A SPANNING TREE EXPANSION OF THE JONES POLYNOMIAL

Morwen B. Thistlethwaite

(Received 12 February 1986)

Abstract

A New combinatorial formulation of the Jones polynomial of a link is used to establish some basic properties of this polynomial. A striking consequence of these properties is the result that a link admitting an alternating diagram with m crossings and with no "nugatory" crossing cannot be projected with fewer than m crossings.

§1. INTRODUCTION AND STATEMENT OF RESULTS

This article is concerned with classical links, that is to say closed 1 -manifolds embedded piecewise-linearly in the oriented 3 -sphere. The link itself may also be endowed with an orientation. Two oriented links L_{1}, L_{2} are isotopic if there exists an autohomeomorphism of S^{3} mapping L_{1} to L_{2}, preserving the orientations of S^{3} and the L_{i}. Much knot theory is devoted to the problem of finding efficient and effectively calculable isotopy invariants of links.

A diagram D of a link L is a regular projection of L in the plane, together with an overcrossing-undercrossing structure; an orientation of L is usually indicated by means of arrows suitably placed on the diagram. Diagrams D_{1}, D_{2} will be considered to be equivalent if there is an autohomeomorphism of the extended plane $\nabla^{2} \cup\{\infty\}$ mapping D_{1} to D_{2}, preserving all orientations and, of course, the overcrossings and undercrossings. Where no confusion can arise, we shall not make the distinction between a diagram and its equivalence class.

It is a long-established fact (see, for instance [2]) that link diagrams D_{1}, D_{2} represent isotopic links if and only if D_{1} may be transformed to D_{2} by means of a finite sequence of Reidemeister moves:

Type I

Type II

Type III

Fig. 1.

Now, if D is a diagram of an oriented link, the writhe or twist of D is the sum of the signs of the crossing-points of D, according to the convention explained in Fig. 2. It is clear that the type I Reidemeister move alters the writhe of a diagram, whereas the type II and type III moves do not. It is also true, but not entirely obvious, that if D_{1}, D_{2} are diagrams of isotopic links with the same writhe, then D_{1} may be transformed to D_{2} using Reidemeister moves II, III only. Since the writhe of any diagram is readily computable, and can be altered at will without losing the isotopy class of the corresponding link by introducing curls (see Fig. 2), we have the far-reaching principle enunciated recently by L. H. Kauffman.

A nugatory crossing

A curl

$+1$

-1

Fig. 2.
Kauffmans Principle. Any function defined on equivalence classes of link diagrams (oriented or unoriented) which is invariant under Reidemeister moves II, II yields an invariant of oriented link type.

Kauffman calls such a function an invariant of regular isotopy of link diagrams in the plane. An example, central to this article, is Kauffman's "bracket polyomial" $\langle D\rangle$ of an unoriented link diagram D. He defines recursively, for each such diagram, a Laurent polynomial $\langle D\rangle$ in the ring $Z\left[A, A^{-1}\right]$ by the rules
(i) if D is a simple closed curve, $\langle D\rangle=1$;
(ii) if D_{1} is the disjoint union of D and a simple closed curve, then $\left\langle D_{1}\right\rangle=\left(-A^{-2}-A^{2}\right)\langle D\rangle$;
(iii) if D_{1}, D_{2} are obtained from D by nullifying some particular crossing-point according to the pictures

D

D_{1}

D_{2}

Fig. 3.
then $\langle D\rangle=A\left\langle D_{1}\right\rangle+A^{-1}\left\langle D_{2}\right\rangle$.
Kauffman proves with beautiful simplicity in [4] that this polynomial is indeed invariant under Reidemeister moves II and III; further, if the diagram D is endowed with an orientation, the Jones polynomial $V_{L}(t)$ of the corresponding oriented link L is given by the formula $V_{L}\left(A^{-4}\right)=\left(-A^{3}\right)^{-w}\langle D\rangle$, where w is the writhe of D. It transpires that $V_{L}(t)$ is independent of the orientation of L, apart from multiplication by powers of t. This so-called "reversing result" had been discovered previously by V. F. R. Jones; elementary "skeintheoretic" proofs are given in $[5,8]$. Thus the bracket polynomial provides an excellent "neutral" way of looking at the Jones polynomial.

In this article, an alternative formula for the bracket polynomial is given as a sum of monomials, indexed by the set of spanning trees of the graph associated with a black-andwhite colouring of the regions of the link diagram. This formula is based on W. T. Tutte's concepts of internal and external activities of edges with respect to a spanning tree, and provides a convenient framework for proving certain properties of $V_{L}(t)$. The main results are

Theorems 1 and 2 below. Theorem 1 (i) has been proved independently by L. H. Kauffman [4]. and Theorems $1(\mathrm{i})$ and 2 have been proved independently by K. Murasugi [9]; their proofs are substantially different from the ones presented here.

Let the breadth of a non-zero Laurent polynomial f in an indeterminate t be the difference between the highest and lowest powers of t occurring in f. Clearly, this concept is meaningful for "polynomials" with terms involving fractional powers of t.

A link diagram will be called irreducible if it does not contain any "removable" or "nugatory" crossings, as illustrated in Fig. 2. Removing such crossings in the obvious way from an alternating diagram will eventually change it either to a diagram with no crossings or to an irreducible alternating diagram.

Theorem 1. If a link Ladmits a connected, irreducible, alternating diagram of m crossings, then;
(i) the breadth of $V_{L}(t)$ is precisely m;
(ii) $V_{L}(t)$ is an alternating polynomial;
(iii) the coefficients of the terms of $V_{L}(t)$ of maximal and minimal degree are both ± 1;
(iv) if L is prime in the sense of Schubert, and is not a $(2, k)$ torus link, then $V_{L}(t)$ is of form $t^{r} \sum_{i=0}^{m} a_{i} i^{i}$, with each coefficient a_{i} non-zero.
Let us say that a diagram is prime if it is connected, and there does not exist a simple closed curve in the plane meeting it transversely in just two points which lie in different arcs of the diagram. Clearly, any prime diagram of more than one crossing is irreducible; also, if D is any diagram of minimal crossing-number of a link which is prime (in the sense of Schubert), then D is prime.

Theorem 2.
(i) If a link L admits a connected diagram of m crossings, then the breadth of the Jones polynomial of L is $\leqslant m$.
(ii) If,further, the diagram is prime and non-alternating, then this inequality is strict. Therefore, if L is an m-crossing, prime non-alternating link, then the breadth of $V_{L}(t)$ is $<m$.

The condition of primality in the statement of Theorem 2(ii) is necessary; this is evidenced by any connected sum of two alternating knots.

Fig. 4. Two 6 -crossing diagrams of the "reef" or "square" knot, one alternating and the other non-alternating.

A link L in S^{3} is split if it can be separated by a 2 -sphere in $S^{3}-L$. If L is separated in this way into links L_{1}, L_{2}, then $V_{L}(t)=\left(-t^{-1 / 2}-t^{1 / 2}\right) V_{L_{1}}(t) V_{L_{2}}(t)$; see, for instance [6]. This formula is used in Corollaries 1,2 below, as is a striking theorem of W . Menasco [7], which allows us to avoid the qualification that links be non-split.

Coroifary 1. If a link Ladmits an alternating, irreducible diagram of m crossings, then L cannot be projected with fewer than m crossings.

Proof. Let the alternating, irreducible diagram of L have r components. Then, from Theorem $1(\mathrm{i})$ and the formula given immediately above, the breadth of $V_{L}(t)$ is $m+r-1$. Now suppose that L admits a diagram with n crossings and s components. From Theorem 2(i) and the above formula, $m+r-1 \leqslant n+s-1$. From Theorem 1 of Menasco's paper [7], $s \leqslant r$. Therefore $m+r-1 \leqslant n+s-1 \leqslant n+r-1$, from which it follows that $m \leqslant n$.

Corollary 2. If L_{1}, L_{2} are alternating links with respective crossing-numbers m_{1}, m_{2}, then the crossing-number of any (Schubert) connected sum $L_{1} \# L_{2}$ is $m_{1}+m_{2}$.

Proof. From Corollary 1, L_{1}, L_{2} admit alternating, irreducible diagrams with m_{1}, m_{2} crossings respectively. Then $L_{1} \# L_{2}$ has, by obvious construction, an alternating, irreducible diagram with $m_{1}+m_{2}$ crossings. The result now follows from a further use of Corollary 1.

Murasugi observes that Theorems 1 and 2 , together with the well-known fact that the breadth of the Jones polynomial of an amphicheiral knot is even, yield

Corollary 3. An alternating, amphicheiral knot has even crossing-number.
The last corollary is of a more practical nature.
Corollary 4. Amongst the 12965 unoriented prime knot types of up to 13 crossings, precisely 6236 are non-alternating.

This follows from Theorem 1(i) and the author's own tabulations (which have not yet had the benefit of independent verification).

These theorems provide an interesting analogy with the Alexander polynomial: whereas the Alexander polynomial helps to determine the genus of a non-split alternating link (sec [3]), the Jones polynomial helps to determine its crossing-number.

I would like to express my gratitude to John Conway, who helped to streamline the new formulation of the bracket polynomial, and to Norman Biggs, whose book on algebraic graph theory [1] introduced me to the world of the Tutte polynomial. I am also indebted to Joan Birman, who suggested in a letter that Theorem 1(iv) might be true.

§2. GRAPH-THEORETICAL BACKGROUND

Before re-defining the bracket polynomial, it is necessary to build some graph-theoretical machinery. Once this machinery has been set up, proofs of Theorems 1 and 2 will come quite naturally.

Figure 5 indicates how a planar graph G, with a valuation of the edges of G in the set $\{1,-1\}$, can be obtained from any connected diagram of an unoriented link L in S^{3}, by placing a vertex inside each region coloured black, and associating an edge with each crossing-point of the link diagram; each crossing-point (hence, each edge of G) is given a value ± 1 according to the convention illustrated. Of course, this sign convention is different from the one used in diagrams of oriented links, to calculate the writhe of the diagram.

By interchanging black regions with white regions, one obtains the planar dual G^{\prime} of G, the values of whose edges are the negatives of those of their respective dual counterparts in the original graph. The diagram is alternating if and only if all crossing-points (edges of G) have the same value.

Some of the graph-theoretical terminology necessary for an understanding of the Tutte polynomial may not be familiar to readers, so a rapid survey now follows. A graph is a finite combinatorial structure G consisting of a set of vertices $V(G)$, a set of edges $E(G)$, and an

Fig. 5.
incidence function which assigns to each edge an unordered pair of vertices. The vertices of this unordered pair are the ends of this edge. If X is a subset of $E(G)$, the subgraph generated by X is the subgraph consisting of the edges of X, together with their incident vertices. A spanning subgraph of G is a subgraph of G containing all the vertices of G. A path in G from a vertex v_{0} to a vertex v_{r} is an alternating sequence $v_{0}, e_{1}, v_{1}, \ldots, e_{r}, v_{r}$ of vertices and edges of G, all different, such that each edge e_{i} is incident to v_{i-1} and v_{i}. A cycle is a sequence $v_{0}, e_{1}, v_{1}, \ldots, e_{r}$ of pairwise distinct vertices and edges such that e_{i} is incident to v_{i-1} and $v_{i}(1 \leqslant i \leqslant r-1)$, and e_{r} is incident to v_{r-1} and v_{0}. A cycle consisting of one vertex and one edge is a loop. A graph containing no cycles is acyclic. Of course, any cycle is determined by its edges. A set X of edges is called a cut (or cocycle) if there exists a partition $V=V_{1} \cup V_{2}$ of the vertices of G such that X is the set of edges of G with one end in V_{1} and the other in V_{2}.

A graph G is connected if, given any distinct vertices v_{0}, v_{1} of G, there is a path in G from v_{0} to v_{1}. A component of G is a maximal connected subgraph of G. An isthmus of G is an edge the removal of which increases the number of components of G. A loopless graph is non-separable if it is connected, and cannot be disconnected by the removal of a single vertex together with its incident edges. The relevance of this concept lies in the fact that non-separable planar graphs correspond to prime link diagrams. A block of a loopless graph G is a maximal nonseparable subgraph of G. A tree is a connected, acyclic graph. A spanning tree of G is a spanning subgraph of G which is also a tree.

If G is connected, with n vertices, then an acyclic subgraph H of G is a spanning tree of G if and only if H has $n-1$ edges. If T is a spanning tree of G and e is an edge of G not in T, then $T \cup e$ contains a single cycle, containing e and denoted cyc(T, e). If, on the other hand, e is an edge of T, then T-e has two components; the resulting partition of the vertices of G into two subsets corresponds to a cut, containing e and denoted $\operatorname{cut}(T, e)$. It is easily checked from these definitions that $e \in \operatorname{cyc}(T, f)$ if and only if $f \in \operatorname{cut}(T, e)$.

Next, we state a technical proposition, which is used in the proofs of Theorems 1(iv) and 2(ii). This proposition is probably well known to graph theorists, but I have not found it in the literature. A proof is given in the Appendix.

Suppose we are given a loopless graph G together with a spanning tree T. If H is any subgraph of G containing at least one edge, let $\alpha(H)$ be the union of H with the subgraph of G generated by $\bigcup_{e \in H-T}\{\operatorname{cyc}(T, e)\}$, and let $\beta(H)$ be the union of H with the subgraph of G generated by $\bigcup_{e \in H \cap T}\{\operatorname{cut}(T, e)\}$.

Proposition 1. Let G, T be as above, and let H be a subgraph of G which contains at least
one edge, and which is contained in some block B of G. Then the union of the (increasing) sequence of subgraphs $H, \beta x(H), \beta x \beta \alpha(H), \ldots$ is B.

§3. THE TUTTE POLYNOMIAL AND SOME OF ITS PROPERTIES

Let G be a connected graph, with edges $e_{1}, e_{2}, \ldots, e_{m}$. The order in which the m edges of G appear in this list has been chosen arbitrarily, but will remain fixed for the moment. The edge e_{i} is deemed to precede the edge e_{j} if and only if $i<j$. The crucial concepts of internal and external activity of an edge with respect to a spanning tree of G will now be defined. An edge e_{i} in a spanning tree T is internally active with respect to T if e_{i} precedes all other edges in $\operatorname{cut}\left(T, e_{i}\right)$, and an edge e_{j} not in T is externally active with respect to T if e_{j} precedes all other edges in $\operatorname{cyc}\left(T, e_{j}\right)$. If G is planar, there is a dual relationship between internal and external activity, which is summed up as follows. Let T^{\prime} be the spanning tree of the dual graph G^{\prime} generated by the duals of those edges of G not in T, and let e_{i}^{\prime} denote the dual edge of e_{i}. Then $\operatorname{cut}\left(T, e_{i}\right)$ is the dual subgraph of $\operatorname{cyc}\left(T^{\prime}, e_{i}^{\prime}\right)$, and so e_{i} is internally active with respect to T if and only if e_{i}^{\prime} is externally active with respect to T^{\prime}.

The internal (respectively external) activity of a spanning tree T is the number of edges of G which are internally (respectively externally) active with respect to T. It is a remarkable theorem of W.T. Tutte (see $[10,11]$) that, given natural numbers r, s, the number of spanning trees with internal activity r and external activity s is independent of the choice of ordering of the edges of G. The Tutte polynomial $\chi_{G}(x, y)$ of the graph G is the polynomial $\sum_{T=G} x^{r} y^{s}$, where the sum is taken over all spanning trees T of G, and r, s are respectively the internal and external activities of T. From the discussion of the previous paragraph, if G, G^{\prime} are planar duals, then $\chi_{G}(x, y)=\chi_{G}(y, x)$. By examining Tutte's proof in [10] of the invariance of $\chi_{G}(x, y)$ with respect to different edge-orderings, it will be seen that a related polynomial Γ_{G} in one variable, also invariant, can be defined for a connected graph G with signed edges. It turns out that Γ_{G} is simply the Kauffman bracket polynomial of the link diagram associated with G. We shall defer the definition of Γ_{G} until the next section, as there is still work to do on unsigned graphs.

Tutte's original proof of the invariance of $\chi_{G}(x, y)$ relies on an examination of the effect of interchanging the labels of edges which are adjacent in the ordering, say e_{i} and e_{i+1}. Thus he considers the effect of defining $e_{i}^{\prime}=e_{i+1}, e_{i+1}^{\prime}=e_{i}$, and $e_{j}^{\prime}=e_{j}$ for $j \neq i, i+1$. He observes that, for any spanning tree T of G, the activity (or non-activity) of any edge $e_{j}(j \neq i, i+1)$ is unaltered by this interchange of labels, and shows that a change in the activity of e_{i} or e_{i+1} is only possible if (i) one of these edges (say e_{i}) is in T and the other is not in T, (ii) $e_{i} \in \operatorname{cyc}\left(T, e_{i+1}\right)$ [equivalently $e_{i+1} \in \operatorname{cut}\left(T, e_{i}\right)$], and (iii) each edge $e_{j}(j \neq i, i+1)$ has the same activity with respect to T as it does with respect to the spanning tree $\sigma(T)$ obtained from T by substituting

(T)

$\sigma(\mathrm{T})$

Fig. 6.
e_{i+1} for e_{i}. Under these restrictive circumstances, certain changes in activity are possible, as set out in Table 1 below.

Table 1

	Old ordering of edges			New ordering of edges	
		e_{i}	e_{i+1}	e_{i}^{\prime}	e_{i+1}^{\prime}
Case 1	T	L	d	d	D
	$\sigma(T)$	d	D	L	d
Case 2	T	D	d	ℓ	D
	$\sigma(T)$	ℓ	D	D	d
Case 3	T	L	d	ℓ	D
	$\sigma(T)$	ℓ	D	L	d

L denotes "internally active", i.e. "live"; D denotes "internally inactive", i.e. "dead"; ℓ denotes "externally active"; and d denotes "externally inactive".

It is evident that in each of these three cases $\chi_{G}(x, y)$ is unaltered. All that happens is that the activities of certain pairs of trees are interchanged. The excellent notation expressing the various states of activity of edges was devised by John Conway, and is also capable of distinguishing between positive and negative edges, when the need arises, by means of a bar placed above the symbol in the case of a negative edge.

The polynomial $\chi_{G}(x, y)$, out of which the bracket polynomial naturally springs, will now be examined a little further.

First, it is clear that an isthmus of G is in every spanning tree of G, and is always internally active (it is the only member of its cut). Similarly, a loop of G is always externally active. Let us now introduce some notation which is standard in graph theory: G_{j}^{\prime} is the graph obtained from G by deleting the edge e_{j}, and $G_{j}^{\prime \prime}$ is the graph obtained by contracting e_{j} (it is assumed here that e_{j} is not a loop). Any ordering of the edges of G induces, in a natural way, orderings of the edges of G_{j}^{\prime}, and the edges of $G_{j}^{\prime \prime}$. From these remarks, if e_{j} is an isthmus, $\chi_{G}=x \cdot \chi_{G^{\prime \prime}}$, and if e_{j} is a loop, $\chi_{G}=y \cdot \chi_{G}$.

The Tutte polynomial satisfies a very simple recurrence relation: if e_{j} is any edge of G which is not an isthmus or a loop, then $\chi_{G}=\chi_{G_{j}}+\chi_{G_{j}}$. To verify this, let the edges of G be ordered so that e_{j} is the highest-ranking edge which is not an isthmus or a loop. Then, a spanning tree not containing e_{j} becomes, on deletion of e_{j}, a spanning tree of G_{j}^{\prime} with the same internal and external activities. A spanning tree containing e_{j} becomes, on contraction of e_{j}, a spanning tree of $G_{j}^{\prime \prime}$ with the same internal and external activities. Moreover, any spanning tree of G_{j}^{\prime} or of $G_{j}^{\prime \prime}$ arises in this fashion.

This reduction process generates a "binary tree", which is set forth for the case of the triangle graph, corresponding to the trefoil knot, in Fig. 7. The Tutte polynomials of the "terminal" graphs in the tree of Fig. 4 are indicated. Using the recurrence relation, the Tutte polynomial of the triangle graph is $\chi_{G}(x, y)=x^{2}+x+y$. Note, incidentally, that $\chi_{G}\left(-t,-t^{-1}\right)=t^{2}-t-t^{-1}$, which is $-t^{-2}$ times the Jones polynomial of the right-handed trefoil! The reason for this will be clear, presently.

The next proposition will be used in the proof of Theorem 1, parts (i) and (iii).
Proposition 2. (i) IfG has nvertices and medges, then χ_{G} is of degree $n-1$ in x, and degree $m-n+1$ in y. (ii) If, in addition, G has no isthmuses or loops, then χ_{G} has just one term of maximal degree in x, namely x^{n-1}, and just one term of maximal degree in y, namely y^{m-n+1}.

Fig. 7.

Proof. (i) Let T be any spanning tree of G. Since T contains $n-1$ edges, its internal activity cannot exceed $n-1$, and its external activity cannot exceed $m-n+1$. If the edges of G are ordered so that the edges of T are $e_{1}, e_{2}, \ldots, e_{n-1}$, then all edges of T are internally active, resulting in a term of degree $n-1$ in x; if, instead, the edges of G are ordered so that the edges not in T are $e_{1}, e_{2}, \ldots, e_{m-n+1}$, then all these edges are externally active, resulting in a term of degree $m-n+1$ in y.
(ii) Suppose now that G contains no isthmuses or loops. If the edges of a spanning tree T are $e_{1}, e_{2}, \ldots, e_{n-1}$, then no edge e_{r} outside T is externally active, as cyc $\left(T, e_{r}\right)$ contains at least one edge of T. Therefore T yields a term x^{n-1} in χ_{G}. Let T^{\prime} be a spanning tree not equal to T, and let e_{r} be the first edge of T which is not in T^{\prime}. Then $\operatorname{cyc}\left(T^{\prime}, e_{r}\right)$ contains at least one edge of $T^{\prime}-T$: otherwise T itself would contain a cycle. Let this edge of $T^{\prime}-T$ be e_{s}. Then, since $r<s, e_{s}$ is not internally active with respect to T^{\prime}, so the internal activity of T^{\prime} is less than that of T. This confirms the claim that x^{n-1} is the only term of degree $n-1$ in x. The corresponding claim concerning y is dealt with similarly.

The final proposition of this section is the midway stage between Proposition 1 and Theorem 1 (iv). It ensures that, for suitable graphs $G, \chi_{c}\left(-t,-t^{-1}\right)$ is of form $t^{r} \sum_{i=0}^{m} a_{i} t^{i}$, with each coefficient a_{i} non-zero.

Proposition 3. Let G be a loopless, non-separable graph with n vertices and m edges.
(i) For each $1 \leqslant i \leqslant n-1$, the coefficient in $\chi_{G}(x, y)$ of x^{i} is strictly positive, and for each $1 \leqslant j \leqslant m-n+1$ the coefficient of y^{j} is strictly positive.
(ii) Suppose further that G contains a subgraph K consisting of a cycle with an isthmus of K attached, as in Fig. 8. Then the coefficient in $\chi_{G}(x, y)$ of $x y$ is strictly positive.

K
Fig. 8.

Proof. (i) Take any spanning tree T of G, and label any set of i edges of T $e_{1}, \ldots, e_{i}(1 \leqslant i \leqslant n-1)$. Then each of these i edges will be internally active with respect to T. Let H_{1} be the subgraph of G consisting of these edges together with their incident vertices. Let
$H_{2}=\beta\left(H_{1}\right), H_{3}=x\left(H_{2}\right) . H_{4}=\beta\left(H_{3}\right)$, and so on, where α, β are as in Proposition 1. The union of the H_{j} is G by Proposition 1 , so we can label the edges of $G-H_{1}$ so that they are all inactive with respect to T : we simply arrange that each edge in $H_{j}-H_{j-1}$ precedes each edge in $H_{j+1}-H_{j}(j>1)$. Therefore, with this labelling scheme, T contributes x^{i} to $\chi_{G}(x, y)$. The corresponding result concerning y^{j} is dealt with similarly: one starts by labelling any j edges of $G-T e_{1}, \ldots, e_{j}$. (ii) Let e_{1} be the isthmus of K, and let e_{2} be any edge of the cycle of K. Let $K^{\prime}=K-e_{2}$. Then K^{\prime} is acyclic, so there exists a spanning tree T of G containing $K^{\prime} . e_{1}$ is internally active with respect to T, and e_{2} is externally active. Taking H_{1} to be the subgraph generated by e_{1} and e_{2}, and proceeding as in (i), we get a labelling of edges such that T has internal activity and external activity both equal to 1 .

§4. THE POLYNOMIAL Γ_{G}

Let G be a connected graph, with signed edges ordered somehow. Given a spanning tree T_{i} of G, each edge e_{j} of G has one of eight possible states, depending on whether (i) it is active or inactive, (ii) it is in T_{i} or not in T_{i}, (iii) its sign is +1 or -1 . These eight states will be denoted by the shorthand symbols $\mathrm{L}, \mathrm{D}, \ell, \mathrm{d}, \mathrm{L}, \overline{\mathrm{D}}, \bar{\ell}, \mathrm{d}$, as explained immediately below Table 1 .

The definition of the polynomial Γ_{G} now follows. For each spanning tree T_{i} and each edge e_{j} of G, a monomial $\mu_{i j}$ in $Z\left[A, A^{-1}\right]$ is defined according to the table below.

Table 2

State of e_{j}	L	D	ℓ	d	$\overline{\mathrm{L}}$	$\overline{\mathrm{D}}$	$\bar{\ell}$	$\overline{\mathrm{d}}$
$\mu_{i j}$	$-A^{-3}$	A	$-A^{3}$	A^{-1}	$-A^{3}$	A^{-1}	$-A^{-3}$	A

Then

$$
\Gamma_{G}=\sum_{\substack{\text { all spanning trees } \\ T_{i} \in G}}\left(\prod_{e_{j} \in G} \mu_{i j}\right)
$$

The product $w\left(T_{i}\right)=\prod_{e_{j \in G}} \mu_{i j}$ will be referred to as the weight of T_{i}, and the exponent of A in $w\left(T_{i}\right)$ the exponent of T_{i}. The state of T_{i} is the number of edges of G of each of the above eight kinds, and will be denoted by an appropriate word in the shorthand symbols. Here is a simple example.

Fig. 9.

It is of interest to see directly why Γ_{G} is independent of the choice of ordering of the edges of G. To demonstrate this invariance, it is sufficient to consider the three cases of Table 1 , when e_{i} and e_{i+1} have opposite signs. In cases 1 and 2 , the weights of T and $\sigma(T)$ sum to zero in both the old and the new orderings, whereas in case 3 the respective weights of T and $\sigma(T)$
are unaltered by the change of ordering. It transpires that Γ_{G} is invariant under the change of ordering, even though the collection of tree-weights might not be invariant.

Henceforth, we shall assume that G is planar. If G^{\prime} is the dual graph of G, with all edgesigns reversed, it is clear from Table 2, and from the property $\chi_{G}(x, y)=\chi_{G} \cdot(y, x)$, that $\Gamma_{G}=\Gamma_{G^{\prime}}$. Therefore Γ_{G} is independent of the choice of black-and-white colouring of the corresponding link diagram.

Of course, it is often more convenient to speak of the polynomial of a connected link diagram, rather than the polynomial of its associated connected graph. One then realizes that it is necessary to define Γ_{D} for a disconnected diagram D. The requirement that Γ_{D} be invariant under type II Reidemeister moves which alter the number of components of a diagram dictates to us a formula for Γ_{D} in terms of the polynomials of its components. Specifically, if D has components D_{1}, \ldots, D_{r}, then $\Gamma_{D}=\left(-A^{-2}-A^{2}\right)^{r-1} \Gamma_{D_{1}} \ldots \Gamma_{D_{r}}$. Taking on board this extended definition of Γ_{D}, it is a simple matter to check that Γ_{D} is invariant under Reidemeister moves II and III. However, we shall not pursue this, as there is a quick proof that Γ_{D} really is equal to Kauffman's bracket polynomial, without even having to check invariance under edge ordering. As the above formula for the polynomial of a disconnected diagram agrees with that of Kauffman, it is sufficient to check that the polynomials agree for connected diagrams.

First, observe that if G is a "terminal graph" in a deletion-contraction "binary tree", consisting of p positive isthmuses, q negative isthmuses, r positive loops and s negative loops, then, from Table 2, $\Gamma_{G}=\left(-A^{3}\right)^{-p+q+r-s}$. The diagram corresponding to this graph is a diagram of the unknot, with writhe $-p+q+r-s$, so by Theorem 2.5 of $[4] \Gamma_{G}$ is equal to the bracket polynomial in this case. Now let G be any connected planar graph, and let e_{j} be the highest-ranking edge of G which is not an isthmus or a loop (the case where there is no such e_{j} has just been dealt with). Then, since this edge e_{j} is always inactive, from Table 2 we have $\Gamma_{G}=A^{-\varepsilon} \cdot \Gamma_{G_{i}}+A^{\varepsilon} \cdot \Gamma_{G_{j}}$, where $\varepsilon= \pm 1$ is the sign of e_{j}. Since this agrees with the recursion formula in the definition of the bracket polynomial, the verification that these polynomials are equal is complete.

It is interesting to note that Γ_{G} has been defined for an arbitrary graph with signed edges, not necessarily planar. I do not know whether this polynomial has any application in the case that G is non-planar. The proofs which follow do not use planarity.

§5. PROOFS OF THEOREMS 1 AND 2

Proof of Theorem 1

Suppose we are given a link L admitting a connected, irreducible, alternating diagram of m crossings, with associated graph G. Without loss of generality, we can assume that the m edges of G all have positive sign. Further, since the diagram is irreducible, G has no isthmuses or loops. Use will be made, without further reference, of the formula given in the Introduction which connects $V_{L}(t)$ with the (bracket) polynomial Γ_{G}.

Part (ii). The state of any spanning tree of G is of form $\mathrm{L}^{p} \mathrm{D}^{q} \ell^{r} \mathrm{~d}^{5}$, where $p+q=n-1$ and $r+s=m-n+1$; from Table 2, the weight of this spanning tree is $(-1)^{p+r} A^{-3 p+q+3 r-s}$. Putting $u=p-r$ and $k=2(n-1)-m$, it is easily checked that this weight is $(-1)^{u} A^{k-4 u}$. Since k is constant for the given graph, the sign of the weight of a spanning tree of G is determined by its exponent, and the weights of two trees have the same sign if and only if their exponents differ by a multiple of 8 . This confirms part (ii) of Theorem 1 , and tells us also that the Jones polynomial of the alternating link L is, up to multiplication by a power of t, equal to $\pm \chi_{G}\left(-t,-t^{-1}\right)$. This last fact is of vital importance in the proof of part (iv).

Part (iv). Recall that the graph, G say, of an irreducible, prime diagram (with a choice of black-and-white colouring) is non-separable. From the preceding remarks, and Proposition $3, V_{L}(t)$ can only fail to satisfy the required condition if G fails to contain a subgraph of the type described in the statement of Proposition 3(ii), and illustrated in Fig. 8. But in this event either G or its planar dual would consist of a single cycle, and such a graph corresponds to a diagram of a $(2, k)$ torus link.

Parts (i), (iii). From Table 2 and Proposition 2, the unique spanning tree which contributes x^{n-1} to $\chi_{G}(x, y)$ is also the unique spanning tree of lowest exponent with respect to Γ_{G}, and the unique spanning tree which contributes y^{m-n+1} to $\chi_{G}(x, y)$ is also the unique spanning tree of highest exponent. These exponents are $-3(n-1)-(m-n+1)=-m-2 n+2$ and $3(m-n+1)+(n-1)=3 m-2 n+2$ respectively. The difference between these exponents is $4 m$, so the breadth of $V_{L}(t)$ is m.

Proof of Theorem 2

$\operatorname{Part}(i)$. As before, we shall assume that the graph G associated with the diagram of L has no isthmuses or loops, as these correspond to removable crossings. We are interested in the difference of the exponents of two spanning trees T_{1}, T_{2} of G, which shall remain fixed. Considering the definition of the polynomial Γ_{G}, it is seen that each edge e_{j} of G contributes a certain integer to this difference of exponents. The absolute value σ_{j} of this integer is given by Table 3. This table does not show the possible signs of the edge e_{j}, as σ_{j} is independent of this sign. To prove part (i), it is sufficient to show that $\sum_{e j \in G} \sigma_{j} \leqslant 4 m$. Let s_{k} be the number of integers j for which $\sigma_{j}=k$. Then $\Sigma \sigma_{j} \leqslant 4 m$ if and only if $2 s_{6} \leqslant 2 s_{2}+4 s_{0}$. It will be shown that $s_{6} \leqslant s_{2}$. In the notation of Table 3, let there be r_{1} edges of type ${ }_{\mathrm{L}}^{\ell}$ and r_{2} edges of type $\frac{1}{1}$. Then $s_{6}=r_{1}+r_{2}$. Now, let $C_{i}=\bigcup_{e_{j} \in E_{i}} \operatorname{cyc}\left(T_{i}, e_{j}\right)(i=1,2)$, where E_{1}, E_{2} are the sets of edges of types $\frac{1}{1}, t$ respectively. C_{1} contains r_{1} independent cycles; since T_{2} is acyclic, C_{1} contains at least r_{1} edges of T_{1} not in T_{2}. Each of these edges is D in T_{1}, so from Table 3 their "scores" are 2 each. Similarly, we get r_{2} different edges of score 2 from C_{2}. Therefore $s_{2} \geqslant r_{1}+r_{2}=s_{6}$, so (i) is proved.

Table 3

State of e_{j} with respect to T_{1} State of e_{j} with respect to T_{2}	I	/	L	D	ℓ	d	L	d	ℓ	D	D	d	x
	ℓ	L	D	L	d	ℓ	d	L	D	ℓ	d	D	x
	6	6	4	4	4	4	2	2	2	2	2	2	0

Part (ii). Here, it is convenient to prove the following, of which part (ii) is a special case: if the breadth of $V_{L}(t)$ is m, and L admits an m-crossing diagram [necessarily irreducible by part (i)], then this diagram is a connected sum of alternating diagrams. Translating into graphtheoretical language, let G be a graph with m edges, and with no isthmuses or loops; we shall show that if the breadth of Γ_{G} is $4 m$, then within each block of G all edges have the same sign. Suppose, therefore, that the difference between the exponents of spanning trees T_{1}, T_{2} of G is 4 m . We shall make some observations concerning the rigid constraints placed on activities of edges of G by this condition. In the notation employed in the proof of part (i), we have $s_{6}=s_{2}$ and $s_{0}=0$. Now, let X be a component of some C_{i}. From the condition $s_{6}=s_{2}$, together with the proof of part (i), the number of edges in $\left(T_{2}-T_{1}\right) \cap X$ equals the number of edges in $\left(T_{1}-T_{2}\right) \cap X$. Therefore, from the mode of construction of the $C_{i}, T_{1} \cap X$ and $T_{2} \cap X$ are
both spanning trees of X. It follows also that each edge of C_{1} is of type ${ }_{\mathrm{L}}^{\ell},{ }_{\mathrm{L}}^{\mathrm{D}}$ or ${ }_{\mathrm{d}}^{\mathrm{d}}$, and each edge of C_{2} is of type ${ }_{\ell}^{\mathrm{L}}, \mathrm{D}$ or d_{D} (hence C_{1}, C_{2} have no edge in common). The edge e_{1} belongs to some C_{i}, so we may suppose, without loss of generality, that C_{1} is non-empty and contains a positive edge. To maintain the difference $4 m$ between the exponents of T_{1} and T_{2}, (i) each edge of type ${ }_{\mathcal{L}}^{\ell},{ }_{\mathrm{L}}^{\mathrm{D}, \mathrm{d}} \mathrm{d}_{\mathrm{d}}$ or ${ }_{\mathrm{d}}^{\ell}$ must be positive, and each edge of type ${ }_{\ell}^{\mathrm{L}},{ }_{\mathrm{D}}^{\mathrm{L}},{ }_{\mathrm{D}}^{\mathrm{d}}$ or ${ }_{\ell}^{d}$ must be negative; (ii) each edge outside $C_{1} \cup C_{2}$ must have "score" equal to 4; hence there are no edges in G of type $\underset{\mathrm{d}}{\mathrm{L}}, \stackrel{\mathrm{L}}{\mathrm{d}}, \stackrel{\ell}{\mathrm{D}}, \ell, \mathrm{D}$, or indeed ${ }_{x}^{x}$, also, $T_{1}-\left(C_{1} \cup C_{2}\right)=T_{2}-\left(C_{1} \cup C_{2}\right)$.

The proof of part (ii) will be complete once we have shown that the set of edges of types ${ }_{\mathrm{L}}^{\ell}$, $\underset{L}{D},{ }_{d}^{D},{ }_{d}$, i.e. the set of all positive edges of G, is fixed by the operations α, β of Proposition 1 , these operations being taken with respect to the spanning tree T_{2}. First, consider an edge e of type ${ }_{\mathrm{L}}^{\ell}$ or ${ }_{\mathrm{L}}^{\mathrm{D}}$. Then any edge of $\operatorname{cut}\left(T_{2}, e\right)$ is d with respect to T_{2}, so it must be positive. Next, let e be of type ${ }_{\mathrm{d}}^{\mathrm{D}}$. Then e is in some component X of C_{1}; since, as explained above, $T_{2} \cap X$ is a spanning tree of $X, \operatorname{cyc}\left(T_{2}, e\right)$ lies in C_{1} and consists of positive edges. Finally, suppose that e is of type ${ }_{d}{ }_{d}$. Then e is outside $C_{1} \cup C_{2}$, and we need to exclude the possibility that cyc $\left(T_{2}, e\right)$ might contain a negative edge of T_{2}, i.e. an edge of type ${ }_{\mathrm{D}}^{\mathrm{L}}$ or ${ }_{\mathrm{D}}^{\mathrm{d}}$. Recall that, for each component X of either C_{i}, $T_{1} \cap X$ and $T_{2} \cap X$ are both spanning trees of X; also, $T_{1}-\left(C_{1} \cup C_{2}\right)=T_{2}-\left(C_{1} \cup C_{2}\right)$. It follows that, for each such X and for each e outside $C_{1} \cup C_{2}, \operatorname{cyc}\left(T_{1}, e\right)$ has an edge in X if and only if cyc $\left(T_{2}, e\right)$ has an edge in X; moreover, cyc $\left(T_{1}, e\right)$ agrees with cyc $\left(T_{2}, e\right)$ outside $C_{1} \cup C_{2}$. Now if, for our edge e of type ${ }_{\mathrm{d}}^{\ell}, \operatorname{cyc}\left(T_{2}, e\right)$ contains an edge of type ${ }_{\mathrm{D}}^{\mathrm{L}}$ outside C_{2}, then this edge is also in $\operatorname{cyc}\left(T_{1}, e\right)$, contradicting the fact that e is ℓ with respect to T_{1}. Also, if $\operatorname{cyc}\left(T_{2}, e\right)$ contains an edge (of type ${ }_{\mathrm{D}}^{\mathrm{L}}$ or ${ }_{\mathrm{D}}^{\mathrm{d}}$) inside C_{2}, then $\operatorname{cyc}\left(T_{1}, e\right)$ also contains an edge of C_{2}, which is automatically L in T_{1}, similarly contradicting the given state of e. We have now examined all possibilities, so part (ii) is proved.

REFERENCES

1. N. Biggs: Algebraic Graph Theory. Cambridge University Press, Cambridge (1974).
2. G. Burde and H. Zieschang: Knots. De Gruyter, Berlin (1985).
3. R. H. Crowell: Genus of alternating link types. Ann. Math. 69 (1959), 258-275.
4. L. H. Kauffman: State models for knot polynomials. Preprint.
5. W. B. R. Lickorish and K. C. Milett: The reversing result for the Jones polynomial. Preprint.
6. W. B. R. Lickorish and K. C. Millett: A polynomial invariant of knots and links. Topology, to appear.
7. W. Menasco: Closed incompressible surfaces in alternating knot and link complements. Topology 23 (1984), 37-4.
8. H. R. Morton: The Jones polynomial for unoriented links. Q. J. Math. Oxford 37 (1986), 55-60.
9. K. Murasugi: Jones polynomials and classical conjectures in knot theory. Preprint.
10. W. T. Tutte: A contribution to the theory of chromatic polynomials. Can. J. Math. 6 (1954), 80-91.
11. W. T. Tutte: Graph theory. Encyclopedia of Mathematics (1985).

APPENDIX: PROOF OF PROPOSITION 1

Firstly, if the subgraph H is in the block B, then both $\alpha(H)$ and $\beta(H)$ are in B, as neither a cycle, nor a cut of form $\operatorname{cut}(T, e)$, can contain edges from more than one block.

Now suppose that H is strictly contained in B and that H contains at least one edge. It is sufficient to show that $\chi(H) \neq H$ or $\beta(H) \neq H$. Let K be any component of H. Since B is non-separable, there exist distinct vertices v_{1}, v_{2} of K, together with a path in B from v_{1} to v_{2} consisting entirely of edges in $B-K$. Let ω_{1} be the unique path in the spanning tree T from v_{1} to v_{2}. Every edge of ω_{1} is in B.

Suppose ω_{1} contains an edge not in K. Then, by altering v_{1}, v_{2} if necessary, we can assume that ω_{1} contains no edge of K. Let η be a path in K from v_{1} to v_{2}. As T cannot contain a cycle, η must contain at least one edge not in T; let us suppose that η has been chosen with a minimal number of such edges. In the journey along η from v_{1} to v_{2}, let e be the first edge of η not in T. Let ω_{3} be the part of η joining v_{1} to the beginning, v_{3} say, of e, and let ω_{4} be the unique path in T from the other end of e to v_{2}. If ω_{4} does not
contain v_{2}, there is a cycle C in B consisting of e, ω_{3}, part or all of ω_{1}, and part or all of ω_{4}. Each edge of C apart from e is in T, and C contains an edge e^{\prime} not in H, namely the edge of ω_{1} incident to c_{1}. Since $e^{\prime} \in x(H)$, it follows that $x(H) \neq H$ in this case. If, on the other hand, ω_{+}contains x_{1}, then, by the minimal property of η, the part of ω_{+}between the edge e and v_{1} cannot lie entirely in K; hence this part of ω_{+} contains an edge e^{\prime} say of $B-H$. There is now a cycle consisting of e, part or all of ω_{3} and a part of ω_{+} containing e^{\prime}. As before, we conclude that $e^{\prime} \in x(H)$, so $x(H) \neq H$.

Suppose now that ω_{1} lies entirely in K. By similar reasoning, using the fact that there exists a path in $B-K$ from v_{1} to v_{2}, there is a cycle C consisting entirely of edges of T except for some edge e not in K. and containing an edge e^{\prime} in K. If e is not in H, then $\beta(H) \neq H$ as $e \in \beta(H)$. If e is in a component of H different from K, then C contains an edge $e^{\prime \prime}$ not in H; then $e^{\prime \prime} \in x(H)$, so $x(H) \neq H$.

Department of Mathematical Sciences and Computing
Polytechnic of the South Bank
London SE1 OAA, U.K.

