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ABSTRACT 

A KEW combinatorial formulation of the Jones polynomial of a link is used to establish some 

basic properties of this polynomial. A striking consequence of these properties is the result 

that a link admitting an alternating diagram with m crossings and with no “nugatory” 

crossing cannot be projected with fewer than m crossings. 

$1. ISTRODUCTION AND STATEklENT OF RESULTS 

This article is concerned with classical links, that is to say closed l-manifolds embedded 

piecewise-linearly in the oriented 3-sphere. The link itself may also be endowed with an 

orientation. Two oriented links L,, L, are isotopic if there exists an autohomeomorphism of 

S3 mapping L, to L,, preserving the orientations of S3 and the Li. Much knot theory is 

devoted to the problem of finding efficient and effectively calculable isotopy invariants of 

links. 

A diagram D of a link L is a regular projection of L in the plane, together with an 

overcrossing-undercrossing structure; an orientation of L is usually indicated by means of 

arrows suitably placed on the diagram. Diagrams L),, D, will be considered to be equiuzlent if 

there is an autohomeomorphism of the extended plane 2’ u {OX} mapping D, to D,, 

preserving all orientations and, of course, the overcrossings and undercrossings. Where no 

confusion can arise, we shall not make the distinction between a diagram and its equivalence 

class. 

It is a long-established fact (see, for instance [2]) that link diagrams D,,D, represent 

isotopic links if and only if D, may be transformed to D, by means of a finite sequence of 

Reidemeister motes: 
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Fig. 1. 
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Now, if D is a diagram of an oriented link, the writhe or twist of D is the sum of the signs of 

the crossing-points of D, according to the convention explained in Fig. 2. It is clear that the 

type I Reidemeister move alters the writhe of a diagram, whereas the type II and type III 

moves do not. It is also true, but not entirely obvious, that if D,, D, are diagrams of isotopic 

links with the same writhe, then D, may be transformed to D2 using Reidemeister moves II, 

III only. Since the writhe of any diagram is readily computable, and can be altered at will 

without losing the isotopy class of the corresponding link by introducing curls (see Fig. 2), we 

have the far-reaching principle enunciated recently by L. H. Kauffman. 

A nugatory 
crossing 

A curl 

Fig. 2. 

Sign convention for crossings 

KAUFFMAN’S PRINCIPLE. Any function defined on equivalence classes of link diagrams 

(oriented or unoriented) which is incariant under Reidemeister moves II, III yields an invariant 
of oriented link type. 

Kauffman calls such a function an invariant of regular isotopy of link diagrams in the 

plane. An example, central to this article, is Kauffman’s “bracket polyomial” (D) of an 

unoriented link diagram D. He defines recursively, for each such diagram, a Laurent 

polynomial (D) in the ring Z[A, A-‘] by the rules 

(i) if D is a simple closed curve, (D) = 1; 

(ii) if D, is the disjoint union of D and a simple closed curve, then (DI) =(-A-‘-A’) (D); 

(iii) if D,, Dz are obtained from D by nullifying some particular crossing-point according to 

the pictures 

Fig. 3. 

then (D) = A(D,) + A-‘(D,). 

Kauffman proves with beautiful simplicity in [4] that this polynomial is indeed invariant 

under Reidemeister moves II and III; further, if the diagram D is endowed with an 

orientation, the Jones polynomial vL(t) of the corresponding oriented link L is given by the 

formula V,(A-4)=(-A3)-“(D), where w is the writhe of D. It transpires that VL(r) is 

independent of the orientation of L, apart from multiplication by powers oft. This so-called 

“reversing result” had been discovered previously by V. F. R. Jones; elementary “skein- 

theoretic” proofs are given in [5,8]. Thus the bracket polynomial provides an excellent 

“neutral” way of looking at the Jones polynomial. 

In this article, an alternative formula for the bracket polynomial is given as a sum of 

monomials, indexed by the set of spanning trees of the graph associated with a black-and- 

white colouring of the regions of the link diagram. This formula is based on W. T. Tutte’s 

concepts of internal and external activities of edges with respect to a spanning tree, and 

provides a convenient framework for proving certain properties of I/L(t). The main results are 
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Theorems 1 and 2 below. Theorem I(i) has been proved independently by L. H. Kauffman 
[G]. and Theorems l(i) and 7 have been proved independently by K. Murasugi [9]: their 
proofs are substantially different from the ones presented here. 

Let the breadth of a non-zero Laurent polynomialfin an indeterminate t be the difference 
between the highest and lowest powers oft occurring inf: Clearly, this concept is meaningful 
for “polynomials” with terms involving fractional powers of t. 

A link diagram will be called irreducible if it does not contain any “removable” or 
“nugatory” crossings, as illustrated in Fig. 2. Removing such crossings in the obvious way 
from an alternating diagram will eventually change it either to a diagram with no crossings or 
to an irreducible alternating diagram. 

THEOREM 1. If a link L admits a connected, irreducible, alternating diagram of m crossings, 
rhen: 

(iI 
(ii) 
(iii) 
(iv) 

the breadth of 6’,(t) is precisely m; 
VL(t) is an alternating polynomial; 

the coeBcients of the terms of VL(t) of maximal and minimal degree are both & 1; 
if L is prime in the sense of Schubert, and is not a (2, k) torus link, then VL(t) is ofform 

m 
rr 1 aiti, with each coeficient ai non-zero. 

i=O 

Let us say that a diagram is prime ifit is connected, and there does not exist a simple closed 
curve in the plane meeting it transversely in just two points which lie in different arcs of the 
diagram. Clearly, any prime diagram of more than one crossing is irreducible; also, if D is any 
diagram of minimal crossing-number of a link which is prime (in the sense of Schubert), then 
D is prime. 

THEOREM 2. 

(i) lf a link L admits a connected diagram of m crossings, then the breadth of the Jones 

polynomial of L is <m. 

(ii) If; further, the diagram is prime and non-alternating, then this inequality is strict. Therefore, 

if L is an m-crossing, prime non-alternating link, then the breadth of VL(t) is <m. 

The condition of primality in the statement ofTheorem 2(ii) is necessary; this is evidenced 
by any connected sum of two alternating knots. 

Fig. 1. Two 6-crossing diagrams of the “reef” or “square” knot, one alternating and the other non-alternating. 

A link L in S3 is split if it can be separated by a 2-sphere in S3 -L. If L is separated in this 
way into links L,,L,, then VJt)=(-t-‘12 -tli2) VL,(t) VLZ(t); see, for instance [6]. This 
formula is used in Corollaries 1,2 below, as is a striking theorem of W. Menasco [7], which 
allows us to avoid the qualification that links be non-split. 

COROLLARY 1. If a link L admits an alternating, irreducible diagram of m crossings, then L 

cannot be projected with fewer than m crossings. 
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Proof Let the alternating, irreducible diagram of L have r components. Then, from 

Theorem l(i) and the formula given immediately above, the breadth of VJt) is m+r- 1. 

Now suppose that L admits a diagram with n crossings and s components. From 

Theorem 2(i) and the above formula, m+r- 1 <n + s - 1. From Theorem 1 of Menasco’s 

paper [7], s < r. Therefore m + r - 1 d n +s - 1 <n + r - 1, from which it follows that m < n. 

COROLLARY 2. If L,, Lz are alternating links with respectiae crossing-numbers m,, m,, then 

the crossing-number of any (Schubert) connected sum L, # Lz is m, fm,. 

Proof: From Corollary 1, L,, L, admit alternating, irreducible diagrams with ml, m2 
crossings respectively. Then L, # L, has, by obvious construction, an alternating, irreduc- 

ible diagram with m, + m2 crossings. The result now follows from a further use of Corollary 1. 

Murasugi observes that Theorems 1 and 2, together with the well-known fact that the 

breadth of the Jones polynomial of an amphicheiral knot is even, yield 

COROLLARY 3. An alternating, amphicheiral knot has even crossing-number. 

The last corollary is of a more practical nature. 

COROLLARY 4. Amongst the 12965 unoriented prime knot types of up to 13 crossings, 

precisely 6236 are non-alternating. 

This follows from Theorem l(i) and the author’s own tabulations (which have not yet had the 

benefit of independent verification). 

These theorems provide an interesting analogy with the Alexander polynomial: whereas 

the Alexander polynomial helps to determine the genus of a non-split alternating link 

(see [3]), the Jones polynomial helps to determine its crossing-number. 

I would like to express my gratitude to John Conway, who helped to streamline the new 

formulation of the bracket polynomial, and to Norman Biggs, whose book on algebraic 

graph theory [l] introduced me to the world of the Tutte polynomial. 1 am also indebted to 

Joan Birman, who suggested in a letter that Theorem l(iv) might be true. 

$2. GRAPH-THEORETICAL BACKGROUND 

Before re-defining the bracket polynomial, it is necessary to build some graph-theoretical 

machinery. Once this machinery has been set up, proofs of Theorems 1 and 2 will come quite 

naturally. 

Figure 5 indicates how a planar graph G, with a valuation of the edges of G in the set 

{ 1, - I>, can be obtained from any connected diagram of an unoriented link L in S3, by 

placing a vertex inside each region coloured black, and associating an edge with each 

crossing-point of the link diagram; each crossing-point (hence, each edge of G) is given a value 

+ 1 according to the convention illustrated. Of course, this sign convention is different from 

the one used in diagrams of oriented links, to calculate the writhe of the diagram. 

By interchanging black regions with white regions, one obtains the planar dual G’ of G, 

the values of whose edges are the negatives of those of their respective dual counterparts in 

the original graph. The diagram is alternating if and only if all crossing-points (edges of G) 

have the same value. 

Some of the graph-theoretical terminology necessary for an understanding of the Tutte 

polynomial may not be familiar to readers, so a rapid survey now follows. A graph is a finite 

combinatorial structure G consisting of a set of vertices V(G), a set of edges E(G), and an 



EXP.4NSION OF THE JONES POLYNOMIAL 301 

Fig. 5 

incidence function which assigns to each edge an unordered pair of vertices. The vertices of 

this unordered pair are the ends of this edge. If X is a subset of E(G), the subgraph generated by 

X is the subgraph consisting of the edges of X, together with their incident vertices. A 

spanning subgrapk of G is a subgraph of G containing all the vertices of G. A park in G from a 

vertex u0 to a vertex c, is an alternating sequence u,,, e,, ui, . . . , e,, c‘, of vertices and edges 

of G, all different, such that each edge ei is incident to vi-i and ui. A cycle is a sequence 

t’ e, el,ul, . . . , e, of pairwise distinct vertices and edges such that e, is incident to ui_ 1 and 

ui( 1 < i < r - l), and e, is incident to a,_ 1 and uO. A cycle consisting of one vertex and one edge 

is a loop. A graph containing no cycles is acyclic. Of course, any cycle is determined by its 

edges. A set X of edges is called a cut (or cocycle) if there exists a partition V= V, u V, of the 

vertices of G such that X is the set of edges of G with one end in V, and the other in Y2. 

A graph G is connected if, given any distinct vertices uO, ui of G, there is a path in G from u0 

to ui. A component of G is a maximal connected subgraph of G. An istkmus of G is an edge the 

removal of which increases the number of components of G. A loopless graph is non-separable 

if it is connected, and cannot be disconnected by the removal of a single vertex together with 

its incident edges. The relevance of this concept lies in the fact that non-separable planar 

graphs correspond to prime link diagrams. A block of a loopless graph G is a maximal non- 
separable subgraph of G. A tree is a connected, acyclic graph. A spanning tree of G is a 

spanning subgraph of G which is also a tree. 

If G is connected, with n vertices, then an acyclic subgraph H of G is a spanning tree of G if 

and only if H has n - 1 edges. If T is a spanning tree of G and e is an edge of G not in T, then 

T u e contains a single cycle, containing e and denoted cyc(T, e). If, on the other hand, e is an 

edge of T, then T-e has two components: the resulting partition of the vertices of G into two 

subsets corresponds to a cut, containing e and denoted cut( T, e), It is easily checked from 

these definitions that eE cyc(T,f) if and only iffEcut(T, e). 

Next, we state a technical proposition, which is used in the proofs of Theorems l(iv) and 

2(ii). This proposition is probably well known to graph theorists, but I have not found it in the 

literature. A proof is given in the Appendix. 

Suppose we are given a loopless graph G together with a spanning tree T. If H is any 

subgraph of G containing at least one edge, let r(H) be the union of H with the subgraph of G 

generated by ..,U_ T { CYC( T, 41, and let b(H) be the union of H with the subgraph of G 

generated by u (cut(T,e)}. 
esHn r 

PROPOSITION 1. Let G, T be us uboce, and let H be a subgrupk of G which contains at least 
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one edge. and which is contained in some block B of G. Then the union of the (increasing) 

sequence of subgraphs H, /lx(H), /3+(H), . . . is B. 

$3. THE TCTTE POLYNOMIAL AND SOME OF ITS PROPERTIES 

Let G be a connected graph, with edges e,, e2, . . , e,. The order in which the m edges of 
G appear in this list has been chosen arbitrarily, but will remain fixed for the moment. The 
edge e, is deemed to precede the edge ej if and only if i <j. The crucial concepts of inrernal and 
external activity of an edge with respect to a spanning tree of G will now be defined. An edge ei 
in a spanning tree T is internally active with respect to 7’ if e, precedes all other edges in 
cut(T, e;), and an edge ej not in T is externally active with respect to T if ej precedes all other 
edges in cyc( T, ej). If G is planar, there is a dual relationship between internal and external 
activity, which is summed up as follows. Let T’ be the spanning tree of the dual graph G’ 
generated by the duals of those edges of G not in T, and let ei denote the dual edge of ei. Then 
cut( T, ei) is the dual subgraph ofcyc( T’, e:), and so e, is internally active with respect to Tif and 
only if e; is externally active with respect to T’. 

The internal (respectively external) activity of a spanning tree T is the number of edges of 
G which are internally (respectively externally) active with respect to T. It is a remarkable 
theorem of W. T. Tutte (see [lo, 1 I]) that, given natural numbers r, s, the number of spanning 
trees with internal activity r and external activity s is independent of the choice of ordering of 

the edges of G. The Tutte polynomial xc(x, y) of the graph G is the polynomial c s’J~, where 
TcG 

the sum is taken over all spanning trees T of G, and r, s are respectively the internal and 
external activities of T. From the discussion of the previous paragraph, if G, G’ are planar 
duals, then %G(x, y) = xG,(y, x). By examining Tutte’s proof in [lo] of the invariance of %G(x, y) 
with respect to different edge-orderings, it will be seen that a related polynomial rG in one 
variable, also invariant, can be defined for a connected graph G with signed edges. It turns out 

that rG is simply the Kauffman bracket polynomial of the link diagram associated with G. 
We shall defer the definition of rG until the next section, as there is still work to do on 
unsigned graphs. 

Tutte’s original proof of the invariance of xG(x, y) relies on an examination of the effect of 
interchanging the labels of edges which are adjacent in the ordering, say e, and e,, 1. Thus he 
considers the effect of defining e{ = e, + 1, e: + 1 = ei, and eJ = ej for i # i, i + 1. He observes that, 
for any spanning tree T of G, the activity (or non-activity) of any edge ej (j#i. i+ 1) is 
unaltered by this interchange of labels, and shows that a change in the activity of e, or ei+ 1 is 
only possible if(i) one of these edges (say ei) is in T and the other is not in T, (ii) ei E cyc( T, ei + J 
(equivalently ei+ 1 E cut(T, ei)], and (iii) each edge e,Jj # i, i + 1) has the same activity with 
respect to Tas it does with respect to the spanning tree o(T) obtained from Tby substituting 

Fig. 6 
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e,, i for e,. Under these restrictive circumstances, certain changes in activity are possible, as 

set out in Table 1 below. 

Table 1 

Old ordering of edges 

ei eiL L 

New ordering of edges 
ei ei+l 

Case 1 T L d d D 

a(T) d D L d 

Case 2 T D d k D 

a(T) e D D d 

Case 3 T L d e D 

477 G D L d 

L denotes “internally active”, i.e. “live”; D denotes “internally 
inactive”, i.e. “dead”; G denotes “externally active”; and d denotes 
“externally inactive”. 

It is evident that in each of these three cases x,&q y) is unaltered. All that happens is that 

the activities of certain pairs of trees are interchanged. The excellent notation expressing the 

various states of activity of edges was devised by John Conway, and is also capable of 

distinguishing between positive and negative edges, when the need arises, by means of a bar 

placed above the symbol in the case of a negative edge. 

The polynomial xc(x, y), out of which the bracket polynomial naturally springs, will now 

be examined a little further. 

First, it is clear that an isthmus of G is in every spanning tree of G, and is always internally 

active (it is the only member of its cut). Similarly, a loop of G is always externally active. Let us 

now introduce some notation which is standard in graph theory: G> is the graph obtained 

from G by deleting the edge ej, and G; is the graph obtained by contracting ej (it is assumed 

here that ej is not a loop). Any ordering of the edges of G induces, in a natural way, orderings 

of the edges of Gj, and the edges of G;. From these remarks, if ej is an isthmus, xG =X . xG... and 

if ej is a loop, xG = y . ,yG.. 

The Tutte polynomial satisfies a very simple recurrence relation: if ej is any edge of G 

which is not an isthmus or a loop, then xG = ;c~; + xGY_ T o verify this, let the edges of G be 

ordered so that ej is the highest-ranking edge which is not an isthmus or a loop. Then, a 

spanning tree not containing ej becomes, on deletion of ej, a spanning tree of G) with the same 

internal and external activities. A spanning tree containing ej becomes, on contraction ofej, a 

spanning tree of Gy with the same internal and external activities. Moreover, any spanning 

tree of GJ or of G; arises in this fashion. 

This reduction process generates a “binary tree”, which is set forth for the case of the 

triangle graph, corresponding to the trefoil knot, in Fig. 7. The Tutte polynomials of 

the “terminal” graphs in the tree of Fig. 4 are indicated. Using the recurrence relation, the 

Tutte polynomial of the triangle graph is xc(x,y)=x2 +x +y. Note, incidentally, that 

~G(-t,-t-l)=tZ-t-t-l, which is -te2 times the Jones polynomial of the right-handed 

trefoil! The reason for this will be clear, presently. 

The next proposition will be used in the proof of Theorem 1, parts (i) and (iii). 

PROPOSITION 2. (i) If G has n vertices and m edges, then xc is of degree n - 1 in x, and degree 
m-n+ 1 in y. (ii) If; in addition, G has no isthmuses or loops, then xc has just one term of 
maximal degree in x, namely xn-l, and just one term of maximal degree in y, namely )m-ni ‘. 
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Fig. 7. 

Proof (i) Let Tbe any spanning tree of G. Since Tcontains n - 1 edges, its internal activity 
cannot exceed n- 1, and its external activity cannot exceed m-n + 1. If the edges of G are 
ordered so that the edges of Tare e,, e,, . . . , e,_ i, then all edges of Tare internally active, 
resulting in a term of degree n - 1 in x; if, instead, the edges of G are ordered so that the edges 
notinTaree,,e,,. . .,em_n+l, then all these edges are externally active, resulting in a term 
of degree m-n+ 1 in y. 

(ii) Suppose now that G contains no isthmuses or loops. If the edges of a spanning tree T 

are e,, e2, . . . , e,_ i, then no edge e, outside T is externally active, as cyc( T, e,) contains at 
least one edge of T. Therefore Tyields a term x “-l in xc. Let T’ be a spanning tree not equal to 
T, and let e, be the first edge of Twhich is not in T’. Then cyc(T’, e,) contains at least one edge 
of T’- T: otherwise T itself would contain a cycle. Let this edge of T’- T be e,. Then, since 
r < s, e, is not internally active with respect to T’, so the internal activity of T’ is less than that 
of T. This confirms the claim that X”-i is the only term of degree n - 1 in x. The corresponding 

claim concerning y is dealt with similarly. 
The final proposition of this section is the midway stage between Proposition 1 and 

Theorem l(iv). It ensures that, for suitable graphs G, xc( - t, - t- ‘) is of form t’ f a$, with 
i=O 

each coefficient a, non-zero. 

PROPOSITION 3. Let G be a loopless, non-separable graph with n vertices and m edges. 

(i) For each 16 i < n- 1, the coeficient in ~o(x, y) of xi is strictly positive, and for each 

1 <j < m - n + 1 the coejficient ofti is strictly positive. 

(ii) Suppose further that G contains a subgraph K consisting of a cycle with an isthmus of K 

attached, as in Fig. 8. Then the coefficient in xo(x, y) of xy is strictly positive. 

K 

Fig. 8. 

Proof (i) Take any spanning tree T of G, and label any set of i edges of T 

e,,..., e, (1 < i < n - 1). Then each of these i edges will be internally active with respect to T. 

Let H, be the subgraph of G consisting ofthese edges together with their incident vertices. Let 
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H, =B(H,), H, =z(H,). H,=/?(H,). and so on, where r, /? are as in Proposition 1. The union 

ofthe Hj is G by Proposition 1, so we can label the edges of G - H, so that they are all inactive 

with respect to T: we simply arrange that each edge in Hj- Hi_ 1 precedes each edge in 

Hj+ 1 - Hj (j> 1). Therefore, with this labelling scheme, T contributes xi to xG(.~,y). 

The corresponding result concerning JJ is dealt with similarly: one starts by labelling anyj 

edges of G - Te,, . . . , ej. (ii) Let e, be the isthmus of K, and let e, be any edge of the cycle of 

K. Let K’ = K-e,. Then K’ is acyclic. so there exists a spanning tree T of G containing K’. e, 

is internally active with respect to T, and e2 is externally active. Taking H, to be the subgraph 

generated by e, and el, and proceeding as in (i), we get a labelling of edges such that T has 

internal activity and external activity both equal to 1. 

$4. THE POLYNOMIAL Tc 

Let G be a connected graph, with signed edges ordered somehow. Given a spanning tree 

Ti of G, each edge ej of G has one of eight possible states, depending on whether(i) it is active 

or inactive, (ii) it is in Ti or not in Ti, (iii) its sign is + 1 or - 1. These eight states will be denoted 

by the shorthand symbols L, D, !, d, L, D, 2, d, as explained immediately below Table 1. 

The definition of the polynomial rG now follows. For each spanning tree Ti and each edge 

ej of G, a monomial pij in Z[A, A-‘] is defined according to the table below. 

Table 2 

State of ej L D L d L n 1 a 

Pij -A-’ A -A3 A-’ -,43 A-’ -A-3 A 

Then 

The product w(Ti)= fl pij will be referred to as the weight of Ti, and the exponent of A in 

W(Ti) the exponent of Ti. The state of Ti is the number of edges of G of each of the above eight 

kinds, and will be denoted by an appropriate word in the shorthand symbols. Here is a simple 

example. 

RH - trefoil 
G I 

1 Weight A-: _*-3 _*5 

r, = A-- -A-, -AS 

Fig. 9. 

It is of interest to see directly why TG is independent of the choice of ordering of the edges 

of G. To demonstrate this invariance, it is sufficient to consider the three cases of Table 1, 

when e, and ei + , have opposite signs. In cases 1 and 2, the weights of T and c(T) sum to zero 

in both the old and the new orderings, whereas in case 3 the respective weights of Tand a(T) 



306 Morwcn B. Thistlethwaite 

are unaltered by the change of orderin, 0 It transpires that lYG is invariant under the change of 

ordering, even though the collection of tree-weights might not be invariant. 

Henceforth, we shall assume that G is planar. If G’ is the dual graph of G, with all edge- 

signs reversed, it is clear from Table 2, and from the property x~(x, y) = xc(y, x), that l-c = rG.. 

Therefore l-c is independent of the choice of black-and-white colouring of the corresponding 

link diagram. 

Of course, it is often more convenient to speak of the polynomial of a connected link 

diagram, rather than the polynomial of its associated connected graph. One then realizes that 

it is necessary to define To for a disconnected diagram D. The requirement that l-a be 

invariant under type II Reidemeister moves which alter the number of components of a 

diagram dictates to us a formula for To in terms of the polynomials of its components. 

Specifically, if D has components D,, . . , D,, then rD=(-A-Z-A2)‘-’ Tr,, . . . TD,. 

Taking on board this extended definition of To, it is a simple matter to check that TD is 

invariant under Reidemeister moves II and III. However, we shall not pursue this, as there is 

a quick proof that To really is equal to Kauffman’s bracket polynomial, without even having 

to check invariance under edge ordering. As the above formula for the polynomial of a 

disconnected diagram agrees with that of Kauffman, it is sufficient to check that the 

polynomials agree for connected diagrams. 

First, observe that if G is a “terminal graph” in a deletion-contraction “binary tree”, 

consisting of p positive isthmuses, (7 negative isthmuses, r positive loops and s negative loops, 

then, from Table 2, Tc =( - A3)-pcq+r-s. The diagram corresponding to this graph is a 

diagram of the unknot, with writhe - p + q + r-s, so by Theorem 2.5 of [4] TG is equal to the 

bracket polynomial in this case. Now let G be any connected planar graph, and let ej be the 

highest-ranking edge of G which is not an isthmus or a loop (the case where there is no such ej 

has just been dealt with), Then, since this edge ej is always inactive, from Table 2 we have 

Tc = A-“. rG; + A’. rG;., where E = k 1 is the sign of eY Since this agrees with the recursion 

formula in the definition of the bracket polynomial, the verification that these polynomials 

are equal is complete. 

It is interesting to note that l-c has been defined for an arbitrary graph with signed edges, 

not necessarily planar. I do not know whether this polynomial has any application in the case 

that G is non-planar. The proofs which follow do not use planarity. 

$5. PROOFS OF THEOREMS 1 AND 2 

Proof of Theorem 1 

Suppose we are given a link L admitting a connected, irreducible, alternating diagram of 

m crossings, with associated graph G. Without loss of generality, we can assume that the m 

edges of G all have positive sign. Further, since the diagram is irreducible, G has no isthmuses 

or loops. Use will be made, without further reference, of the formula given in the Introduction 

which connects VL(t) with the (bracket) polynomial rG. 

Part (ii). The state of any spanning tree of G is of form LPD4L’ds, where p + q = n - 1 and 

r+s=m- n + 1; from Table 2, the weight of this spanning tree is (- l)p+‘A-3pCq+3r--s. 

Putting u =p-r and k =2(n- 1)-m, it is easily checked that this weight is (- 1)UAke4”. 

Since k is constant for the given graph, the sign of the weight of a spanning tree of G is deter- 

mined by its exponent, and the weights of two trees have the same sign if and only if their 

exponents differ by a multiple of 8. This confirms part (ii) of Theorem 1, and tells us 

also that the Jones polynomial of the alternating link L is, up to multiplication by a power 

of t, equal to fxG( - t, -t- ‘). This last fact is of vital importance in the proof of part (iv). 
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Part (ic). Recall that the graph, G say, of an irreducible, prime diagram (with a choice 

of black-and-white colouring) is non-separable. From the preceding remarks, and 

Proposition 3, YL(r) can only fail to satisfy the required condition if G fails to contain a 

subgraph of the type described in the statement of Proposition 3(ii), and illustrated in Fig. 8. 

But in this event either G or its planar dual would consist of a single cycle, and such a graph 

corresponds to a diagram of a (2, k) torus link. 

Parts (i), (iii). From Table 2 and Proposition 2, the unique spanning tree wrhich 

contributes x”- 1 to x‘(.Y, y) is also the unique spanning tree of lowest exponent with respect to 

Fc, and the unique spanning tree which contributes y”-“+’ to ~J.Y._v) is also the unique 

spanning tree of highest exponent. These exponents are - 3(n - 1) -(m - n + 1) = -m - 2n + 2 

and 3(m - n + 1) + (n - 1) = 3m - 2n + 2 respectively. The difference between these exponents 

is 4m, so the breadth of V,(t) is m. 

Proof of Theorem 2 

Part(i). As before, we shall assume that the graph G associated with the diagram of L has 

no isthmuses or loops, as these correspond to removable crossings. We are interested in the 

difference of the exponents of two spannin, 0 trees T,, T, of G, which shall remain fixed. 

Considering the definition of the polynomial FG, it is seen that each edge ej of G contributes a 

certain integer to this difference of exponents. The absolute value aj of this integer is given by 

Table 3. This table does not show the possible signs of the edge ej, as aj is independent of this 

sign. To prove part(i), it is sufficient to show that c aj<4m. Let sL be the number of integers 
e, E G 

j for which cj= k. Then Eaj <4m if and only if 2s, 6 2s2 + 4s,. It will be shown that s6 ,<sz. In 

the notation of Table 3, let there be rr edges of type [ and rz edges of type/L. Then s6 = rl + r2. 

Now, let Ci= l,j cyc(Ti, ej) (i= 1, 2), where E,,E, are the sets of edges of types I, 4 
e,EE, 

respectively. C, contains ri independent cycles; since Tz is acyclic, C, contains at least rl 

edges of T, not in Tz. Each of these edges is D in T,, so from Table 3 their “scores" are 2 each. 

Similarly, we get rz different edges of score 2 from C,. Therefore s2 B rl +r, =s6, so (i) is 

proved. 

Table 3 

State of ej with respect to T, L L LDLd Ld/DDd .x 
State of ej with respect to T, c L DL d G dLD/dD x 

gj 6 6 4 4 4 4 222222 0 

Part (ii). Here, it is convenient to prove the following, of which part (ii) is a special case: if 

the breadth of VJt) is m, and L admits an m-crossing diagram [necessarily irreducible by part 

(i)], then this diagram is a connected sum of alternating diagrams. Translating into graph- 

theoretical language, let G be a graph with m edges, and with no isthmuses or loops; we shall 

show that if the breadth of FG is 4m, then within each block of G all edges have the same sign. 

Suppose, therefore, that the difference between the exponents of spanning trees T,, T, of G is 

4m. We shall make some observations concerning the rigid constraints placed on activities of 

edges of G by this condition. In the notation employed in the proof of part (i), we have s6 = s2 

and so = 0. Now, let X be a component of some Ci. From the condition s6 = s2, together with 

the proof of part (i), the number of edges in (T, - T,) n X equals the number of edges in 

(T, - Tz) n X. Therefore, from the mode of construction of the Ci, T, n X and Tz n X are 
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both spanning trees of X. It follows also that each edge of C, is of type i, For !j’, and each edge 

of C2 is of type >, b or i (hence C,, C, have no edge in common). The edge e, belongs to some 

Ci, so we may suppose, without loss of generality, that C, is non-empty and contains a 

positive edge. To maintain the difference 4m between the exponents of T, and T,, (i) each 

edge of type [, F, f or 2 must be positive, and each edge of type 4, b, h or j must be negative; 

(ii) each edge outside C, u C1 must have “score” equal to 4; hence there are no edges in G of 

type k, i’, “,, (“, or indeed ;; also, T, -(Cl u C,)= T2 -(C, u C,). 

The proof of part (ii) will be complete once we have shown that the set of edges of types [, 

F, y, “,, i.e. the set of all positive edges of G, is fixed by the operations rw,fl of Proposition 1, these 

operations being taken with respect to the spanning tree T,. First, consider an edge e of type [ 

or F. Then any edge of cut(T,, e) is d with respect to T2, so it must be positive. Next, let e be of 

type ,“. Then e is in some component X of C,; since, as explained above, T, n X is a spanning 

tree of X, cyc( T2, e) lies in C, and consists of positive edges. Finally, suppose that e is of type 2. 

Then e is outside C, u C,, and we need to exclude the possibility that cyc(T,, e) might contain 

a negative edge of T,, i.e. an edge of type b or $. Recall that, for each component X ofeither Ci, 

T, n X and T, n X are both spanning trees of X; also, T, -(Cl u C,)= T2-(C, u C,). It 

follows that, for each such X and for each e outside C, u C2, cyc(T,, e) has an edge in X if and 

only if cyc( T,, e) has an edge in X; moreover, cyc (T,, e) agrees with cyc( T2, e) outside C, u C,. 

Now if, for our edge e of type “,, cyc( T,, e) contains an edge of type b outside Cl, then this edge 

is also in cyc(T,, e), contradicting the fact that e is ! with respect to T,. Also, if cyc(T,,e) 

contains an edge (of type b or “,) inside C,, then cyc(T,, e) also contains an edge of C,, which is 

automatically L in T,, similarly contradicting the given state of e. We have now examined all 

possibilities, so part (ii) is proved. 
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APPENDIX: PROOF OF PROPOSITION 1 

Firstly, if the subgraph H is in the block B, then both a(H) and /3(H) are in 19, as neither a cycle, nor a 

cut of form cut(T,e), can contain edges from more than one block. 

Now suppose that H is strictly contained in Band that H contains at least one edge. It is sufficient to 

show that r(H) # H or /3(H)# H. Let K be any component of H. Since B is non-separable, there exist 

distinct vertices L:,, c2 of K, together with a path in B from c’~ to c2 consisting entirely of edges in B-K. 

Let w, be the unique path in the spanning tree T from c’r to cs. Every edge of w1 is in B. 

Suppose w1 contains an edge not in K. Then, by altering L;~, u2 if necessary, we can assume that w1 

contains no edge of K. Let q be a path in K from u1 to t’*. As Tcannot contain a cycle, q must contain at 

least one edge not in z let us suppose that r~ has been chosen with a minimal number of such edges. In 

the journey along q from u1 to u2, let e be the first edge of q not in T. Let w3 be the part of q joining v1 to 

the beginning, u, say, of e, and let w4 be the unique path in T from the other end of e to oz. If oj does not 
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contain L’,, there is a cycle C iniB consisting ofe, oj, part or all of w,. and part or all ofu,. Each edgs of C 

apart from e is in T, and C contains an edge e’ not in H, namely the edge of oI incident to r,. Since 

e’E z(H), it follows that x(H) # H in this case. If, on the other hand, wI contains cl, then. by the minimal 

property of 7, the part of u1 between the edge e and o1 cannot lie entirely in K; hence this part of [!j4 

contains an edge e’ say of B - H. There is now a cycle consisting of e, part or all of w3 and a part of cl1 

containing e’. As before, we conclude that e’ E z(H), so a(H) # H. 
Suppose now that w, lies entirely in K. By similar reasoning, using the fact that there exists a path in 

B-K from G, to u2, there is a cycle C consisting entirely of edges of Texcept for some edge e not in K, 
and containing an edge e’ in K. If e is not in H, then /l(H)# H as eE/J(H). If e is in a component of H 
different from K, then C contains an edge e” not in H; then e"~z(H), so r(H)# H. 
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