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Abstract

We give existence results for solutions of the prescribed scalar curvature equation on S3, when the cur-
vature function is a positive Morse function and satisfies an index-count condition.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

Let S3 be the standard sphere with round metric g0 induced by S3 = ∂B1(0) ⊂ R
4. We study

the problem: Which functions K on S3 occur as scalar curvature of metrics g conformally equiv-
alent to g0? Writing g = ϕ4g0 and k(θ) := 1

6 (K(θ) − 6) this is equivalent to solving for t = 1
(see [3])

−8�S3ϕ + 6ϕ = 6
(
1 + tk(θ)

)
ϕ5, ϕ > 0 in S3. (1.1)

An obvious necessary condition for the existence of solutions to (1.1) is that the function K has
to be positive somewhere. Moreover, there are the Kazdan–Warner obstructions [7,16], which
imply in particular, that a monotone function of the coordinate function X1 cannot be realized as
the scalar curvature of a metric conformal to g0.

Numerous studies have been made on Eq. (1.1) and its higher dimensional analogue and
various sufficient conditions for its solvability have been found (see [2,4,6,11,12,17,18] and the
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Table 1
Degree for K1, K2, K3.

K1 K2 K3

±E1 �
S3K1(±E1) > 0 �

S3K2(±E1) > 0 �
S3K3(±E1) > 0

ind(K1,±E1) = 0 ind(K2,±E1) = 0 ind(K3,±E1) = 0

±E2 �
S3K1(±E2) < 0 �

S3K2(±E2) = 0 �
S3K3(±E2) > 0

ind(K1,±E2) = 1 ind(K2,±E2) = 1 ind(K3,±E2) = 1

±E3 �
S3K1(±E3) < 0 �

S3K2(±E3) < 0 �
S3K3(±E3) < 0

ind(K1,±E3) = 2 ind(K2,±E3) = 2 ind(K3,±E3) = 2

±E4 �
S3K1(±E4) < 0 �

S3K2(±E4) < 0 �
S3K3(±E4) < 0

ind(K1,±E4) = 3 ind(K2,±E4) = 3 ind(K3,±E4) = 3

d 1 ? −1

reference therein), usually under a nondegeneracy assumption on K . On S3 a positive function
K is nondegenerate, if

�K(θ) �= 0 if ∇K(θ) = 0. (nd)

For positive Morse functions K on S3 it is shown in [5,10,23] that (1.1) is solvable if K satisfies
(nd) and

d := −
(

1 +
∑

∇K(θ)=0,
�K(θ)<0

(−1)ind(K,θ)

)
�= 0, (1.2)

where ind(K, θ) is the Morse index of K at θ , i.e. the number of negative eigenvalues of the
Hessian. For example the simplest possible positive Morse function K = 2 + X1, where we
already know from the Kazdan–Warner obstructions, that there are no solutions, yields d = 0, as
the only critical point of K with negative Laplacian is the global maximum with Morse index 3.
Moreover, consider the functions Ki ∈ C∞(S3,R) defined by

K1(X) := 2X2
1 + 6X2

2 + 7X2
3 + 8X2

4,

K2(X) := 3X2
1 + 6X2

2 + 7X2
3 + 8X2

4,

K3(X) := 4X2
1 + 6X2

2 + 7X2
3 + 8X2

4,

where Xi for 1 � i � 4 is the ith coordinate function of S3 ⊂ R
4. Each Ki is a positive Morse

function with critical points given by

{±Ei ∈ S3 ⊂ R
4: 1 � i � 4

}
,

where {Ei, 1 � i � 4} denotes the standard basis of R
4. The global maximum is attained at

±E4, the global minimum at ±E1, ±E2 and ±E3 are saddle points. The sign of the Laplacian,
the Morse-index, and d are collected in Table 1 below. Thus, (1.1) is solvable for t = 1 and
K ∈ {K1,K3}. The function K2 does not satisfy the nondegeneracy assumption (nd) at E2 and
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the above result is not applicable. For the special function K2 a different approach leads to a
solution: K2 is symmetric with respect to reflections on the sphere S3 and the problem may be
shifted to the projective space RP

3. Since RP
3 is not conformal to S3 the result of [14] yields a

solution on RP
3 that may be shifted back to obtain a solution for K2 on S3. But, the argument

breaks down for any nonsymmetric perturbation of K2. We are interested exactly in this case,
when the nondegeneracy assumption (nd) is not satisfied, and we shall give the required general
existence result.

In the following, unless otherwise stated, we will assume that K = 6(1 + k) ∈ C5(S3) is pos-
itive. To give our main results we need the following notation. We denote by Sθ (·) stereographic
coordinates centered at some point θ ∈ S3, i.e. Sθ (0) = θ . We write kθ = k ◦ Sθ and for a critical
point θ of k with D2kθ (0) invertible we let

a0(θ) := C
∫
R3

(
kθ (x) − T 2

kθ ,0(x)
)|x|−6,

a1(θ) := �2kθ (0) + ∇(�kθ(0)
) · (D2kθ (0)

)−1∇(�kθ(0)
)
,

a2(θ) := kθ (0)a1(θ) − 15

8π

∫
∂B1(0)

∣∣D2kθ (0)(x)2
∣∣2,

where all differentiations are done in R
3, the mth Taylor polynomial of kθ in y is abbreviated by

T m
kθ ,y(x) :=

m∑
�=0

1

�!D
�kθ (y)(x − y)�,

and C
∫

is the Cauchy principal value of the integral,

C
∫
R3

f (x) := lim
r→0

∫
R3\Br(0)

f (x).

The value a0(θ) is well defined because of the cancellation due to symmetry. For instance ex-
panding T m

kθ ,0 in spherical harmonics we get

∫
∂B1(0)

T m
kθ ,0(x) dS =

{
0 if m is odd,
2π
3 �kθ(0) if m = 2.

The value a0(θ) will be of interest only in points where (nd) is not satisfied, that is when ∇kθ (0)

and �kθ(0) vanish simultaneously. In this case a0(θ) is given by

a0(θ) = C
∫
R3

(
kθ (x) − kθ (0)

)|x|−6,

and measures, weighted by |x|−6, the difference between kθ and kθ (0).
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Denote by Crit(k), M , and T the sets,

Crit(k) := {θ ∈ S3: ∇k(θ) = 0
}
,

M := {θ ∈ Crit(k): �kθ(0) = a0(θ) = 0, and a2(θ) �= 0
}
,

T := {−a1(θ)/a2(θ): θ ∈ M
}
,

Theorem 1.1. Suppose 1 + k ∈ C5(S3) is a positive Morse function. Then (1.1) is solvable for
t ∈ (0,1] \ T , if

0 �= d(t) = −
(

1 +
∑

θ∈Crit−(k,t)

(−1)ind(k,θ)

)
, (1.3)

where

Crit−(k, t) :=
{
θ ∈ S3: ∇k(θ) = 0 and

lim
μ→0+ sgn

(
�k(θ) + a0(θ)μ − (a1(θ) + ta2(θ)

)
μ2)= −1

}
.

The number d(t) is the Leray–Schauder degree of problem (1.1).

We note that set of critical points of K and k are equal and for any θ ∈ Crit(k) we have

sgn
(
�S3K(θ)

)= sgn
(
�S3k(θ)

)= sgn
(
�R3kθ (0)

)
,

ind(K, θ) = ind(k, θ) = ind(kθ ,0).

Hence, the nondegeneracy condition (nd) implies that the set M is empty and the formula in (1.3)
gives exactly the index-count condition in (1.2). In contrast to (1.2) the Leray–Schauder degree
now depends on t and may change as t crosses some value in T . Indeed for any

t∗ = −a1(θ)

a2(θ)
∈ T ∩ (0,1]

there is a “blow-up curve” (t (s), ϕ(s)) such that

lim
s→0

t (s) = t∗, lim
s→0

∥∥ϕ(s)
∥∥

L∞(Bε(θ))
= +∞ for all ε > 0,

and ϕ(s) solves (1.1) with t = t (s) (see [21] and Fig. 1 below).
An inspection of the proof of Theorem 1.1 shows that the result remains valid, when k is

only in C4(S3). We state Theorem 1.1 for functions k ∈ C5(S3), because we use the analysis in
[20,21], which is done in this setting.

To illustrate our results we will apply Theorem 1.1 when K equals Ki for some i ∈ {1,2,3}.
For i ∈ {1,3} the set M is empty, as the Laplacian does not vanish at any critical point, d(·)
is independent of t �= 0 and given by (1.2). Concerning K2, the critical points with vanishing
Laplacian are {±E2} and we need to compute aj (±E2) for j = 0,1,2 and the function

k = k2 := 1
(K2 − 6) = 1

X2
1 + X2

2 + 7
X2

3 + 4
X2

4 − 1.

6 2 6 3
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Fig. 1. Blow-up curves.

A straightforward computation (see [22]) shows

a0(±E2) = 0, a1(±E2) = 0, a2(±E2) = −224

9
.

Hence, M = {±E2} ⊂ S3, T = {0}, and

d(t) =
{−1 if t > 0,

1 if t < 0.

Thus, we may replace the question mark in Table 1 by −1. Moreover, for 0 �= h ∈
C∞

c (S3 \ {±E2},R�0) we consider k2 ± sh, where s is a small positive parameter. Since

∫
R3

h±E2(x)|x|−6 dx > 0,

the sets M and T are empty for k = k2 ± sh and 0 < s � 1, the degree for t �= 0 is given by

d(t) = −1 for k = k2 + sh, d(t) = 1 for k = k2 − sh.

Furthermore, we consider for 0 < s � 1

k = k2 + s
(
7
(
1 − X2

2

)2 − 20
(
1 − X2

2

)3)
For small positive s the set of critical points of K is given by {±Ei} with vanishing Laplacian
only at ±E2, a0(±E2) = 0, and

a1(±E2) = 13440s, a2(±E2) = −224

9
.

Thus, M = {±E2}, T = {540s}, and for t �= 0

d(t) =
{−1 if t > 540s,
1 if t < 540s.
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The change of the degree is due to the two blow-up curves r �→ (t±(r), ϕ±(r)), where t±(r) →
540s and ϕ±(r) concentrates at ±E2 as r → 0. It is interesting to note that, although K is even
in this case, the solutions on the blow-up curve are not even as they concentrate in a single point.

To prove our main result we embed our problem into a two-dimensional family of problems.
We choose h ∈ C∞(S3, [0,∞)) such that

supp(h) ∩ Crit(k) = ∅. (1.4)

We fix 0 < t0 ∈ (0,1] \ T and consider for s � 0

−8�S3ϕ + 6ϕ = 6
(
1 + t0

(
k(θ) + sh(θ)

))
ϕ5, ϕ > 0 in S3. (1.5)

Analogously as above, we define aj (θ, s) for j = 0,1,2 and Ms by replacing k by k + sh in the
definition of aj (θ) and M . We obtain for θ /∈ supp(h)

a0(θ, s) = a0(θ) + s

∫
R3

hθ (x)|x|−6, a1(θ, s) = a1(θ), a2(θ, s) = a2(θ).

From (1.4) there is s0 > 0 such that for 0 � s � s0:

• Crit(k) = Crit(k + sh),
• k + sh is a Morse function,
• a0(θ) · a0(θ, s) > 0, if ∇k(θ) = 0 and a0(θ) �= 0.

The main reason for introducing the perturbation h is that the sets Ms are empty, because

a0(θ, s) �= 0 if ∇k(θ) = 0.

By standard elliptic regularity the operator Ls , defined by

Ls : ϕ �→ (−8�S3 + 6)−1(6(1 + t0
(
k(θ) + sh(θ)

))
ϕ5),

is compact from C2(S3) into C2(S3). From the a priori estimates in [21], as t0 /∈ T , there is
Ct0 > 0 such that all positive solution to (1.5) with s = 0 lie in BCt0

,

BC := {ϕ ∈ C2(S3): ‖ϕ‖C2(S3) < C and C−1 < ϕ
}
.

Moreover, as Crit(k + sh) does not change when s moves from 0 to s0, we may apply The-
orem 7.1 in [21]. Thus, for any 0 < δ < s0 there is Cδ > 0 such that all positive solution to
(1.5) with s ∈ [δ, s0] lie in BCδ . The Leray–Schauder degree deg(Id − Ls, BCδ ,0), which is
well defined and independent of s ∈ [δ, s0] by the a priori estimates, is computed in [20] and
equals

deg(Id − Ls, BCδ ,0) = −
(

1 +
∑

(−1)ind(k,θ)

)
, (1.6)
θ∈Crit−(k+sh)
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where the set Crit−(k + sh) is given by

Crit−(k + sh) :=
{
θ ∈ Crit(k): lim

μ→0+ sgn
(
�k(θ) + a0(θ, s)μ

)= −1
}
.

As h � 0, we have for θ ∈ Crit(k) that a0(θ, s) < 0 if and only if a0(θ) < 0. hence

Crit−(k + sh) = {θ ∈ Crit(k): �k(θ) < 0 or
(
�k(θ) = 0 and a0(θ) < 0

)}
.

The constant Cδ in [21] depends on

sup
s∈[δ,s0]

{∣∣a0(θ, s)
∣∣−1: ∇k(θ) = 0, �kθ (0) = 0 and a0(θ, s) �= 0

}
.

Consequently, we cannot assume that Cδ remains bounded as δ → 0. Indeed, we shall show that
as s moves to 0 the family of solutions splits into solutions, that remain uniformly bounded as
s → 0+ and converge to solutions of (1.5) with s = 0, and solutions that blow up as s → 0+.
When s moves to 0+ the total degree, which is computed in (1.6), is given by the sum of
two degree’s, the degree of the “bounded solutions”, that we are interested in, and the degree
of the “blow-up solutions”. We will compute the degree of the solutions, that blow up when
s → 0+, as a sum of local degree’s. Subtracting the result from (1.6) leads to the formula
in (1.3).

2. Preliminaries

For fixed θ ∈ S3 in stereographic coordinates Sθ (·) Eq. (1.5) is equivalent to

−�u = (1 + t0
(
kθ (x) + shθ (x)

))
u5 in R

3, u > 0. (2.1)

where hθ = h ◦ Sθ and

u(x) = Rθ (ϕ)(x) := 3
1
4
(
1 + |x|2)− 1

2 ϕ ◦ Sθ (x). (2.2)

The transformation (2.2) gives rise to a Hilbert space isomorphism between H 1,2(S3) and
D1,2(R3), the closure of C∞

c (R3) with respect to

‖u‖2 :=
∫
R3

|∇u|2 = 〈u,u〉.

Due to elliptic regularity (see [8,19]) and Harnack’s inequality it is enough to find a weak non-
negative solution of (1.5) in H 1,2(S3), or of the equivalent equation in D1,2(R3). Although
we take advantage of both formulations, we mainly consider (2.1) to analyze the blow-up be-
havior and to compute local degrees. Weak solutions to (2.1) correspond to critical points of
ft0,s : D1,2(R3) → R

ft0,s(u) :=
∫

3

1

2
|∇u|2 − 1

6

(
1 + t0

(
kθ (x) + shθ (x)

))
u6 dx.
R
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We denote by f0 the unperturbed functional with t0 = s = 0. The positive solutions of (2.1) for
t0 = s = 0, i.e. the positive critical points of f0, are completely known (see [9,13,15]) and given
by a noncompact manifold

Z :=
{
zμ,y(x) := μ− 1

2 3
1
4

(
1 +

∣∣∣∣x − y

μ

∣∣∣∣
2)− 1

2

: y ∈ R
3, μ > 0

}
,

We state some properties of the critical manifold Z and f0 (see [2,21] for details). We define for
μ > 0 and y ∈ R

3 the maps Uμ, Ty : D1,2(R3) → D1,2(R3) by

Uμ(u) := μ− 1
2 u

( ·
μ

)
and Ty(u) := u(· − y).

With this notation the critical manifold Z is given by

Z = {zμ,y = Ty ◦ Uμ(z1,0): y ∈ R
3, μ > 0

}
.

The dilation Uμ and the translation Ty are automorphisms of D1,2(R3) and for every μ > 0,
y ∈ R

3, and v ∈ D1,2(R3)

(Uμ)−1 = (Uμ)t = Uμ−1, (Ty)
−1 = (Ty)

t = T−y,

f0 = f0 ◦ Uμ = f0 ◦ Ty and

f ′′
0 (v) = (Ty ◦ Uμ)−1 ◦ f ′′

0

(
Ty ◦ Uμ(v)

) ◦ (Ty ◦ Uμ), (2.3)

where (·)t denotes the adjoint. The tangent space Tzμ,y Z at a point zμ,y ∈ Z is spanned by 4
orthonormal functions,

Tzμ,y Z = 〈(ξ̇μ,y)i : i = 0 . . .3
〉
,

(ξ̇μ,y)i :=
⎧⎨
⎩
∥∥ d

dμ
zμ,y

∥∥−1 d
dμ

zμ,y if i = 0,∥∥ d
dyi

zμ,y

∥∥−1 d
dyi

zμ,y if 1 � i � 3.

The maps Uμ and Ty are isomorphism of the tangent spaces, and moreover

(ξ̇μ,y)i = Ty ◦ Uμ

(
(ξ̇1,0)i

)
,

Ty ◦ Uμ : (TzZ)⊥
∼=−→ (TTy ◦ Uμ(z)Z)⊥. (2.4)

We consider f ′
t0,s

(u) as an element of D1,2(R3) and f ′′
t0,s

(u) as a map in L(D1,2(R3)). With this
identification f ′′

t0,s
(u) is a self-adjoint, compact perturbation of the identity map in D1,2(R3). The

spectrum σ(f ′′
0 (zμ,y)) consists of point-spectrum accumulating at 1 and is computed together

with the eigenspaces in [21]. Since Z is a manifold of critical points of f ′
0, the tangent space TzZ

at a point z ∈ Z is contained in the kernel N(f ′′
0 (z)) of f ′′

0 (z), knowing the eigenspaces we see

TzZ = N
(
f ′′(z)

)
for all z ∈ Z. (2.5)
0
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If (2.5) holds the critical manifold Z is called nondegenerate (see [1]). The operator f ′′
0 (z) maps

the space D1,2(R3) into TzZ
⊥ and is invertible in L(TzZ

⊥). From (2.3) and (2.4), we obtain in
this case ∥∥(f ′′

0 (z1,0)
)−1∥∥

L(Tz1,0 Z⊥)
= ∥∥(f ′′

0 (z)
)−1∥∥

L(TzZ⊥)
∀z ∈ Z. (2.6)

Moreover, Tzμ,y Z
⊥ splits orthogonally into (see [21])

Tzμ,y Z
⊥ = 〈zμ,y〉 ⊕⊥ 〈Φμ,y

i,j,l : i, j ∈ N0, 2 � i + j � n, 1 � l � ci

〉
, (2.7)

where Φ
μ,y
i,j,l are eigenfunctions of f ′′

0 (zμ,y) with positive eigenvalue

λi,j = 1 − 15

(4 + 2(i + j − 1))2 − 1
.

The dimension of the eigenspace corresponding to λi.j is denoted by ci . The functions Φ
μ,y
i,j,l

are smooth and given in terms of Jacobi polynomials and spherical harmonics. The operator
f ′′

0 (zμ,y) has precisely one negative eigenvalue −4 with one-dimensional eigenspace 〈zμ,y〉.

3. The blow-up analysis

Based on the results in [17,23] we have the following lemma (see [21, Corollary 3.2])

Lemma 3.1. Suppose 1 + t0k ∈ C1(S3) is positive and h ∈ C∞(S3) is nonnegative. If (si , ϕi) ∈
[0,1] × C2(S3) solve (1.5) with s = si , then after passing to a subsequence either (ϕi) is uni-
formly bounded in L∞(S3) (and hence in C2,α(S3) by standard elliptic regularity) or there exist
θ ∈ S3 and sequences (μi) ∈ (0,∞), (yi) ∈ R

3 satisfying limi→∞ μi = 0 and limi→∞ yi = 0,
such that (in stereographic coordinates Sθ (·))

Rθ (ϕi) − (1 + t0
(
kθ (yi) + sihθ (yi)

))− 1
4 zμi,yi

is orthogonal to Tzμi ,yi
Z,∥∥Rθ (ϕi) − (1 + t0

(
kθ (yi) + sihθ (yi)

))− 1
4 zμi,yi

∥∥
D1,2(R3)

= o(1).

4. The finite dimensional reduction

For the rest of the paper, unless otherwise indicated, integration extends over R
3 and is done

with respect to the variable x.

Lemma 4.1. Suppose 1 + k ∈ C5(S3) is a positive Morse function, t0 ∈ (0,1] \ T , h ∈ C∞(S3)

satisfies (1.4), and θ ∈ S3. Then there exist s0 = s0(t0, k, h) > 0, μ0 = μ0(t0, k, h) > 0 and two
functions w : Ω → D1,2(R3) and �α : Ω → R

4 depending on t0, k, h, and θ , where

Ω := {(s,μ,y) ∈ (−s0,+s0) × (0,μ0) × R
3}

such that for any (s,μ,y) ∈ Ω ,

w(s,μ,y) is orthogonal to Tzμ,y Z, (4.1)
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f ′
t0,s

(
zμ,y + w(s,μ,y)

)= �α(s,μ,y) · ξ̇μ,y ∈ Tzμ,y Z, (4.2)∥∥w(s,μ,y) − w0(s,μ,y)
∥∥+ ∥∥�α(s,μ,y)

∥∥< ρ0, (4.3)

where {(ξ̇μ,y)i : i = 0 . . .3} denotes the basis of Tzμ,y Z given in (1.3) and

w0(s,μ,y) := ((1 + t0
(
kθ (y) + shθ (y)

))− 1
4 − 1

)
zμ,y.

The functions w and �α are of class C2 and unique in the sense that if (v, �β) satisfies (4.1)–(4.3)
for some (s,μ,y) ∈ Ω then (v, �β) is given by (w(s,μ,y), �α(s,μ,y)).

Moreover, we have as μ → 0∣∣∣∣∣�α(s,μ,y) −
4∑

j=1

�αj (s,μ,y)

∣∣∣∣∣= O
(
μ4+ 1

4 + μ2
∣∣∇kθ (y) + s∇hθ (y)

∣∣2)

+ O
(
μ3
∣∣∇kθ (y) + s∇hθ (y)

∣∣+ μ4
∣∣�kθ(y) + s�hθ (y)

∣∣),
where α1, α2 are given by

�α1(s,μ,y) := −μ
(
1 + t0

(
kθ (y) + shθ (y)

))− 5
4

t0π

3
1
4
√

5

(
0

∇kθ (y) + s∇hθ (y)

)
,

�α2(s,μ,y) := −μ2(1 + t0
(
kθ (y) + shθ (y)

))− 5
4

t0π

3
1
4
√

5

(
�(kθ + shθ )(y)

�0
)

,

for 1 � i � 3,

�α3(s,μ,y)i := −μ3(1 + t0
(
kθ (y) + shθ (y)

))− 5
4

t0π

3
1
4 2

√
5

∂

∂xi

�(kθ + shθ )(y),

�α4(s,μ,y)i := −μ4(1 + t0(kθ + shθ )(y)
)− 5

4
t03

3
4 8

π
√

5

× C
∫ (

(kθ + shθ )(x + y) − T 3
(kθ+shθ )(·+y),0(x)

) xi

|x|8 ,

and

�α3(s,μ,y)0 := −μ3(1 + t0(kθ + shθ )(y)
)− 5

4
t03

3
4 4

π
√

5

× C
∫ (

(kθ + shθ )(x + y) − T 2
(kθ+shθ )(·+y),0(x)

) 1

|x|6 ,

�α4(s,μ,y)0 := μ4(1 + t0
(
kθ + shθ

)
(y)
)− 5

4
t03

3
4 π

√
5

30
�2(kθ + shθ )(y)

+ −t2
0 μ43

3
4
√

5

16(1 + t0(kθ + shθ )(y))
9
4

∫ ∣∣D2(kθ + shθ )(y)(x)2
∣∣2 dSx.
∂B1(0)
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Replacing k by k + sh the existence part, uniqueness, and the asymptotic estimates as μ → 0
follow directly from Lemmas 4.2–4.7 in [21]. It only remains to show the C2-dependence on s,
which we omit, since it is analogous to the proof given in [21].

Concerning the derivatives of �α with respect to μ and y we may apply the results in
[21, Lemma 5.1] and [20, Lemma A.4–A.5] to obtain the following two lemmas.

Lemma 4.2. Under the assumptions of Lemma 4.1 we have for all (s,μ,y) ∈ Ω and 1 � i, j � 3

∂α(s,μ,y)i

∂yj

= − t0μπ

3
1
4
√

5

(
1 + t0(kθ + shθ )(y)

)− 5
4
∂2(kθ + shθ )(y)

∂xi∂xj

+ O
(∣∣∇(kθ + shθ )(y)

∣∣2μ + μ2+ 1
4
)
,

∂α(s,μ,y)0

∂yj

= − t0μ
2π

3
1
4
√

5

(
1 + t0(kθ + shθ )(y)

)− 5
4

∂

∂xj

�(kθ + shθ )(y)

+ O
(∣∣∇(kθ + shθ )(y)

∣∣2μ + μ2+ 1
4
)
.

Lemma 4.3. Under the assumptions of Lemma 4.1 we have for all (s,μ,y) ∈ Ω and 1 � i � 3

∂α(s,μ,y)i

∂μ
=

3∑
j=1

∂αj (s,μ,y)i

∂μ
+ O

((∣∣∇kθ (y)
∣∣2 + ∣∣∇hθ (y)

∣∣2)μ + μ3),
∂α(s,μ,y)0

∂μ
=

4∑
j=2

∂αj (s,μ,y)0

∂μ
+ O

((∣∣�kθ(y)
∣∣+ ∣∣�hθ(y)

∣∣)μ3 + μ3+ 1
4
)

+ O
((∣∣∇kθ (y)

∣∣2 + ∣∣∇hθ (y)
∣∣2)μ + (∣∣∇kθ (y)

∣∣+ ∣∣∇hθ (y)
∣∣)μ2).

In order to compute the derivative of �α with respect to s one has to mimic the lengthy calcula-
tion of the t-derivative in [21, Lemma 5.2–5.3]. We will again just state the result and refer to [22]
for details. This will be the last point where we are less precise concerning the s-dependence.

Lemma 4.4. Under the assumptions of Lemma 4.1 we have for all (s,μ,y) ∈ Ω and 1 � i � 3

∂α(s,μ,y)i

∂s
=

3∑
j=1

∂αj (s,μ,y)i

∂s
+ O

((∣∣∇kθ (y)
∣∣2 + ∣∣∇hθ (y)

∣∣2)μ2 + μ4),
∂α(s,μ,y)0

∂s
=

4∑
j=2

∂αj (s,μ,y)0

∂s
+ O

((∣∣�kθ(y)
∣∣+ ∣∣�hθ(y)

∣∣)μ4 + μ4+ 1
4
)

+ O
((∣∣∇kθ (y)

∣∣2 + ∣∣∇hθ (y)
∣∣2)μ2 + (∣∣∇kθ (y)

∣∣+ ∣∣∇hθ (y)
∣∣)μ3).

Lemma 4.5. Under the assumptions of Lemma 4.1 suppose

∇kθ (0) = 0 and �kθ(0) = 0.
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Consider the function α̂ : Ω → R
3, defined by

α̂(s,μ, y) := 3
1
4
√

5

t0μπ

(
1 + t0k(θ)

) 5
4
(�α(s,μ,y)1, . . . , �α(s,μ,y)3

)T
.

Then there are μ1 = μ1(t0, k, h) > 0 and a C2-function β : (−s0, s0) × (0,μ1) → R
3 depending

on t0, k, and h, such that

β(s,μ) = −μ2 1

2

(
D2kθ (0)

)−1∇�kθ(0) + O
(
μ3),

as μ → 0 and

α̂
(
s,μ,β(s,μ)

)= 0 for all (s,μ) ∈ (−s0, s0) × (0,μ1).

Moreover, β is unique in the sense that, if y ∈ Bμ1(0) satisfies α̂(s,μ, y) = 0 for some s ∈
(−s0, s0) and 0 < μ < μ1, then y = β(t,μ).

Proof. Lemma 4.2 suggests to apply the implicit function theorem, but unfortunately �α may
not be differentiable for μ = 0. Instead we apply directly Banach’s fixed-point theorem to the
function

F(s,μ,y) := y + (D2kθ (0)
)−1

α̂(s,μ, y)

in Bδ(0), where 0 < δ < dist(0, supp(hθ )) will be chosen later.
For y ∈ Bδ(0) we use the fact that ∇kθ (0) = 0 and get

(
1 + t0kθ (0)

1 + t0kθ (y)

) 5
4 = 1 + O

(
δ2). (4.4)

Fix y1, y2 ∈ Bδ(0) and (s,μ) ∈ (−s0, s0) × (0,μ0), then by Lemmas 4.2 and (4.4)

∣∣F(s,μ,y1) − F(s,μ,y2)
∣∣

=
∣∣∣∣∣(y1 − y2) + (D2kθ (0)

)−1
1∫

0

∂α̂

∂y

(
s,μ,y2 + t (y1 − y2)

)
(y1 − y2) dt

∣∣∣∣∣

�
∣∣∣∣∣(y1 − y2) −

( 1∫
0

(
D2kθ (0)

)−1
D2kθ

(
y2 + t (y1 − y2)

)
dt

)
(y1 − y2)

∣∣∣∣∣
+ O

(
δ2 + sup

y∈Bδ(0)

∣∣∇kθ (y)
∣∣+ μ

1
4

)
|y1 − y2|

� O
(
δ + μ

1
4
)|y1 − y2|.

For y ∈ Bδ(0) we estimate using Lemma 4.1
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∣∣F(s,μ,y)
∣∣= ∣∣y + (D2kθ (0)

)−1(
α̂(s,μ, y)

)∣∣
�
∣∣y − (D2kθ (0)

)−1(∇kθ (y) + O
(
δ2 + μ2))∣∣

�
∣∣y − (D2kθ (0)

)−1(
D2kθ (0)y + O

(
δ2 + μ2))∣∣

� O
(
δ2 + μ2).

Consequently, there is μ1 > 0 such that F(s,μ, ·) is a contraction in Bμ1(0) for any 0 < μ < μ1
and s ∈ [−s0, s0]. From Banach’s fixed-point theorem we may define β(s,μ) to be the unique
fixed-point of F(s,μ, ·) in Bμ1(0). After shrinking μ1 if necessary we may apply Lemma 4.2 and
the usual implicit function theorem to see that the function β is twice differentiable for μ > 0.

To deduce the expansion for small μ we fix ρ > 0 and

y ∈ Uρ := Bρ

(
−μ2 1

2

(
D2kθ (0)

)−1∇�kθ(0)

)
.

Then, by Lemma 4.1 and (4.4)

∣∣∣∣F(s,μ,y) + μ2 1

2

(
D2kθ (0)

)−1∇�kθ(0)

∣∣∣∣
�
∣∣∣∣y + (D2kθ (0)

)−1
(

α̂(s,μ, y) + μ2 1

2
∇�kθ(0)

)∣∣∣∣
�
∣∣∣∣y + (D2kθ (0)

)−1
(

−∇kθ (y) − μ2 1

2

(∇�kθ(y) − ∇�kθ(0)
)

+ O
(
μ|y|2 + μ2|y| + μ3))∣∣∣∣

� O
(
ρ2 + μ2ρ + μ3).

Consequently, we may choose for small 0 < μ a radius 0 < ρ = O(μ3) such that F maps
Uρ ⊂ Bμ1(0) into itself. Consequently, the unique fixed-point β(s,μ) must lie in this ball. This
ends the proof. �

Hence, to exclude or to construct blow-up sequences, which blow up at a nondegenerate crit-
ical point θ of k with �kθ(0) = 0 it suffices to study α(s,μ,β(s,μ))0.

Lemma 4.6. Under the assumptions of Lemma 4.5 and k ∈ C5(S3) we have

(
α
(
s,μ,β(s,μ)

))
0 = −t0μ

3(1 + t0k(θ)
)− 5

4
3

3
4 4

π
√

5

(
a0(θ) + s

∫
R3

hθ (x)|x|−6
)

+ t0μ
4 π3

3
4
√

5

30(1 + t0k(θ))
9
4

(
a1(θ) + t0a2(θ)

)+ O
(
μ4+ 1

4
)
.
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Proof. In view of Lemma 4.5 and because ∇kθ (0) = 0 we may estimate functions of β(s,μ)

and of k(β(s,μ)) as follows

F(β) = F(0) − μ2F ′(0)
1

2

(
D2kθ (0)

)−1∇�kθ(0) + O
(
μ3),

F
(
k(β)

)= F
(
kθ (0)

)+ O
(
μ4). (4.5)

To prove the claim of the lemma we expand α(s,μ,β(s,μ))0 according to Lemma 4.1 and
use (4.5). �
Lemma 4.7. Under the assumptions of Lemma 4.5 suppose

a0(θ) = 0 and a1(θ) + t0a2(θ) > 0,

and define

γ (s,μ) := − 1

t0μ3

(
1 + tk(θ)

) 5
4
π

√
5

3
3
4 4

α
(
s,μ,β(s,μ)

)
0.

Then as μ → 0

∂γ (s,μ)

∂s
=
∫

hθ (x)|x|−6 + O(μ), (4.6)

∂γ (s,μ)

∂μ
= −π2

24

(
1 + t0k(θ)

)−1(
a1(θ) + t0a2(θ)

)+ O
(
μ

1
4
)
. (4.7)

Proof. As ∇kθ (0) = 0 we get from (1.4) that dist(0, supp(hθ )) > 0. As β(s,μ) = O(μ2) as
μ → 0 we get that any term which depends only locally on shθ is independent of s for small
μ > 0.

We have

d

ds
α
(
s,μ,β(s,μ)

)
0 = ∂(α)0

∂s

∣∣∣∣
(s,μ,β(s,μ))

+ ∂(α)0

∂y

∣∣∣∣
(s,μ,β(s,μ))

∂β

∂s

∣∣∣∣
(s,μ)

.

The derivatives of α(·)0 are given in Lemmas 4.2–4.4. To compute the derivative of β we use the
fact that α̂(s,μ,β(s,μ)) ≡ 0. By (4.5) and Lemmas 4.2–4.4 we have

∂β

∂s

∣∣∣∣
(s,μ)

= −
(

∂α̂

∂y

∣∣∣∣
(s,μ,β(s,μ))

)−1
∂α̂

∂s

∣∣∣∣
(s,μ,β(s,μ))

= ((D2kθ (0)
)−1 + O

(
μ1+ 1

4
))

× 3
1
4
√

5

t0μπ

(
1 + t0k(θ)

) 5
4

[
3∑

j=1

αj (s,μ,β)i

∂s
+ O

(
μ4)]

i=1...3

= O
(
μ3),
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where we used that aj (s,μ,y)i is independent of s for small |y|, μ > 0. From Lemma 4.2 we
get

∂(α)0

∂y

∣∣∣∣
(s,μ,β(s,μ))

∂β

∂s

∣∣∣∣
(s,μ)

= O
(
μ5).

Furthermore, by Lemma 4.4

dα(s,μ,β)0

ds
=

4∑
j=2

∂ �αj (s,μ,β)0

∂s
+ O

(
μ4+ 1

4
)

= −t0μ
3(1 + t0kθ (0)

)− 5
4

3
3
4 4

π
√

5
C
∫

hθ (x)
1

|x|6 + O
(
μ4+ 1

4
)
.

The definition of γ , (4.5), and Lemma 4.6 yield (4.6).
Concerning (4.7) we get

d

dμ
α
(
s,μ,β(s,μ)

)
0 = ∂(α)0

∂μ

∣∣∣∣
(s,μ,β(s,μ))

+ ∂(α)0

∂y

∣∣∣∣
(s,μ,β(s,μ))

∂β

∂μ

∣∣∣∣
(s,μ)

.

By (4.5) and Lemmas 4.2–4.3 we have

∂β

∂μ

∣∣∣∣
(s,μ)

= −
(

∂α̂

∂y

∣∣∣∣
(s,μ,β(s,μ))

)−1
∂α̂

∂μ

∣∣∣∣
(s,μ,β(s,μ))

= ((D2kθ (0)
)−1 + O

(
μ1+ 1

4
))

× 3
1
4
√

5

t0μπ

(
1 + t0k(θ)

) 5
4

[
3∑

j=1

αj (s,μ,β)i

∂μ
+ O

(
μ3)]

i=1...3

= ((D2kθ (0)
)−1 + O

(
μ1+ 1

4
))

×
(

−μ∇�kθ(0) + 3
1
4
√

5

t0μπ

[
1

μ

3∑
j=1

αj (s,μ,β)i + O
(
μ3)]

i=1...3

)

= −μ
(
D2kθ (0)

)−1∇�kθ(0) + O
(
μ2).

Hence, by Lemmas 4.2 and 4.3

∂(α)0

∂y

∣∣∣∣
(s,μ,β(s,μ))

∂β

∂μ

∣∣∣∣
(s,μ)

= t0μ
3π

3
1
4
√

5

(
1 + t0kθ (0)

)− 5
4 ∇�kθ(0)

(
D2kθ (0)

)−1∇�kθ(0) + O
(
μ3+ 1

4
)
,

and
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∂γ (s,μ)

∂μ
= 3

t0μ4

(
1 + tk(θ)

) 5
4
π

√
5

3
3
4 4

α
(
s,μ,β(s,μ)

)
0

− 1

t0μ3

(
1 + tk(θ)

) 5
4
π

√
5

3
3
4 4

4∑
j=2

∂αj (s,μ,β)0

∂μ

− π2

12
∇�kθ(0)

(
D2kθ (0)

)−1∇�kθ(0) + O
(
μ3+ 1

4
)

= 3

t0μ4

(
1 + tk(θ)

) 5
4
π

√
5

3
3
4 4

4∑
j=2

αj (s,μ,β)0 − (1 + tk(θ))
5
4

t0μ4

π
√

5

3
3
4 4

×
(

3
4∑

j=2

αj (s,μ,β)0 − α2(s,μ,β)0 + α4(s,μ,β)0

)

− π2

12
∇�kθ(0)

(
D2kθ (0)

)−1∇�kθ(0) + O
(
μ

1
4
)

= − 1

t0μ4

(
1 + tk(θ)

) 5
4
π

√
5

3
3
4 4

(−α2(s,μ,β)0 + α4(s,μ,β)0
)

− π2

12
∇�kθ(0)

(
D2kθ (0)

)−1∇�kθ(0) + O
(
μ

1
4
)
.

If we use (4.5) and the expansion in Lemma 4.1 we find

− 1

t0μ4

(
1 + tk(θ)

) 5
4
π

√
5

3
3
4 4

(−α2(s,μ,β)0 + α4(s,μ,β)0
)

= π2

24
∇�kθ(0)

(
D2kθ (0)

)−1∇�kθ(0)

− π2

24
�2kθ (0) + t0

1 + t0k(θ)

5π

64

∫
∂B1(0)

∣∣D2kθ (0)(x)2
∣∣2 dSx.

Summing up yields the claim of the lemma. �
Lemma 4.8. Under the assumptions of Lemma 4.1 we define M∗ ⊂ S3 by

M∗ := {θ ∈ Crit(k): �kθ(0) = 0 = a0(θ), a1(θ) + t0a2(θ) > 0
}
. (4.8)

Then there is δ > 0 such that for any θ ∈ M∗ there exists a unique C1-curve

{0 < μ < δ} � μ �→ (
sθ (μ),ϕθ (μ, ·)) ∈ (0, δ) × C2,α

(
S3),

such that as μ → 0
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sθ (μ) = μ
π2

24

( ∫
hθ (x)|x|−6

)−1
a1(θ) + t0a2(θ)

1 + t0k(θ)
+ O

(
μ1+ 1

4
)
,

∂sθ

∂μ
(μ) = π2

24

( ∫
hθ (x)|x|−6

)−1
a1(θ) + t0a2(θ)

1 + t0k(θ)
+ O

(
μ

1
4
)
.

and ϕθ (μ, ·) solves (1.1) for s = sθ (μ) and blows up like

∥∥Rθ

(
ϕθ (μ,x)

)− (1 + t0k(θ)
)− 1

4 zμ,0(x)
∥∥

D1,2(R3)∩C2(B1(0))
= O

(
μ2).

The curves are unique, in the sense that, if (si , ϕi) ∈ (0, δ) × C2,α(S3) blow up at some θ ∈ S3

then θ ∈ M∗ and there is a sequence of positive numbers (μi) converging to zero such that
(si , ϕi) = (sθ (μi), ϕ

θ (μi, ·)) for all but finitely many i ∈ N.

Proof. We fix θ ∈ M∗. To construct sθ (μ) we proceed as in Lemma 4.5 and use Banach’s fixed-
point theorem applied to

F2(s,μ) := s −
(∫

hθ (x)|x|−6
)−1

γ (s,μ).

Since we know the expansion of γ and ∂γ
∂s

as μ → 0 it is easy to see that F2(·,μ) is a contraction
in

Br

(
μ

π2

24

( ∫
hθ (x)|x|−6

)−1
a1(θ) + t0a2(θ)

1 + t0k(θ)

)

for any 0 < constμ1+ 1
4 � r � r1 and the existence part of the claim follows from that. The

differentiability of s with respect to μ follows from Lemma 4.7 and the usual implicit function
theorem.

Assume (si , ϕi) blow up at some θ ∈ S3. Then we apply Lemma 3.1 and find in stereographic
coordinates Sθ sequences yi → 0, μi → 0 such that

Rθ (ϕi)(x) − (1 + t0
(
k(θ) + sih(θ)

))− 1
4 zμi,yi

(x)

is orthogonal to Tμi,yi
Z and converges to 0 as i → ∞. Consequently, if we set

w(i) := Rθ (ϕi) − zμi,yi

we find as zμi,yi
is orthogonal to Tμi,yi

Z,

w(i) is orthogonal to Tμi,yi
Z and w(i) − w0(si ,μi, yi) →i→∞ 0,

where w0 is defined in Lemma 4.1. Moreover

0 = f ′
t ,s

(
Rθ (ϕi)

)= f ′
t ,s

(
zμ,y + w(i)

)
.

0 0
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The uniqueness part of Lemma 4.1 shows for large i

w(i) = w(si,μi, yi) and �α(si,μi, yi) = 0.

As μi → 0 the expansion of �α of order μ and μ2 in Lemma 4.1 shows

∇kθ (0) = 0 and �kθ(0) = 0.

From Lemma 4.5 we infer that

yi = β(si,μi)

and the expansion in Lemma 4.6 gives

0 = −t0μ
3
i

(
1 + t0k(θ)

)− 5
4

3
3
4 4

π
√

5

(
a0(θ) + si

∫
R3

hθ (x)|x|−6
)

+ t0μ
4
i

(
1 + t0k(θ)

)− 9
4
π3

3
4
√

5

30

(
a1(θ) + t0a2(θ)

)+ O
(
μ

4+ 1
4

i

)
.

Consequently

(
a0(θ) + si

∫
R3

hθ (x)|x|−6
)

→ 0 as i → ∞,

and from the choice of h, assuming 0 < δ < s0, we deduce that a0(θ) = 0. Hence

si

∫
R3

hθ (x)|x|−6 = μi

(
1 + t0k(θ)

)−1 π2

24

(
a1(θ) + t0a2(θ)

)+ O
(
μ

1+ 1
4

i

)
.

Thus, a1(θ) + t0a2(θ) has to be positive, which shows θ ∈ M∗, and for large i

si ∈ Br1

(
μi

π2

24

( ∫
hθ (x)|x|−6

)−1
a1(θ) + t0a2(θ)

1 + t0k(θ)

)
.

The uniqueness of the fixed point implies si = sθ
i (μi) and the claim follows. �

5. The Leray–Schauder degree

From Section 1 we know that the degree deg(Id − Ls, BCδ ,0) of the problem (1.5) is inde-
pendent of s ∈ [δ, s0] and equals

deg(Id − Ls, BCδ ,0) = −
(

1 +
∑

(−1)ind(k,θ)

)
,

θ∈Crit−(k+sh)
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where the set Crit−(k + sh) is independent of s and given by

Crit−(k + sh) = {θ ∈ Crit(k): �k(θ) < 0 or
(
�k(θ) = 0 and a0(θ) < 0

)}
.

By Lemma 4.8 and the a priori estimate for s = 0 the set of functions

Lb :=
{
ϕ solves (1.5) for some s ∈ [0, s0], ϕ /∈

⋃
θ∈M∗

{
ϕθ
(
sθ (μ), ·): 0 < μ < δ

}}

is uniformly bounded from above and by standard elliptic regularity also in C2,α(S3). By
Sobolev’s and Harnack’s inequality this gives a uniform lower bound, thus there is C1 > 0 such
that Lb ⊂ BC1 .

Again from Lemma 4.8 and since ∂sθ

∂μ
is uniformly positive, there is s1 > 0 small, such that

for any 0 < s � s1 and any θ ∈ M∗ there exists exactly one μθ(s) ∈ (0, δ) satisfying

sθ
(
μθ(s)

)= s.

Moreover, we may assume, shrinking s1

∥∥ϕθ
(
μθ(s), ·)∥∥∞ � 2C1 ∀θ ∈ M∗,∥∥ϕθ1

(
μθ1(s), ·)− ϕθ2

(
μθ1, ·)∥∥∞ � C1 ∀θ1 �= θ2 in M∗.

Hence, there are two types of solutions to (1.5) as s → 0+: the solutions in Lb ⊂ BC1 remain
uniformly bounded as s → 0+ and the solutions {ϕθ (μθ (s), ·): θ ∈ M∗} that blow up as s → 0+
and are uniformly isolated for each fixed small s > 0. Consequently, using the additivity of the
degree, we find for any 0 < s � s1

deg(Id − Ls, BCs ,0)

= deg(Id − Ls, BC1,0) +
∑

θ∈M∗
degloc

(
Id − Ls,ϕ

θ
(
μθ(s), ·))

= deg(Id − L0, BC1,0) +
∑

θ∈M∗
degloc

(
Id − Ls,ϕ

θ
(
μθ(s), ·)).

Together with (1.6) we get for any 0 < s � s1

deg(Id − L0, BC1,0)

= −
(

1 +
∑

θ∈Crit−(k+sh)

(−1)ind(k,θ)

)
−
∑

θ∈M∗
degloc

(
Id − Ls,ϕ

θ
(
μθ(s), ·)).

It remains to compute the local degree degloc(Id − Ls,ϕ
θ (μθ (s), ·)) for any θ ∈ M∗. We use the

transformation Rθ in (2.2) to define the weighted space
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C2(
R

3, Rθ

) := {u ∈ C2(
R

3): u ∈ Rθ

(
C2(S3))},

‖u‖C2(R3,Rθ ) := ∥∥(Rθ )
−1(u)

∥∥
C2(S3)

.

Note that C2(R3, Rθ ) ↪→ D1,2(R3), because Rθ is an isomorphism between H 1,2(S3) and
D1,2(R3). Using Rθ we obtain

degloc

(
Id − Ls,ϕ

θ
(
μθ(s), ·))= degloc

(
Id − RθLs(Rθ )

−1, uθ,s

)
= degloc(f

′
t0,s

, uθ,s),

where uθ,s = Rθ (ϕ
θ (μθ (s), ·)) ∈ C2(R3, Rθ ). Note that by duality we consider f ′

t0,s
as a map

from the Hilbert space D1,2(R3) into itself.

Lemma 5.1. Under the assumptions of Lemma 4.8 there holds for 0 < s � s1

∑
θ∈M∗

degloc l(f ′
t0,s

, uθ,s) =
∑

θ∈M∗
(−1)ind(k,θ).

Proof. Fix θ ∈ M∗. The solution uθ,s ∈ C2(R3, Rθ ) is given in notation of Lemmas 4.1 and 4.5
by

uθ,s = zμθ (s),yθ (s) + w
(
s,μθ (s), yθ (s)

)
,

where yθ (s) = βθ (s,μθ (s)). (μθ (s), yθ (s)) is the only zero of �α(s, ·, ·) for μ and |y| bounded
above by a small fixed constant. As yθ (s) = O(s2) we may replace yθ by 0 (in various expres-
sions below) and get an addition O(s2)-error.

We drop the s-dependence of μθ and yθ in the notation when there is no possibility of con-
fusion. Moreover by Lemma 4.8 we have sθ (μ) ∼ μ and we may estimate the errors in terms
of s.

As seen above by Lemma 4.8 the solution uθ,s remains uniform isolated in C2(R3, Rθ ) as well
as in D1,2(R3) for s ∈ (0, s1]. From (4.2) and regularity results [8,19] we infer that w(s,μ,y) ∈
C2(R3, Rθ ) depends continuously on (s,μ,y).

To compute the local degree, we first show that f ′′
t0,s

(uθ,s) is nondegenerate. To this end we
let

ϕ(s, θ)0 := μθc−1
ξ

∂

∂μ

(
zμ,β(s,μ) + w

(
s,μ,β(s,μ)

))∣∣
μθ ,

ϕ(s, θ)i := μθc−1
ξ

∂

∂yi

(
zμθ ,y + w

(
s,μθ , y

))∣∣
yθ , i = 1 . . .3.

The derivatives of β and w with respect to μ are computed in [20, Appendix A] the derivatives
of w with respect to yi are given in [21, Lemma 5.1]. We have

∣∣∣∣ ∂β (s,μθ
)∣∣∣∣= O(s),
∂μ
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∥∥∥∥∂w

∂μ

(
s,μθ , yθ

)− ∂w0

∂μ

(
s,μθ , yθ

)∥∥∥∥
D1,2(R3)

= O(s),

∥∥∥∥∂w

∂yi

(
s,μθ , yθ

)− ∂w0

∂yi

(
s,μθ , yθ

)∥∥∥∥
D1,2(R3)

= O(s).

Therefore we get

uθ,s = (1 + t0kθ (0)
)− 1

4 zμθ ,yθ + O
(
s2)

D1,2(R3)
,

ϕ(s, θ)0 = (1 + t0kθ (0)
)− 1

4 (ξ̇μθ ,yθ )0 + O
(
s2)

D1,2(R3)
,

ϕ(s, θ)i = (1 + t0kθ (0)
)− 1

4 (ξ̇μθ ,yθ )i + O
(
s2)

D1,2(R3)
,

By Lemma 4.8 and Lemma 4.1 we find

f ′
t0,s

(
zμ,β(s,μ) + w

(
s,μ,β(s,μ)

))= α
(
s,μ,β(s,μ)

)
0

(
ξ̇μ,β(s,μ)

)
0.

Differentiating with respect to μ by Lemma 4.7 leads to

f ′′
t0,s

(uθ,s)
(
μθ
)−1

cξϕ(s, θ)0

=
(

t0
(
μθ
)3(1 + tkθ (0)

)− 9
4

3
3
4

6
√

5

(
a1(θ) + t0a2(θ)

)+ O
(
s3+ 1

4
))

(ξ̇μθ ,yθ )0.

Moreover, differentiating

f ′
t0,s

(
zμ,y + w(s,μ,y)

)= 3∑
i=0

α(s,μ,y)i(ξ̇μ,y)i

with respect to yj we get from Lemma 4.2

f ′′
t0,s

(uθ,s)
cξ

μθ
ϕ(s, θ)j = −

t0μ
θπ
∑3

i=1

(
∂2kθ

∂xi∂xj
(0) + O(s)

)
(ξ̇μθ ,yθ )i

3
1
4
√

5(1 + t0kθ (0))
5
4

+ O
(
s2)(ξ̇μθ ,yθ )0.

Orthogonal to Tz
μθ ,yθ Z we use

f ′′
t0,s

(us,θ ) = f ′′
0 (zμθ ,yθ ) + O

(∥∥w(s,μθ , yθ
)− w0

(
s,μθ , yθ

)∥∥)
L(D1,2(R3))

− 5t0

(1 + t0kθ (yθ ))

∫
R3

(
(kθ + shθ )(x) − kθ (y)

)
(zμθ ,yθ )4 · ·dx

= f ′′(zμθ ,yθ ) + O
(
μθ
)

1,2 3 . (5.1)
0 L(D (R ))
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The O(μ)-estimates are given in [21, Lemma 4.1] or can be obtained using Hölder’s and
Sobolev’s inequality and the fact that kθ (x) − kθ (y) is bounded in R

3 and of order O(|x − y|)
for |x − y| � 1.

To obtain a contradiction assume there is a function v ∈ C2(R3, Rθ )\{0} with f ′′
t0,s

(uθ,s)v = 0.
We may assume ‖v‖D1,2(R3) = 1. Then by (5.1)

O(s) = ∥∥f ′′
0 (zμθ ,yθ )v

∥∥
D1,2(R3)

� c‖ProjTz
μθ ,yθ

Z⊥v‖D1,2(R3),

because f ′′
0 (zμθ ,yθ ) is an isomorphism of Tz

μθ ,yθ Z⊥. Moreover,

0 = f ′′
t0,s

(uθ,s)cξϕ(s, θ)0v

=
(

3
3
4 t0(μ

θ )4

6
√

5(1 + tkθ (0))
9
4

(
a1(θ) + t0a2(θ)

)+ O
(
s3+ 1

4
))〈

(ξ̇μθ ,yθ )0, v
〉

D1,2(R3)
,

and

�0 = (f ′′
t0,s

(uθ,s)cξϕ(s, θ)j v
)
j

= − t0(μ
θ )2π

3
1
4
√

5(1 + t0kθ (0))− 5
4

(
D2kθ (0) + O(s)

)(〈
(ξ̇μθ ,yθ )i , v

〉
D1,2(R3)

)
i

+ O
(
s3)〈(ξ̇μθ ,yθ )0, v

〉
D1,2(R3)

.

Since D2kθ (0) is invertible, we see that ProjTz
μθ ,yθ

Zv = 0, contradicting the fact that

‖v‖D1,2(R3) = 1. Since f ′′
t0,s

(uθ,s) is of the form id-compact in C2(R3, Rθ ) (as well as in
D1,2(R3)) we get

∥∥f ′′
t0,s

(uθ,s)v
∥∥

C2(R3,Rθ )
� c‖v‖C2(R3,Rθ ).

For f ′
t0,s

(u) = f ′′
t0,s

(uθ,s)(u − uθ,s) + O(‖u − uθ,s‖2
C2(R3,Rθ )

),

degloc(f
′
t0,s

, uθ,s) = degloc

(
f ′′

t0,s
(uθ,s),0

)
.

To compute degloc(f
′′
t0,s

(uθ,s),0) we consider the finite dimensional spaces (see (2.7))

Xn,s := 〈uθ,s〉 ⊕ 〈ϕ(s, θ)0
〉⊕ 〈ϕ(s, θ)i : 1 � i � 3

〉
⊕ 〈Φμθ ,yθ

i,j,l : i, j ∈ N0, 2 � i + j � n, 1 � l � ci

〉
.

The functions, spanning Xn,s , are a basis, as they are orthogonal in D1,2(R3) up to an O(s2)-
error. The linear operator ProjXn,s

f ′′
t0,s

(uθ,s) restricted to Xn,s is given by, up to a multiplication
of the elements in the diagonal by positive constants
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⎛
⎜⎜⎜⎝

−4 0 0 0

0 μ4(a1(θ) + t0a2(θ)) 0 0

0 0 −μ2D2kθ (0) 0

0 0 0 f ′′
0 (zμθ ,yθ )|〈Φμθ ,yθ

i,j,l 〉

⎞
⎟⎟⎟⎠

+

⎛
⎜⎜⎝

O(μ) O(μ) O(μ) O(μ)

O(μ6) O(μ4+ 1
4 ) O(μ6) O(μ6)

O(μ4) O(μ3) O(μ3) O(μ4)

O(μ) O(μ) O(μ) O(μ)

⎞
⎟⎟⎠ .

Thus, we find for large n and small s

degloc

(
f ′′

t0,s
(uθ,s),0

)= sgn det
(
ProjXn,s

f ′′
t0,s

(uθ,s)
)

= sgn det
(
D2kθ (0)

)= (−1)ind(k,θ),

which proofs the claim. �
Remark 5.2. From the proof of Lemma 5.1 we see that f ′′

t0,s
(uθ,s) is nondegenerate and the

Morse-Index of uθ,s , i.e. the number of negative eigenvalues of f ′′
t0,s

(uθ,s), is given by

ind(ft0,s , uθ,s) = 1 + ind(−k, θ) = 4 − ind(k, θ).
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