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1 Introduction

Several exact results have by now been obtained for supersymmetric gauge theories, such as

the computation of indices, partition functions and Wilson loops, providing in many cases

checks of highly non-trivial dualities. Such calculations rely for the most part on localization

techniques — which in their turn rely on the theory being rigid supersymmetric in some

curved, in general, background. In four dimensions, recent studies include supersymmetric

theories on S4 [1], S1×S3 [2–4], S1×S3/Zk [5, 6], S1×L(p, q) [7] and AdS4 [8–10]. In view

of the success of this program, it would be interesting to extend this list of four-dimensional

spaces to more general backgrounds.

In the present paper we will focus on rigid supersymmetric theories in four-dimensional

Riemannian spin manifolds. In other words the four-dimensional background in which

the theory lives is assumed to be equipped with a positive-definite metric of Euclidean

signature. A systematic approach to the study of rigid supersymmetry in four-dimensional

curved space has recently been initiated in [11]. As follows from the analysis of [11] the

condition for a theory to be rigidly supersymmetric in a given background reduces to

the requirement for the existence of a pair of Killing spinors1 on that background. Here,

1The Killing spinor equations are given in (2.1) below; our use of the term ‘Killing spinor’ is more

general than is sometimes assumed in the literature.
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‘background’ refers to the bosonic fields of the minimal off-shell supergravity multiplet in

four dimensions, i.e. to the choice of the metric gmn as well as background fields bm,M, M̄

which appear as parameters in the globally supersymmetric action and supersymmetry

transformation rules.

From the technical standpoint the analysis of such Killing-spinor equations in four-

dimensional Riemannian space M4 can be performed using a suitable G-structure. For

generic backgrounds the pair of Killing spinors defines a local trivialization of the structure

group of TM4, i.e. a trivial G-structure. For certain backgrounds one of the spinors is

allowed to vanish identically, in which case the other, non-vanishing, spinor defines a local

SU(2) structure. In either case, the G-structure is given explicitly by locally constructing

a set of forms in terms of bilinears of the Killing spinors. The Killing spinor equations can

then be reexpressed as a set of constraints on the torsion classes of the G-structure.

In this paper, we pursue this approach for a systematic study of the Killing-spinor

equations in four-dimensional Riemannian space. More specifically, in the case of a trivial

G-structure we reformulate the conditions for unbroken supersymmetry as the set of con-

straints on the torsion classes given in (3.13) below. Equivalently, we derive a set of neces-

sary and sufficient conditions for unbroken rigid supersymmetry, given in eq. (3.17): Given

a Riemannian four-manifold M4 and a trivial G-structure such that eqs. (3.17) are satis-

fied, all background fields are uniquely determined and the theory is (at least) N = 1 rigid

supersymmetric. Similarly, in the case of an SU(2)-structure we reformulate the conditions

for unbroken supersymmetry as the set of constraints on the torsion classes given in (4.12).

We begin our analysis in section 2 by formulating the rigid supersymmetric theory

directly in Euclidean signature. The Lagrangian is given in (2.2) and was constructed

from scratch, without reference to any Wick rotation. Up to boundary terms which we

compute explicitly, the Lagrangian is invariant under transformations (2.3), where the

supersymmetry parameters ζ, ξ obey the pair of coupled Killing-spinor equations (2.1):

this is our definition of rigid N = 1 supersymmetry. More generally, the background

possesses N ≥ 1 supersymmetry if and only if the space of solutions to the linear system

of differential equations (2.1) is N -dimensional.

In section 3 we work out the reformulation of the supersymmetry conditions in terms

of the trivial G-structure; in section 4 we do the same in the case of an SU(2) structure.

We illustrate the formalism using several examples in section 5. We start in section 5.1

with the example of a K3 surface, while sections 5.2, 5.3 treat background geometries of

the form T d × Sd−4 and T d × Hd−4 respectively. In all the cases except for T 2 × S2 the

solution extends globally on M4, i.e. all these backgrounds possess global Killing spinors.

In the case of T 2 × S2 the background fields develop singularities at the poles. Treating

the poles as a boundary, taking into consideration the total derivatives, the ‘bulk’ action

can be shown to be supersymmetric. The case T 2 ×M2 for an arbitrary two-dimensional

Riemannian manifold M2 is treated in section 5.4 and the local existence of Killing spinors

is shown. Section 5.5 presents an example of a conformally flat four-manifold.

The backgrounds T 2 × S2 and T 2 ×H2 have a non-vanishing Weyl tensor and do not

belong to the list of examples considered explicitly in [11]. Moreover for the S1 × S3, the

S1 ×H3, as well as the example in section 5.5, all of which have a vanishing Weyl tensor,
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we will present solutions to the Killing spinor equations which violate the conditions in [11]

and only allow for N < 4 supersymmetries.

Our Euclidean spinor conventions are further explained in appendix A.

2 Rigid supersymmetry in Riemannian space

We will work in a Riemannian space M4 parameterized by coordinates xm, m = 1, . . . , 4.

The starting point of the supersymmetry analysis is the set of Killing spinor equations

of [11]. In our spinor conventions, which are further explained in appendix A, these read:

∇mζ +Mγmξ + 2bmζ + bnγnmζ = 0

∇mξ − M̄γmζ − 2bmξ − bnγnmξ = 0 ,
(2.1)

in a given background defined by the metric and the fields (bm,M, M̄). In the following

we take bm to be a complex one-form on M4 and M , M̄ to be independent complex

scalars. Note that in the case of Minkowski signature, taking bm to be imaginary and

setting M̄ =M∗ the second line above is the complex conjugate of the first line. However

in Euclidean signature the spinors ζ, ξ are Weyl pseudoreal of opposite chirality; contrary

to the case in Minkowski signature, they are independent and can never be related to each

other by complex conjugation.

The globally supersymmetric Lagrangian can be obtained by evaluating the off-shell

supergravity Lagrangian of [12] on a background that allows for solutions of (2.1) and

setting the gravitino fields to zero. The passage to Euclidean space can be performed

by proper Wick rotation, see e.g. [13]; instead for the following we have constructed the

Lagrangian from scratch. Up to terms quartic in the fermions, the resulting Lagrangian is

given by

L = −
(
1
6R+ 4MM̄ − 4bmb

m
)
K − gi̄

(
∂mφ

i∂mφ̄̄ + F iF̄ ̄
)

+ gi̄ ψ̃
̄ γm(∇mψ

i + Γi
jkψ

j∂mφ
k)− 1

2Kij̄ F̄
̄ ψ̃iψj − 1

2Kīı̄ F
i ψ̃ı̄ψ̄

+ 2
(
MKiF

i + M̄Kı̄F̄
ı̄
)
+MKijψ̃

iψj + M̄Kı̄̄ψ̃
ı̄ψ̄

+ bm
(
2Ki ∂mφ

i − 2Kı̄ ∂mφ̄
ı̄ −Ki̄ ψ̃

̄γmψ
i
)

+ 3
(
M̄W +MW̄

)
− 1

2

(
F iWi + F̄ ı̄W̄ı̄

)
− 1

4

(
Wij ψ̃

iψj + W̄ı̄̄ ψ̃
ı̄ψ̄
)

+∇mVm(φ, φ̄, ψ, ψ̄, F, F̄ ) , (2.2)

with ‘holomorphic’ superpotential W (φi), W̄ (φ̄ı̄), ‘Kähler potential’ K(φi, φ̄ı̄), and the

standard notation Ki ≡ ∂φiK, gi̄ ≡ Ki̄, Γ
i
jk ≡ gīıKjkı̄. The background fields (bm,M, M̄)

have no dynamics and no kinetic terms, while the dynamical fields are given by n pairs

of chiral multiplets (φi, ψi), (φ̄ı̄, ψı̄), i, ı̄ = 1, . . . , n, together with auxiliary fields (F i, F̄ ı̄).

We have also added a total derivative to the Lagrangian, where the vector Vm depends a

priori on all dynamical and auxiliary fields.

We emphasize that the complex scalars φi, φ̄ı̄ are independent and not related by com-

plex conjugation. Similarly, ψi, ψı̄, are independent pseudoreal Weyl spinors of opposite
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chirality. The resulting Lagrangian (2.2) is not real, as usual in Euclidean supersymmetry,

see e.g. [13–16].

Under the rigid supersymmetry transformations given by

δφi = −ζ̃ψi ,

δφ̄ı̄ = −ξ̃ψı̄ ,

δF i = ξ̃γm∇mψ
i − 2M̄ ζ̃ψi − bmξ̃γmψ

i ,

δF̄ ı̄ = −ζ̃γm∇mψ
ı̄ − 2M ξ̃ψı̄ − bmζ̃γmψ

ı̄ ,

δψi = γmξ ∂mφ
i + F i ζ ,

δψı̄ = −γmζ ∂mφ̄ı̄ + F̄ ı̄ ξ , (2.3)

the Lagrangian is invariant up to the following total derivative:

δL = ∇m (Im + δVm) ,

Im ≡ Ki̄

(
ζ̃γmnψ

i ∂nφ̄̄ + ξ̃ψ̄ ∂mφ
i + ζ̃γmψ

̄F i
)
+ 2bm

(
Kı̄ ξ̃ψ

ı̄ −Ki ζ̃ψ
i
)

+ 2
(
MKi − 1

4Wi

)
ξ̃γmψ

i − 2
(
M̄Kı̄ − 1

4W̄ı̄

)
ζ̃γmψ

ı̄ , (2.4)

provided the supersymmetry parameters ζ, ξ satisfy the Killing spinor equations (2.1). Let

us further note that the integrability of (2.1) gives rise to the relations

{
−1

2 R+ 12 (bmbm + 2MM̄)− 6∇mb
m
}
ζ + 6 γmξ ∂mM = 0 ,

{
−1

2 R+ 12 (bmbm + 2MM̄) + 6∇mb
m
}
ξ − 6 γmζ ∂mM̄ = 0 , (2.5)

which play a crucial role in verifying the invariance of the action (2.2) under (2.3).

For a given background (gmn, b
m,M, M̄), every solution to the system (2.1) defines

a rigid supersymmetry of the Lagrangian (2.2). It has been reported in [11] that the

existence of N = 4 independent solutions of (2.1) results in rather strong constraints on

the background fields.2 More precisely, the background has to satisfy

Mbm = M̄bm = 0 = ∂mM = ∂mM̄ , ∇mbn = 0 ,

Rmn + 8
(
bmbn − gmnb

kbk

)
− 12gmnMM̄ = 0 , Wmnkl = 0 . (2.6)

In particular, in this case the four-dimensional background metric gmn is necessarily con-

formally flat. The solutions of (2.6) have been further studied in [17]. In contrast, the

examples we present in this paper also include backgrounds that only allow for N < 4

independent solutions of (2.1), in particular geometries with non-vanishing Weyl tensor

and backgrounds with non-trivial (bm,M, M̄).

2To avoid any confusion, let us restate that in this notation by N we count the number of supercharges.

E.g. minimal supersymmetry in Minkowski space corresponds to N = 4 independent solutions of (2.1)

(usually referred to as N = 1). In contrast, most of the backgrounds considered in the following only allow

for N < 4 supercharges.
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Finally, the auxiliary fields F i and F̄ ̄ can be integrated out from the Lagrangian (2.2)

upon using their field equations, leading to

L = −gi̄ ∂mφi∂mφ̄̄ + gi̄ ψ̃
̄ γm(∇mψ

i + Γi
jkψ

j∂mφ
k)

+
(
MKij − 1

4Wij − (MKk − 1
4Wk)Γ

k
ij

)
ψ̃iψj

+
(
M̄Kı̄̄ − 1

4W̄ı̄̄ − (M̄Kk̄ − 1
4W̄k̄)Γ

k̄
ı̄̄

)
ψ̃ı̄ψ̄

+bm
(
2Ki ∂mφ

i − 2Kı̄ ∂mφ̄
ı̄ −Ki̄ ψ̃

̄γmψ
i
)

−
(
1
6R+ 4MM̄ − 4bmb

m
)
K + 3

(
M̄W +MW̄

)
+ 4gi̄

(
MKi − 1

4Wi

) (
M̄Kı̄ − 1

4W̄ı̄

)

+∇mVm . (2.7)

The off-shell supergravity Lagrangian is invariant under combined Kähler-Weyl transforma-

tions. Putting the theory on a fixed classical background as we have done above, generically

breaks this invariance. As was shown in [11], however, the Lagrangian (2.2) is invariant

under the transformations:

K(φ, φ̄) → K(φ, φ̄) + f(φ) + f̄(φ̄)

W (φ) →W (φ) + 4Mf(φ)

W̄ (φ̄) → W̄ (φ̄) + 4M̄f̄(φ̄) ,

(2.8)

provided the background satisfies:

− 1

24
R+ bmbm + 2MM̄ = 0 , ∇mbm = 0 . (2.9)

It is known for example that the N = 4 AdS4 background indeed satisfies the above condi-

tions and hence is invariant under transformations (2.8). This has far-reaching implications

for the target space of the sigma model [8]: a simple argument shows that in this case the

Kähler form of the target space is exact (assuming there are no divergences in the scalar

potential) which in its turn implies that the target space is non-compact.

When the background is a Riemannian manifold, which is the case we are considering

here, the fields φi and φ̄ı̄ are not related by complex conjugation; the transformations (2.8)

are not strictly-speaking Kähler transformations and the previous argument concerning the

exactness of the Kähler form does not go through.

Conditions (2.9) are closely related to the integrability conditions (2.5). Indeed, by

using the methods of section 3 below, (2.9) can be seen to be equivalent to the following

set of equations:

u · ∂M = u · ∂M̄ = 0

− 1

24
R+ bmb

m + 2MM̄ =
1

4
eA−Bv · ∂M̄ − 1

4
eB−Av∗ · ∂M

∇mbm =
1

2
eA−Bv · ∂M̄ +

1

2
eB−Av∗ · ∂M ,

(2.10)

where A, B and u, v are defined below in (3.1) and (3.2) respectively. Hence if the back-

ground obeys conditions (2.9) for invariance under euclidean ‘Kähler’ transformations (2.8),

– 5 –
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it follows from (2.10) that

u · ∂M = v∗ · ∂M = 0 , u · ∂M̄ = v · ∂M̄ = 0 . (2.11)

Conditions (2.11) can be thought of as locally imposing the ‘holomorphy’ of M , M̄ with

respect to two suitable almost complex structures on the four-dimensional Riemannian

manifold M4.
3

3 Trivial G-structure

In the following, we will analyze the set of Killing-spinor equations (2.1) and its solutions,

using a suitable G-structure; this section closely follows section B.1 of [19].

For generic backgrounds, the pair of Weyl spinors ζ, ξ which enter the Killing-spinor

equations are both locally non-vanishing; we may parameterize them as follows:

ζ = eA η , ξ = eB χ , (3.1)

where η, χ are unimodular Weyl spinors of opposite chirality. Moreover we can choose

without loss of generality the phases of η, χ so that A, B ∈ R.

For the purposes of the following analysis it will be convenient to assume that η, χ are

commuting; this we are free to do since the Killing-spinor equations (2.1) are linear. Note

however that the fermions appearing in the Lagrangian (2.2) are anticommuting.

From spinors to forms. The pair of unimodular Weyl spinors η, χ locally trivializes

the tangent bundle of M4, so that on open sets the structure group reduces to 1. This can

also be seen by constructing a pair of complex vectors:

um = η̃γmχ ; vm = η̃γmχc . (3.2)

As can be proven by Fierzing, the four real vectors Reu, Imu, Rev, Imv are unimodular

and mutually orthogonal; hence they provide an explicit local trivialization of the tangent

bundle TM4.

Let us also mention that in deriving the general solution to the Killing spinor equations,

it will be useful to take the following relations into account:

γmη = vmχ− umχ
c

γmη
c = v∗mχ

c + u∗mχ

γmχ = v∗mη + umη
c

γmχ
c = vmη

c − u∗mη ,

(3.3)

which can be shown by Fierzing.

3
M4 need not admit a global almost complex structure, as for example in the case M4 = S4 reviewed

in section 5.2.
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From forms to spinors. We have seen how one can go from the description in terms of

the Weyl spinors η, χ, to a description in terms of the orthonormal frame u, v built from the

spinor bilinears in (3.2). The converse is also (locally) true: given the orthonormal frame u,

v, one can construct the corresponding Weyl spinors η, χ, by ‘inverting’ (3.3). For example,

by contracting (3.3) with the orthonormal frame, we obtain the following projections:

vmγ
mη = umγ

mη = 0

v∗mγ
mχ = umγ

mχ = 0 .
(3.4)

These, together with the unimodularity conditions

η†η = χ†χ = 1 , (3.5)

determine η, χ up to phase which can then be fixed by taking (3.2) into account. This

procedure will be carried out for the examples in section 5, in order to give the explicit

form of the Killing spinors.

Torsion classes. The torsion classes of the (trivial) structure of TM4 parameterize the

failure of η, χ to be covariantly constant. Explicitly, we define the torsion classes W
(i)
m ,

i = 1, . . . 4, via:

∇mη =W (1)
m η +W (2)

m ηc

∇mχ =W (3)
m χ+W (4)

m χc ,
(3.6)

where W (2,4) are complex one-forms, and W (1,3) are imaginary one-forms; the latter prop-

erty follows from the definition (3.6) upon taking the unimodularity of η, χ into account.

Let us also note that alternatively the torsion classes can be defined in terms of the

exterior derivatives of u, v. Indeed, from eq. (3.6) we have, upon taking definition (3.2)

into account:

du = (W (1) +W (3)) ∧ u+W (4) ∧ v −W (2) ∧ v∗

dv = (W (1) −W (3)) ∧ v −W (4)∗ ∧ u+W (2) ∧ u∗ .
(3.7)

We now proceed by decomposing all forms on the basis of u, v — which can also be

thought of as one-forms given the existence of a metric on M4.
4 Explicitly, for i = 1, . . . , 4

we decompose:

W (i) = 1
2(u

∗W (i)
u + v∗W (i)

v + uW
(i)
u∗ + vW

(i)
v∗ ) , (3.8)

where W
(i)
u W

(i)
v , W

(i)
u∗ , W

(i)
v∗ are complex scalars such that W

(i)
u = u ·W (i), etc. Moreover,

the fact that W (1,3) are imaginary implies:

W
(i)
u∗ = −W (i)∗

u ; W
(i)
v∗ = −W (i)∗

v , (3.9)

for i = 1, 3.

4In the following we will use the same notation for both the vectors and the one-forms.
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Taking the above decompositions into account, eqs. (3.7) can be rewritten as:

2du=−(W (1)
u +W (3)

u )u ∧ u∗ − (W (1)
v +W (3)

v +W
(2)
u∗ )u ∧ v∗ (3.10)

+(W (1)
v +W (3)

v +W
(4)∗
u∗ )∗u ∧ v −W (4)

u v ∧ u∗ − (W (4)
v +W

(2)
v∗ )v ∧ v∗ −W (2)

u u∗ ∧ v∗

2dv =−(W (1)
u −W (3)

u −W
(2)
v∗ )v ∧ u∗ − (W (1)

u −W (3)
u −W (4)

v )∗u ∧ v
−(W (1)

v −W (3)
v )v ∧ v∗ + (W

(2)
u∗ +W

(4)∗
u∗ )u ∧ u∗ −W (2)

v u∗ ∧ v∗ +W
(4)∗

v∗ u ∧ v∗ .

Recasting the Killing spinor equations. Similarly to the decompositions for the

torsion classes, the complex one-form b can be decomposed as:

b = 1
2(u

∗bu + v∗bv + ubu∗ + vbv∗) , (3.11)

where bu, bv, bu∗ , bv∗ , are a priori independent complex scalars. We also need the decom-

positions of the derivatives of the real scalars A, B:

dA = 1
2 (u

∗(dA)u + v∗(dA)v + c.c.)

dB = 1
2 (u

∗(dB)u + v∗(dB)v + c.c.) ,
(3.12)

where (dA)u, (dA)v, (dB)u, (dB)v, are complex scalars.

We are now ready to give the general solution to the Killing spinor equations, by

plugging the above expansions into (2.1), taking eq. (3.3) into account. Explicitly, the

Killing spinor equations are equivalent to the following set of conditions:

W̃ (1)
u = −bu

W̃ (1)
v = −2N − bv

W̃
(1)
u∗ = −3bu∗

W̃
(1)
v∗ = −3bv∗

W (2)
u = 0

W (2)
v = 0

W
(2)
u∗ = −2N + 2bv

W
(2)
v∗ = −2bu (3.13)

W̃ (3)
u = bu

W̃ (3)
v = 3bv

W̃
(3)
u∗ = 3bu∗

W̃
(3)
v∗ = 2N̄ + bv∗

W (4)
u = 0

W (4)
v = −2bu

W
(4)
u∗ = −2N̄ + 2bv∗

W
(4)
v∗ = 0 ,

– 8 –
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where we have defined the complexified torsion classes (recall that W (1), W (3) are imagi-

nary):

W̃ (1) :=W (1) + dA , W̃ (3) :=W (3) + dB (3.14)

and

N := eB−AM , N̄ := eA−BM̄ . (3.15)

We have thus reexpressed the Killing spinor equations, i.e. the conditions for the back-

ground to be supersymmetric, as a set of constraints on the torsion classes of the local

trivial G structure of TM4.

The above system of equations can be usefully rewritten in an equivalent way as follows:

W
(2)
u∗ = −2N + 2bv

W̃ (3)
u = bu

W̃ (3)
v = 3bv

W̃
(3)
u∗ = 3bu∗

W̃
(3)
v∗ = 2N̄ + bv∗

W
(4)
u∗ = −2N̄ + 2bv∗

W (2)
u = 0

W (2)
v = 0

W (4)
u = 0

W
(4)
v∗ = 0

W (1)
u +W (3)

u = 0

W
(2)
v∗ −W (4)

v = 0

W
(2)
u∗ +W

(4)∗
u∗ − 2(W (1)

v +W (3)
v ) = 0

W (4)
v + 2W (3)

u = −2u · dB
W

(2)
u∗ −W

(4)∗
u∗ = 2v · d(A+B)

u · d(A+B) = 0 .

(3.16)

One strategy for solving the above equations is the following: Given a four-manifold M4

with a specified geometry and an orthonormal frame u, v locally trivializing T ∗M4, the

torsion classes W (i), i = 1, . . . , 4, can be read off of eqs. (3.7). The first six of eqs. (3.16)

can then be used to solve for N , N̄ and the four complex components of bm, in terms of

the torsion classes. The remaining ten complex equations then impose constraints on the

torsion classes and on the derivatives of A, B.
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In other words, given a four-manifold M4 with a geometry such that the last ten of

eqs. (3.16) are satisfied, there is no obstruction to solving the remaining equations in (3.16).

Hence the last ten of eqs. (3.16) are necessary and sufficient conditions for obtaining a rigid

supersymmetric background. Using (3.7), these necessary and sufficient conditions can be

rephrased equivalently in terms of exterior differentials of the orthonormal frame as follows:

u ∧ v ∧ du = 0

u ∧ v∗ ∧ du = 0

v ∧ v∗ ∧ du = 0

u ∧ v ∧ dv = 0

u∗ ∧ v ∧ dv = 0

u ∧ v ∧ d(e2Bv∗) = 0

u ∧ [Im(v∗ ∧ dv)] = 0

u ∧ v ∧ v∗ ∧ d(A+B) = 0

v ∧ [v∗ ∧ dv − Re(u∗ ∧ du)] = 0

v ∧
[
u∗ ∧ du− u ∧ e2(A+B)d(e−2(A+B)u∗)

]
= 0 .

(3.17)

In section 5 we will look at several backgrounds which satisfy the above conditions.

4 SU(2) structure

Backgrounds for which M = 0 or M̄ = 0 allow for one of the two Weyl spinors ζ, ξ to

vanish identically. In the following we will assume that

M̄ = 0 , (4.1)

with a similar analysis for M = 0. In this case the second of the Killing spinor equations

in (2.1) admits the solution

ξ = 0 . (4.2)

The non-vanishing spinor ζ can be used to define a local SU(2) structure. Indeed, let

us parametrize

ζ = eAη , (4.3)

as in (3.1). The unimodular, Weyl spinor η defines a local SU(2) structure on M4. This

can be seen explicitly by constructing a real two-form J and a complex two-form ω on M4

as spinor bilinears:

Jmn = iη̃γmnη
c ; ωmn = −iη̃γmnη . (4.4)

The pair (J, ω) defined above, can be seen by Fierzing to obey the definition of an SU(2)

structure:

J ∧ ω = 0 ; J ∧ J =
1

2
ω ∧ ω∗ 6= 0 . (4.5)
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On M4 there is an almost complex structure, which can be given explicitly in terms of

the projectors:
(
Π±
)
m

n :=
1

2
(δm

n ∓ iJm
n) . (4.6)

Any one-form V can thus be decomposed into (1,0) and (0,1) parts V +, V − with respect

to the almost complex structure via:

V ±
m :=

(
Π±
)
m

nVn . (4.7)

For our definition of torsion classes we follow closely appendix B of [19]. We define the

torsion classes W
(i)
m , i = 1, 2, via:

∇mη =W (1)
m η +W (2)

m ηc , (4.8)

where as before W (2) is a complex one-form, and W (1) is an imaginary one-form. Alterna-

tively the torsion classes can be defined in terms of the exterior derivatives of J , ω. Indeed,

from eq. (4.8) we have, upon taking definition (4.4) into account:

dJ =W (2)∗ ∧ ω +W (2) ∧ ω∗

dω = 2W (1) ∧ ω − 2W (2) ∧ J .
(4.9)

As already mentioned, the spinor η further reduces the structure of TM4 from

Spin(4) ∼= SU(2)× SU(2)′ (which is accomplished by the existence of a Riemannian metric

on M4) to SU(2). The spinors η, ηc are singlets under the first SU(2) factor, whereas they

transform as an SU(2)′ doublet under the second factor. Moreover there is an alternative

SU(2)′-covariant description of the SU(2) structure on TM4 and its associated torsion

classes, which can be seen as follows: Let us define a triplet of real two-forms Ji, and a

triplet of real one-forms Wi, i = 1, 2, 3, via

(J1, J2, J3) := (J,Reω,−Imω) ; (W1,W2,W3) := (ImW (1), ImW (2),−ReW (2)) . (4.10)

It can be seen that the Ji’s transform as a triplet of SU(2)′, and moreover eqs. (4.9) can

be cast in an SU(2)′-covariant form:

dJm = 2εmnpWn ∧ Jp . (4.11)

We may use this SU(2)′ gauge freedom to rotate the torsion classes in eq. (4.9) to a more

standard form, as in [21].

In terms of the SU(2) structure the remaining Killing spinor equation, the first line

of (2.1), can be reformulated equivalently as the following set of constraints on the tor-

sion classes:

0 =W (1)+ + dA+ + 3b+

0 =W (1)− + dA− + b−

0 =W (2)+ − iω · b
0 =W (2)− .

(4.12)

In the above dA±, W (i)±, b±, are all defined as in (4.7); ω · b is a shorthand for dxmωmnb
n.
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Equations (4.12) can be compared to the ones derived in section 3 as follows. We

introduce an auxiliary unimodular Weyl spinor χ of opposite chirality to η. The pair (η, χ)

defines a local trivialization which permits us to recast the SU(2) structure in terms of

the local orthonormal coframe (u, v) introduced previously. Explicitly, the equations (4.4)

become:

J =
i

2
(u ∧ u∗ + v ∧ v∗) ; ω = −iu ∧ v . (4.13)

Moreover, it can be seen that the equations in (4.12) are identical to the first half of the

equations in (3.13) for the case where N = 0.

Global considerations. As we have already emphasized the construction of the G-

structure is local, both in the trivial and in the SU(2) case. In particular the existence of

local Killing spinors does not imply their global existence. A well-known example is the

case of Killing spinors in hyperbolic spaces: although Killing spinors can be constructed

on Hn [22], they do not survive globally on compact quotients Hn/Γ, where Γ is a discrete

subgroup of SO(1, n).

After constructing the supersymmetric solution using the local G-structure approach,

one would have to check whether or not the solution can be extended globally. This means

in particular that one would have to check that the Dirac spinor ζ + ξ can be extended to

a global section of the Dirac bundle over M4.

5 Examples

Let us now illustrate the method using explicit examples of four-manifolds. The first

example we consider is that of a K3 surface. Moreover, we will consider backgrounds of

the form M4 = T d × S4−d and M4 = T d × H4−d, for d = 0, 1, 2 (the cases d = 3, 4 will

not be considered since they lead to flat four-dimensional space). In all the cases except

for T 2 × S2 the solution extends globally on M4, i.e. all these backgrounds possess global

Killing spinors. In the case of T 2 × S2 the background fields develop singularities at the

poles. Treating the poles as a boundary, taking into consideration the total derivatives,

the ‘bulk’ action can be shown to be supersymmetric.

Since the topology of hyperbolic space Hd is that of a d-dimensional ball, its boundary

is a (d − 1)-dimensional sphere. It follows that for the examples of the form M4 = T d ×
H4−d the supersymmetry variation of the Lagrangian contains boundary contributions

(total derivatives) in general. In the following we will simply assume that the dynamical

fields in the Lagrangian (2.2) vanish sufficiently fast at the boundary so that the action

remains supersymmetric.

In section 5.4 we will consider the background M4 = T 2 × M2 for general two-

dimensional Riemannian manifolds M2. We will show that the necessary and sufficient

conditions are satisfied, implying the local existence of solutions to the Killing spinor equa-

tions. Section 5.5 considers a conformally flat M4.

The backgrounds T 2 × S2 and T 2 ×H2 have a non-vanishing Weyl tensor and do not

belong to the list of examples considered explicitly in [11]. Moreover for the S1 × S3, the

S1 ×H3, as well as the example in section 5.5, all of which have a vanishing Weyl tensor,
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we will present solutions to the Killing spinor equations which violate the conditions (2.6)

and therefore only allow for N < 4 supersymmetries.

Scale transformations. In all the examples that follow, we fix the overall ‘radius’ L

of the four-dimensional metric to L = 1. In order to reinstate the scale L it suffices to

perform the following redefinitions:

• four-dimensional metric: ds2 −→ L2ds2

• vierbein: em
a −→ Lem

a

• orthonormal frame: (u, v) −→ L(u, v)

• background fields: (M, M̄) −→ L−1(M, M̄)

Everything else: the coordinates xm, the Killing spinors ζ, ξ, the warp factors A, B, the

background field b and the torsion classes W i, i = 1, . . . , 4, all stay invariant. Of course

the individual components of the invariant one-forms: bu,W
i
u etc, scale like L−1.

5.1 M4 = K3

This is the most straightforward solution to the Killing spinor equations (2.1) and is a

special case of the class of solutions with SU(2) structure of section 4. It is obtained by

setting one of the two spinors to zero, ξ = 0 as in (4.2), while taking the spinor of the

opposite chirality to be the covariantly constant spinor of the K3 surface:

∇mζ = 0 . (5.1)

The warp factor A is constant, the background fields b, M̄ and all torsion classes vanish

identically so that the equations (4.12) are trivially satisfied. The integrability condi-

tions (2.5) are also identically satisfied, as of course they should, by virtue of the Ricci-

flatness of K3. Finally, we note that M remains an a priori unconstrained background

scalar in the Lagrangian (2.2).

Let us also mention that this example trivially satisfies the conditions (2.9) and is

therefore invariant under the euclidean ‘Kähler’ transformations (2.8).

5.2 M4 = T d × S4−d

In this section we consider backgrounds of the form M4 = T d × S4−d, for d = 0, 1, 2. The

case d = 0 is well-known and belongs to the examples presented in [11]; we mention it here

for completeness and in order to facilitate comparison with different conventions in the

literature. For the cases d = 1, 2 we will present solutions to the Killing spinor equations

which violate the conditions (2.6) and therefore only allow for N < 4 supersymmetries.

Let us also mention that, as it is easy to check, the cases d = 0, 1 (but not the case

d = 2) satisfy the conditions (2.9) and are therefore invariant under the euclidean ‘Kähler’

transformations (2.8).
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M4 = S
4. In this case the line element of M4 reads:

ds2 = dθ24 + sin θ4dθ
2
3 + sin θ4 sin θ3dθ

2
2 + sin θ4 sin θ3 sin θ2dθ

2
1 , (5.2)

with the orthonormal frame given by

u = e−iθ1 sin θ4
[
(cos θ3 + i sin θ3 cos θ2) sin θ3 sin θ2dθ1

− (sin θ3 − i cos θ3 cos θ2) sin θ3dθ2 + i sin θ2dθ3
]

v = − idθ4 + sin θ4 [cos θ2dθ3 − sin θ3 sin θ2(cos θ3dθ2 + sin θ3 sin θ2dθ1)] .

(5.3)

It is then straightforward to see that the necessary and sufficient conditions (3.17) are

indeed satisfied if we take:

eA =
√
2 cos

θ4
2

; eB =
√
2 sin

θ4
2
. (5.4)

The torsion classes of M4 can be read off using (5.3), (3.10):

W 1 = i sin2
θ4
2

[
cos θ2dθ3 − sin θ2 sin θ3(sin θ2 sin θ3dθ1 + cos θ3dθ2)

]

W 2 = −e−iθ1 sin2
θ4
2

[
sin θ2dθ3

+ sin θ3
(
[cos θ2 sin θ3 − i cos θ3]dθ1 sin θ2 + [cos θ2 cos θ3 + i sin θ3]dθ2

)]

W 3 = i cos2
θ4
2

[
cos θ2dθ3 − sin θ2 sin θ3(sin θ2 sin θ3dθ1 + cos θ3dθ2)

]

W 4 = e−iθ1 cos2
θ4
2

[
sin θ2dθ3

+ sin θ3
(
[cos θ2 sin θ3 − i cos θ3]dθ1 sin θ2 + [cos θ2 cos θ3 + i sin θ3]dθ2

)]
.

(5.5)

Moreover from the first six equations in (3.16) we can determine the background fields:

M = −M̄ = − i

2
, b = 0 . (5.6)

As described in section 3, from the above we can also read off the explicit form of the

Killing spinors obeying (2.1). We will use the explicit gamma matrix basis (A.6), (A.7),

while the coordinate system is given by (x1, . . . , x4) = (θ1, . . . , θ4). With these conventions,

the Killing spinors are given by:

ζ =




e−
i
2
(θ1−θ3) cos θ2

2 cos θ4
2

−ie− i
2
(θ1+θ3) sin θ2

2 cos θ4
2

0

0


 , ξ =




0

0

e−
i
2
(θ1−θ3) cos θ2

2 sin θ4
2

−ie− i
2
(θ1+θ3) sin θ2

2 sin θ4
2


 . (5.7)

This result can also be seen directly from the Killing spinor equations (2.1), by taking (5.6)

into account. The above expressions are identical to the ones for the Killing spinors con-

structed explicitly in [20].5

5This example possesses extended N = 4 supersymmetry so there is in fact a four-dimensional space

of Killing spinors. The expressions in (5.7) correspond to the particular choice ǫ0 = (1, 0, 0, 0) in [20] (cf.

appendix B therein).

– 14 –



J
H
E
P
0
5
(
2
0
1
2
)
1
3
2

M4 = S
1 × S

3. In this case the line element of M4 reads:6

ds2 = dθ23 + sin2 θ3dθ
2
2 + sin2 θ3 sin

2 θ2dθ
2
1 + dx2 . (5.10)

The orthonormal frame is given by

u = −e−iθ1
[
(cos θ3 + i sin θ3 cos θ2) sin θ3 sin θ2dθ1

− (sin θ3 − i cos θ3 cos θ2) sin θ3dθ2 + i sin θ2dθ3
]

v = idx− cos θ2dθ3 + sin θ3 sin θ2(cos θ3dθ2 + sin θ3 sin θ2dθ1) .

(5.11)

It is then easy to see that the necessary and sufficient conditions (3.17) are indeed satisfied

if we take:

A = B = 0 . (5.12)

The torsion classes of M4 can be read off using (5.11), (3.10):

W 1 =W 3 = − i

2
Re(v)

W 2 = −W 4 = − i

2
u .

(5.13)

Moreover from the first six equations in (3.16) we can determine the background fields:

M = −M̄ =
i

3
, b = −1

6
dx . (5.14)

As described in section 3, from the above we can also read off the explicit form of the

Killing spinors obeying (2.1). We will use the explicit gamma matrix basis (A.6), (A.7),

while the coordinate system is given by (x1, x2, x3, x4) = (θ1, θ2, θ3, x). With these conven-

tions, the Killing spinors are given by:

ζ =




e−
i
2
(θ1−θ3) cos θ2

2

−ie− i
2
(θ1+θ3) sin θ2

2

0

0


 , ξ =




0

0

−e− i
2
(θ1−θ3) cos θ2

2

ie−
i
2
(θ1+θ3) sin θ2

2


 . (5.15)

6It is well-known (see e.g. [11]) that this geometry admits N = 4 supersymmetries. This is achieved by

taking:

M = M̄ = 0 , b =
1

2
dx . (5.8)

The Killing spinors obeying (2.1) then read:

ζ = e
−x











c1e
−

i

2
(θ1+θ3) cos θ2

2
− ic2e

i

2
(θ1−θ3) sin θ2

2

c2e
i

2
(θ1+θ3) cos θ2

2
− ic1e

−
i

2
(θ1−θ3) sin θ2

2

0

0











, ξ = e
x











0

0

c3e
−

i

2
(θ1+θ3) cos θ2

2
− ic4e

i

2
(θ1−θ3) sin θ2

2

c4e
i

2
(θ1+θ3) cos θ2

2
− ic3e

−
i

2
(θ1−θ3) sin θ2

2











(5.9)

where c1, . . . , c4 are arbitrary constants. Note that these are not periodic in x and hence not globally-

defined. As is explained in [11], this problem can be circumvented by using the formalism of ‘new minimal

supergravity’ [18], and therefore solving a modified version of the Killing spinor equations. Here we will

present instead a different background with N < 4 supersymmetry.
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This result can also be seen directly from the Killing spinor equations (2.1), by taking (5.14)

into account. Let us finally note that although this background is conformally flat, the

background fields (5.14) do not satisfy the conditions (2.6), showing that this background

does not admit N = 4 unbroken supersymmetries, although an N = 2 supersymmetry can

be made manifest.

M4 = T
2 × S

2. In this case the line element of M4 reads:

ds2 = dθ2 + sin2 θdϕ2 + dx2 + dy2 , (5.16)

with the orthonormal frame given by

u = dx+ idy , v = dθ + i sin θdϕ . (5.17)

It is then easy to see that the necessary and sufficient conditions (3.17) are indeed satisfied

if we take:7

A = B = 0 . (5.18)

The torsion classes of M4 can be read off using (5.17), (3.10). The only non-zero ones are:

W 1 = −W 3 = − i

2
cos θdϕ . (5.19)

Moreover from the first six equations in (3.16) we can determine the background fields:

M = −M̄ = −1

6
cot θ , b =

i

6
cos θdϕ . (5.20)

As described in section 3, from the above we can also read off the explicit form of the

Killing spinors obeying (2.1). We will use the explicit gamma matrix basis (A.6), (A.7),

while the coordinate system is given by (x1, x2, x3, x4) = (x, y, ϕ, θ). With these conven-

tions, the Killing spinors are given by:

ζ = e
iπ
4




1

0

0

0


 , ξ = e−

iπ
4




0

0

1

0


 . (5.21)

This result can also be seen directly from the Killing spinor equations (2.1), by taking (5.20)

into account.

The description in terms of the coordinate system (ϕ, θ) breaks down at the north and

south poles θ = 0, π of S2. In order to verify the supersymmetry of the action, we shall

consider the poles as a boundary and examine the variation (2.4) explicitly, also taking

total derivatives into consideration. Substituting (5.20) in (2.4) we obtain:

δS =

∫ 2π

0
dϕ

∫ π

0
dθ

{
i

3
cot θ∂ϕ

[
Kı̄ξ̃ψ

ı̄ −Kiζ̃ψ
i + i(Kiξ̃γ3ψ

i +Kı̄ζ̃γ3ψ
ı̄)
]

− 1

3
∂θ

[
cos θ(Kiξ̃γ4ψ

i +Kı̄ζ̃γ4ψ
ı̄)
]
+ ∂ϕ

[
1

sin θ
δVϕ

]
+ ∂θ

[
sin θδVθ

]
+ · · ·

}
,

(5.22)

7More generally we could consider solutions of the equation A+B = 0, which leaves one of the functions

A, B undetermined; the general case will be treated in section 5.4.

– 16 –



J
H
E
P
0
5
(
2
0
1
2
)
1
3
2

where the ellipses stand for terms which do not depend on the background fields (M, M̄, bm).

Moreover, taking into account the supersymmetry variations (2.3) and the identities

ζ̃ = ξ̃γ4 = iξ̃γ3 , ξ̃ = ζ̃γ4 = −iζ̃γ3 , (5.23)

which follow from (5.21), (A.6), (A.7), equation (5.22) reduces to:

δS =

∫ 2π

0
dϕ

∫ π

0
dθ

{
∂ϕ

[
1

sin θ
δVϕ

]
+

1

3
∂θ

[
cos θδK + 3 sin θδVθ

]
+ · · ·

}
. (5.24)

Hence by choosing the vector Vm in the Lagrangian (2.2) as follows:

Vϕ = 0 , Vθ = −1

3
cot θK , (5.25)

the ‘bulk’ action (i.e. with the north and south poles removed) is supersymmetric, provided

the dynamical fields are regular everywhere on the two-sphere.

Finally, let us note that global U(1) rotations of the coframe:

u→ eicu , v → v , (5.26)

with c a constant phase, leave the metric and the background fields (M, M̄, bm) invari-

ant. This introduces a second arbitrary parameter (besides the overall scale of the Killing

spinors) to the space of solutions of the system of necessary and sufficient conditions (3.17),

making an N = 2 supersymmetry manifest. On the other hand, this background is not

conformally flat, thus according to (2.6) does not allow for N = 4 supersymmetries.

5.3 M4 = T d ×H4−d

In this section we consider backgrounds of the form M4 = T d × H4−d, for d = 0, 1, 2,

where Hd is the hyperbolic space in d dimensions. As in the previous section, for the

cases d = 1, 2 we will present solutions to the Killing spinor equations which violate the

conditions (2.6) and therefore only allow for N < 4 supersymmetries. Let us also mention

that, as it is easy to check, all the examples in this section satisfy the conditions (2.9) and

are therefore invariant under the euclidean ‘Kähler’ transformations (2.8).

M4 = H
4. In this case the line element of the hyperbolic space H4 reads:8

ds2 = dρ2 + e2ρ
(
dx2 + dy2 + dz2

)
, x, y, z, ρ ∈ R , (5.27)

with the orthonormal frame given by

u = eρ(dx+ idy) , v = dρ+ ieρ dz . (5.28)

8This coordinate system covers the entire hyperbolic space. It is related to the Poincaré coordinates

ds
2 =

1

w2

(

dw2 + dx2 + dy2 + dz2
)

, w > 0 ,

by the coordinate transformation w = e−ρ. The boundary of H4 is reached at ρ = ±∞ and has the

topology of S3. As already mentioned, we will assume that the dynamical fields in the Lagrangian (2.2)

vanish sufficiently fast at the boundary so that the action remains supersymmetric.
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It is then easy to see that the necessary and sufficient conditions (3.17) are indeed satisfied

if we take:

A = B =
ρ

2
. (5.29)

The torsion classes of M4 can be read off using (5.28), (3.10). The only non-zero ones are:

W 1 = −W 3 = − i

2
eρdz

W 2 = −W 4 =
1

2
eρ(dx+ idy) .

(5.30)

Moreover from the first six equations in (3.16) we can determine the background fields:

M = −M̄ = −1

2
, b = 0 . (5.31)

As described in section 3, from the above we can also read off the explicit form of the

Killing spinors obeying (2.1). We will use the explicit gamma matrix basis (A.6), (A.7),

while the coordinate system is given by (x1, x2, x3, x4) = (x, y, z, ρ). With these conven-

tions, the Killing spinors are given by:

ζ = e
ρ
2
+ iπ

4




1

0

0

0


 , ξ = e

ρ
2
− iπ

4




0

0

1

0


 . (5.32)

This result can also be seen directly from the Killing spinor equations (2.1), by taking (5.31)

into account. Let us also note that although we have only manifestly displayed one super-

charge, this example can be shown to possess N = 4 supersymmetry.

M4 = S
1 × H

3. As for the case of S1 × S3, the model we present here violates the

conditions (2.6) and hence only admits N < 4 supersymmetries although an N = 2 super-

symmetry can be made manifest. The line element of M4 reads:

ds2 = dρ2 + e2ρ
(
dx2 + dy2

)
+ dz2 , (5.33)

with the orthonormal frame given by

u = eρ(dx+ idy) , v = dρ+ idz . (5.34)

It is then easy to see that the necessary and sufficient conditions (3.17) are indeed satisfied

if we take:

A = B =
ρ

2
. (5.35)

The torsion classes of M4 can be read off using (5.34), (3.10). The only non-zero ones are:

W 2 = −W 4 =
1

2
eρ(dx+ idy) . (5.36)

Moreover from the first six equations in (3.16) we can determine the background fields:

M = −M̄ = −1

3
, b = − i

6
dz . (5.37)
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As described in section 3, from the above we can also read off the explicit form of the

Killing spinors obeying (2.1). We will use the explicit gamma matrix basis (A.6), (A.7),

while the coordinate system is given by (x1, x2, x3, x4) = (x, y, z, ρ). With these conven-

tions, the Killing spinors are given by:

ζ = e
ρ
2
+ iπ

4




1

0

0

0


 , ξ = e

ρ
2
− iπ

4




0

0

1

0


 . (5.38)

This result can also be seen directly from the Killing spinor equations (2.1), by taking (5.37)

into account.

M4 = T
2 × H

2. In this case the line element of M4 reads:

ds2 = dr2 + e2rdz2 + dx2 + dy2 , (5.39)

with the orthonormal frame given by

u = dx+ idy , v = dr + ierdz . (5.40)

It is then easy to see that the necessary and sufficient conditions (3.17) are indeed satisfied

if we take:

A = B = 0 . (5.41)

The torsion classes of M4 can be read off using (5.40), (3.10). The only non-zero ones are:

W 1 = −W 3 = − i

4
erdz . (5.42)

Moreover from the first six equations in (3.16) we can determine the background fields:

M = −M̄ = −1

6
, b =

i

6
erdz . (5.43)

As described in section 3, from the above we can also read off the explicit form of the

Killing spinors obeying (2.1). We will use the explicit gamma matrix basis (A.6), (A.7),

while the coordinate system is given by (x1, x2, x3, x4) = (x, y, z, r). With these conven-

tions, the Killing spinors are given by:

ζ = e
iπ
4




1

0

0

0


 , ξ = e−

iπ
4




0

0

1

0


 . (5.44)

This result can also be seen directly from the Killing spinor equations (2.1), by taking (5.43)

into account. Finally, let us mention that this example allows for U(1) coframe rotations

as in eq. (5.26) leaving all background fields invariant; for the reasons that were previously

explained, this shows that the theory is N = 2 supersymmetric.
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5.4 M4 = T 2 ×M2

Let us now consider the background M4 = T 2 × M2 for a general two-dimensional Rie-

mannian manifold M2. In this case the line element of M4 reads:

ds2 = u⊗ u∗ + v ⊗ v∗ , (5.45)

with u = dx1+ idx2 a complex one-form on T 2. Moreover we will take v to be independent

of the coordinates x1, x2 of T 2, so that

du = 0 ; dv = fv ∧ v∗ , (5.46)

for a function f of M2.
9 We will further assume that A, B are also functions of the

coordinates of M2, i.e. independent of x1, x2. It is then easy to see that the necessary and

sufficient conditions (3.17) are indeed satisfied if we take:

A+B = constant . (5.47)

Without loss of generality we will henceforth take the right-hand side above to be zero.

The torsion classes of M4 can be read off using (5.46), (3.10). The only non-zero ones are:

W 1 = −W 3 = i Im(f∗v) (5.48)

Finally, from the first six equations in (3.16) we can determine the background fields:

M=
1

3
e2A(f − v · dA) , M̄=−1

3
e−2A(f∗+v∗ · dA) , b =−1

3
[dA+ i Im(f∗v)] . (5.49)

Moreover, the form of the solution implies that

MM̄ − bmbm = 0 , (5.50)

is satisfied identically.

Explicit expressions for the background fields and the Killing spinors can also be ob-

tained as follows. We can always choose local coordinates so that

u = dx1 + idx2 , v = eφ(x3,x4)(dx4 + idx3) , (5.51)

where the function φ is related to f in (5.46) through

f = −1

2
(∂4φ+ i∂3φ)e

−φ . (5.52)

In this coordinate system the torsion classes read:

W 1 = −W 3 = − i

2
(dx3∂4φ− dx4∂3φ) , (5.53)

9Note that f is a scalar under diffeomorphisms, but is not invariant under SO(4) transformations of the

orthonormal frame.
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while the background fields are given by:

b = −1

6

[
dx3(2∂3A− i∂4φ) + dx4(2∂4A+ i∂3φ)

]

M = −1

6
e2A−φ(∂4 + i∂3)(φ+ 2A) , M̄ =

1

6
e−2A−φ(∂4 − i∂3)(φ− 2A) .

(5.54)

Finally, the Killing spinors read:

ζ = eA+ iπ
4




1

0

0

0


 , ξ = e−A− iπ

4




0

0

1

0


 . (5.55)

This result can also be seen directly from the Killing spinor equations (2.1), by taking (5.54)

into account.

The above analysis guarantees the existence of local Killing spinors on M4; it is im-

portant to note, however, that the global existence is not guaranteed a priori. Finally, let

us mention that this example allows for U(1) coframe rotations as in eq. (5.26) leaving all

background fields invariant; for the reasons that were previously explained, this shows that

the theory is N = 2 supersymmetric.

5.5 M4 conformally flat

We finally consider a conformally-flat background M4 such that the line element reads:

ds2 = e2φ(x3,x4)
(
dx21 + dx22 + dx23 + dx24

)
, (5.56)

for φ a function of x3, x4. The orthonormal frame given by

u = eφ (dx1 + idx2) , v = eφ (dx4 + idx3) . (5.57)

We will further assume that A, B are also functions of the coordinates of x3, x4. It is

then easy to see that the necessary and sufficient conditions (3.17) are indeed satisfied if

we take:

A+B = φ . (5.58)

The torsion classes of M4 can be read off using (5.57), (3.10). The only non-zero ones are:

W 1 = −W 3 =
i

2
(∂3φdx4 − ∂4φdx3)

W 2 =
1

2
(∂4φ+ i∂3φ)(dx1 + idx2)

W 4 = −1

2
(∂4φ− i∂3φ)(dx1 + idx2) .

(5.59)

Finally, from the first six equations in (3.16) we can determine the background fields:

b =
i

6
[∂3(φ− 2A)dx4 − ∂4(φ− 2A)dx3]

M = −1

3
e2(A−φ)(∂4 + i∂3)(A+ φ) , M̄ =

1

3
e−2A(∂4 − i∂3)(A+ φ) .

(5.60)
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Note that by taking A = B = φ/2 it follows from the equation above that we can set b = 0.

However, for general A, the one-form b is neither zero nor covariantly constant. Indeed, a

short calculation gives:

∇mbm = 4(∂3φ∂4A− ∂4φ∂3A) . (5.61)

We see that for general A, eqs. (5.60), (5.61) violate the conditions (2.6), showing that

this background does not allow for N = 4 independent supersymmetries. It does however

allow for U(1) coframe rotations as in eq. (5.26) leaving all background fields invariant;

this shows that the theory is N = 2 supersymmetric.

The Killing spinors read:

ζ = eA+ iπ
4




1

0

0

0


 , ξ = eφ−A− iπ

4




0

0

1

0


 . (5.62)

As already emphasized in the previous example, the above analysis guarantees the existence

of local Killing spinors on M4 however the global existence is not guaranteed a priori.

6 Conclusions

We have presented a systematic approach for the solution of the Killing spinor equations

in four-dimensional Riemannian space, whose solutions define the backgrounds on which

globally supersymmetric field theories can be formulated. The general globally supersym-

metric Lagrangian has been constructed directly in Euclidean signature from the outset,

without reference to any Wick rotation keeping track of potential boundary terms. We

have reformulated the conditions for rigid supersymmetry in Riemannian space in terms

of G-structures and given explicit expressions for the background fields in terms of the

torsion classes.

We have illustrated the formalism with several explicit examples which go beyond

the list of backgrounds discussed in [11, 17]. In particular, our examples include four-

dimensional backgrounds for which the Weyl tensor is non-vanishing, as well as examples

with vanishing Weyl tensor which violate the conditions (2.6) and therefore only allow for

N < 4 supersymmetries. As we have seen, the K3 and all the T d × S4−d and T d ×H4−d

examples, except for the case of T 2 × S2, satisfy the conditions (2.9) and are therefore

invariant under the euclidean ‘Kähler’ transformations (2.8).

We expect our analysis and results to be useful in extending the list of known rigid

supersymmetric theories in curved backgrounds. It would also be interesting to apply

these methods to the study of rigid supersymmetric theories in backgrounds of dimension

different than four.

A Spinors and gamma matrices in Euclidean spaces

In this section we list some useful relations and explain in more detail our spinor conventions

for general even-dimensional Euclidean spaces of dimension 2k.
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The charge conjugation matrix obeys:

CTr = (−)
1
2
k(k+1)C ; C∗ = (−)

1
2
k(k+1)C−1 ; γTrm = (−)kC−1γmC . (A.1)

The complex conjugate ηc of a spinor η is given by:

ηc := Cη∗ , (A.2)

from which it follows that:

(ηc)c = (−)
1
2
k(k+1)η . (A.3)

Covariantly-transforming spinor bilinears must be of the form (ψ̃γm1...mpχ), where in any

dimension we define:

ψ̃ := ψTrC−1 . (A.4)

One can also show the following useful identity:

γ∗m1...mp
= (−)kpC−1γm1...mpC . (A.5)

The case of four-dimensional Euclidean space is obtain by specializing to k = 2. The

chiral irreducible representation of Spin(4) is pseudoreal. This means that given a Weyl

spinor η, both η and its complex conjugate ηc have the same chirality.

For the explicit examples of section 5 we use the following flat-space gamma matrix

basis:

γi =

(
0 σi
σi 0

)
, γ4 =

(
0 i1

−i1 0

)
, (A.6)

where σi, i = 1, 2, 3, are the Pauli matrices. Moreover, in this basis the chirality and

charge-conjugation matrices read:

γ5 =

(
1 0

0 −1

)
, C =

(
−iσ2 0

0 iσ2

)
. (A.7)
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