenvector of S if λ̄ = λ−1.
Thus the only simultaneous generalized eigenvectors of S and S∗ are, up to normalization,
|d(eit )〉 = ∑∞

j=−∞ eitj |ej 〉. Hence the general theory guarantees that, for some finite posi-
tive measure μ on the unit circle T, the spectral measure of S is given by 〈φ|ES(X)ψ〉 =∫
X∩T

〈φ|d(λ)〉〈d(λ)|ψ〉dμ(λ) for all φ, ψ ∈ V. Testing the equality 〈φ|ES(T)ψ〉 = 〈φ|ψ〉 with
φ = em, ψ = en, we find that

∫
T

λm−n dμ(λ) = δm,n for all m,n ∈ T. This shows that the Fourier
coefficients of the measure μ coincide with those of the normalized Haar measure ν of T, and
hence 〈φ|ES(X)ψ〉 = ∫

X∩T
〈φ|d(λ)〉〈d(λ)|ψ〉dν(λ) = ∑

m,n∈Z

∫
X∩T

λm−n dν(λ)〈φ|em〉〈en|ψ〉
for all φ, ψ ∈ V, gives the spectral measure of S.

We finally address the question of invariant subspaces as required in Theorem 8.4. Fol-
lowing [10], we define the joint C∞-domain of linear operators Ai : D(Ai) ⊂ H → H , i =
1, . . . , k, as C∞(A1, . . . ,Ak) := {ψ ∈ H | for all N ∈ N and π ∈ {1, . . . , k}N, ψ ∈ D(Aπ(1)Aπ(2)

· · ·Aπ(N))}. We quote the following result and deduce an immediate consequence:

Theorem 8.11. (See [10].) Suppose that C∞(A1, . . . ,Ak) is dense in H . Then there exists an
orthonormal basis (en)

∞
n=0 such that each Ai , i = 1, . . . , k, maps V = lin{en | n ∈ N} into itself.

Corollary 8.12. Let T : D(T ) ⊂ H → H be normal (or bounded). Then there exists an orthonor-
mal basis (en)

∞
n=0 such that both T and T ∗ map V into itself.

Proof. If T is normal, let E0 be its spectral measure and Dk the disc {ζ ∈ C | |ζ | < k}, every
φ ∈ H satisfies E0(Dk)φ ∈ C∞(T ,T ∗) for all k ∈ N and E0(Dk)φ → φ as k → ∞. Hence
C∞(T ,T ∗) is dense in H , and we can apply the previous theorem. If T is bounded, then
C∞(T ,T ∗) = H , and we derive the same conclusion. �
9. A counterexample concerning generalized eigenvectors

In Theorem 8.4 we proved that almost every (with respect to the spectral measure) point λ in
the spectrum of a normal operator T is a generalized eigenvalue of T , and moreover Remark 8.9
showed that the associated generalized eigenvectors are in a sense not very far from being vectors
in the Hilbert space H . In this section we show that the converse statement fails: even if some
λ ∈ C is a generalized eigenvalue of T with a “nice” associated generalized eigenvector, this
λ need not be in the Hilbert space spectrum of T , and this can already happen for a bounded
(in fact, Hilbert–Schmidt) self-adjoint operator T . The following technical lemma is the key to
the counterexample:

Lemma 9.1. There exists an infinite matrix (mij )
∞
i,j=0 having entries in [0,1] and with the fol-

lowing properties:
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• mij = mji for all i, j ∈ N;
• for all i ∈ N, the sequence (mij )

∞
j=0 has only finitely many non-zero members;

• for all i ∈ N, there holds
∑∞

j=0 mij = 1; and

• ∑∞
i,j=0 m2

ij < 1.

Proof. We start with a sequence (ai)
∞
i=0 of positive integers, to be chosen later. Denote σ−1 := 0

and σi := ∑i
k=0 ak for i ∈ N. Let φ(j), for j = 1,2, . . . , be the unique i ∈ N such that σi−1 <

j � σi . Since σi−1 � i (as ak � 1), we have φ(j) < j . Then we define a sequence (bj )
∞
j=0 ∈

[0,1]N inductively as follows: b0 := 1/a0, and bj := (1 − bφ(j))/aj for j = 1,2, . . . . Finally, the
matrix entries mij are defined: We set mii := 0, and for j > i we let mij := bi if σi−1 < j � σi

(i.e., φ(j) = i), and zero otherwise. The entries mij with j < i are defined so as to satisfy the
symmetry requirement.

That (mij )
∞
j=0 has only finitely many non-zero members is clear from this definition. In fact,

for j � i, there are σi − σi−1 = ai entries equal to bi = (1 − bφ(i))/ai , the others being zero.
For j < i, an entry mij = mji can only differ from zero if j = φ(i), in which case it is equal
to bj = bφ(i). Thus

∑∞
j=0 mij = bφ(i) + ai × (1 − bφ(i))/ai = 1, as we wanted. To compute the

square sum of the entries mij , observe that there are exactly 2(σi −σi−1) = 2ai entries for which
we gave the value bi ; hence

∑∞
i,j=0 m2

ij = ∑∞
i=0 2aib

2
i = ∑∞

i=0 2ai(1−bφ(i))
2/a2

i �
∑∞

i=0 2/ai,

and this is easily made to satisfy the final requirement by a suitable choice of (ai)
∞
i=0. �

We now provide the announced counterexample. Once again, let H be a Hilbert space with
an orthonormal basis (en)

∞
n=0 and V := lin(en)

∞
n=0. We define an operator T ∈ L(H) in terms of

the matrix (mij )
∞
i,j=0, i.e., we set

T

( ∞∑
i=0

aiei

)
:=

∞∑
i=0

( ∞∑
j=0

mijaj

)
ei . (9.2)

Since the matrix is real and symmetric, the operator T is self-adjoint, and hence σ(T ) ⊂ R.
Moreover, T is a Hilbert–Schmidt operator, and ‖T ‖2

L2(H)
= ∑

λ∈σ(T ) λ
2 = ∑∞

i,j=0 m2
ij < 1. In

particular, T has a discrete spectrum, and its eigenvalues λ satisfy −1 < λ− � λ � λ+ < 1.

However, let us consider the generalized eigenvalue problem for T . The fact that every column
and row of the infinite matrix (mij )

∞
i,j=0 has only finitely many non-zero entries is equivalent

with the properties T V ⊂ V and T ∗V ⊂ V . Thus the generalized eigenvector formalism of the
previous section is applicable.

Observe that the same extension T̃ on V × is obtained by using the original defining for-
mula (9.2), which also makes sense for an arbitrary

∑∞
j=0 aj |ej 〉 ∈ V ×. We may use this remark

to compute T̃ |e〉, where |e〉 := ∑∞
j=0 |ej 〉. From self-adjointness and the fact that

∑∞
j=0 mij = 1,

it follows at once that T̃ |e〉 = T̃ ∗|e〉 = |e〉, and hence |e〉 is a generalized eigenvector of T and T ∗
corresponding to the generalized eigenvalue 1. By the remarks concerning the spectrum of T

above, this generalized eigenvalue is not in σ(T ). Summarizing, we have shown the following:

Proposition 9.3. There exists a self-adjoint operator T ∈ L2(H) such that T V = T ∗V ⊂ V , and
hence extending to T̃ : V × → V × by (8.1), such that

• ‖T ‖L2(H) < 1; in particular, σ(T ) ⊂ [λ−, λ+] ⊂ ]−1,1[, but

• T̃ |e〉 = T̃ ∗|e〉 = |e〉 where |e〉 = ∑∞
j=0 |ej 〉.
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