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1.2 Let 1: O-I + G be the projection onto the linear part of elements of W. 1 is injective [2] 
and if I acts properly discontinuously on E then l(I) is also free, otherwise the kernel would 
be an abelian subgroup. The discussion will concern only purely hyperbolic l(I), i.e. every 
nonidentity element of I(I) is hyperbolic. 

g E G is hyperbolic if it has three distinct positive real eigenvalues, n(g) < 1 < n(g)- ‘. 
Corresponding repelling, fixed, and attracting eigenvectors xi , xi, and x,’ , respectively, are 
defined so that x 9, x,’ E W n S2, where S* is the Euclidean unit sphere, and B(xz, x,“) = 1 
such that B(x,“, x; HX,‘) > 0, i.e. { xz, xi, x,’ } is a right handed basis for E. For 6 > 0, 
g E G is &hyperbolic if g is hyperbolic and p(x,’ , xi) > 6. 

v E E is called spacelike if B(v, v) > 0, timelike if B(v, v) < 0, and lightlike if B(v, v) = 0. 
The set of spacelike vectors, the set of timelike vectors, and the set of lightlike vectors are 
each invariant under the action of G. For spacelike v, define unique vectors x:, 
x; E W n S* such that B(v, x’ ) = 0 and B(v, x; Elx: ) > 0. In fact, x; q x: is a positive 
scalar multiple of v. Note that if v = x,” then x2 = x,’ . Also, if II, v E W n S2 are linearly 
independent then UHV is spacelike, x-(ulglv) = II, and X+(UHV) = v. 

1.3 Define a “conical neighborhood” A c W of v E W to be an open connected subset of 
W containing v, such that if w E W then kw E W for all k > 0. 

A free subgroup G, with generators gi, of G “acts as a Schottky group on W” if there are 

conical neighborhoods A’ of x,i such that cl(A:) n cl 
( 

A’ u (Ai+ v A,:) = 0 and 
jtl > 

cl (gi(A; )) = W - Ai’. For disjoint conical open sets A and B, 

T(A, B) = {vEEIB(v,algb) > 0 VaEcl(A) and becl(B)}. 

In particular, if A and B are connected T(A, B) is an open infinite pyramid whose vertex is 
the origin and whose 4 corners are parallel to vectors in the boundary of A and B. 

$2. FUNDAMENTAL POLYHEDRA FOR THE LINEAR PART 

2.1 First, fundamental domains for the action of Gi = (gi ) on E-(2 half planes} are 
constructed. Only then will the translational part of the affine action be considered. 

Let r = (hl,h2,. . . , h,), where hi(x) = giX + vi and l(hi) = gi and l(T) is a Schottky 
subgroup of G. Let A’ be the conical (but not canonical) neighborhoods of xc whose 
closures are distinct and Cl (gi (A; ) = W - A: . 

2.2 On ‘Z = C - {v E C 1 v = kxz for some k E W}, a fundamental domain for the action 
ofGiisthecomplementofA+ u(-A+)andA; u(-A;).Definev$,je{l,2,...,n},to 
be of norm 1 and in the boundary of AT where vi: EIV~: # 0 and gi(v,< )/ (1 gi(vii ) 1) = V$ . 

The action under consideration is linear and it is easy to see that a fundamental domain 
for %’ and the timelike vectors is the region between Fl = {v E (vi:, vi: ) ( B(v, v) I 0} and 
F; = {v~(~~&)~B(v,v)~0}. 

For the spacelike vectors, as with the timelike vectors, the fundamental domain is 
bounded by planar objects that include the ~6’s. Consider the half planes that are B- 
perpendicular, i.e. Euclidean tangent, to the cone. 

Denote the “positive” half planes perpendicular to C at v E C as 

P(v) = {wcElx: = v or kv = w, kER}, 

and the “negative” half planes perpendicular to C at veC as 

N(v)={weEJx; =v orkv=w,kER}. 
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a. x3= I level 

b. x3 q 0 level 

c x3=-1 level 

Fig. 1. Horizontal view of a pair of wedges. 

Fig. 2. 3D view of a pair of wedges. 
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Note that gi(P(V$ )) = P(v$ ) and gi(N(v,~ )) = N(v$ ), since g(x: )/ 1) g(xb ) II= X& for 

hyperbolic gE G and VEE. Define the “wedges” Wi to be the open region bounded by 

F: u P(v; ) u P(vh) not containing Fif u P(vi:) u P(vi$) and the “wedges” M’ to be the 

half-space bounded by F’ u N(vA) u N(v&) and not containing Fi’ u N(vi:) u N(v,;). 

A fundamental domain for the action of Gi 

(i) on E - P(x, ) - P(x: ) is E - W: - W; and 

(ii) on E - N(x,) - N(xL) is E - Ml - M; . 

3. AFFINE FUNDAMENTAL POLYHEDRA 

3.1 Fundamental domains for the action of Hi = (hi) on E are obtained from the 

above domains. The fundamental domain for the action of F on E is the intersection of the 

fundamental domains of the action of the Hi’s on E provided the fundamental domain for 

each Hi completely contains the complement of the fundamental domain for the other Hi. 

The fundamental domains involving the P(v)‘s will be discussed and the argument for the 

N(v)‘s is completely analogous. 

x, GEE are r-equivalent if there exists a y E r such that y(x) = y, and the relation 

between constructing a fundamental domain and showing proper discontinuity is given by: 

3.2 LEMMA. I-, a group of afJine homeomorphisms of E, acts properly discontinuously and 
freely on E if there exists a 3-dimensional submanifold X with boundary (a fundamental 
domain), such that: 

(i) no 2 elements of the interior of X are r-equivalent, 
(ii) and every element of E is r-equivalent to an element of X. 

The fundamental domain of a cyclic affine group is bounded by translates of compon- 

ents of the boundary of a fundamental domain for the corresponding cyclic linear group. 

cl(hi(W; )) = cl(gi(W;) + vi) = (E - W:) + vi and a fundamental domain for the action 

of Hi = (hi) on E is the complement of W; and W+ + Vi if these 2 sets have disjoint 

closures. 

If p(y, z + vi) > 0 for all choices of y~cl(W;) and z~cl( W+ ) then 

cl(W;) n cl(W: + vi) = 0. In particular, if for each pair of vectors yECl(W;) and 

z~cl(W>) there is a vector IIEE such that B(y, u) # B(z + V~,U) then 

Cl(W;) n Cl(Wi+ + Vi) = 0. 

To construct u given the vectors y E W;and ZE W+ , first examine the case in which 

y and z are both spacelike. In this case, xJ ~cl(A;), x: ~cl(A’ ), and u = xc &lx:. If y is 

not spacelike and z is spacelike, let u = (y/ // y /I )EIX: . If z is not spacelike and y is spacelike, 

let u = xJ q (z/ 1) z I/ ). If neither y nor z are spacelike, let u = (y/ 11 y (I )B(z/ II z (I ). Note that 

B(y, u) = 0 if y is not spacelike. If y is spacelike then xl = XL and B(y, u) < 0. Similarly, 

B(z, u) 2 0. 

If B(vi, u) > 0 for all possible vectors u described above then cl(W;) n 

cl(W: + vi) = 0 and a fundamental domain for Hi is the complement of Wi- and 

WF + vi. For y E cl(W; ) and z E cl(WT ) one can construct a vector u as above such that 

B(z + vi, U) = B(z, U) + B(vi, U) > k and B(y, U) 5 0. 

3.3 The set of vi)s such that B(vi, u) > 0 for a fixed u is a half space bounded by 

(xi , x: ), the null plane of u. The set of translations giving rise to a fundamental domain 

for the given Ai in this construction is T(A; , A:), the set of “allowable translations.” 
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Another set of allowable translations is obtained by noting that 
cl(hi(W; - g,T’(vi))) = E - Wz. In this case the wedges separate if B(- g;l(Vi), U) < 0 

for all u = Z&I w where w E cl(A: ) and z E cl(A; ). Equivalently, if u = gi (u) then B(vi, u) > 0 
for u = zlglw where w ~cl(gi(A: )) and z~cl(g,(A~r )) and the set of allowable translations is 

T(gi(AC ), gi(A: )). 
These two sets of allowable translations can be combined to make a larger third set of 

allowable translations. If vi = vi1 + vi2 where B(vii, u) > 0 and B(Vi2, U) > 0 for all u and 
u described above, then the complement of Iw; = WC - gim1(vi2) and YV+ = Wz + vii is 
a fundamental domain for the action of Hi on E since the closures of the wedges are distinct. 

A fundamental domain for the action of Hi on E is E - Yf ; - -WC, if 
v~ET(A;, gi(A:)) where Vi1 ET(A;, AZ) and vizET(gi(A;), gi(A’)) are such that 
Vi = Vi1 + Viz. 

3.4 In passing from the fundamental domain of Hi to the fundamental domain of I, it is 
useful to demand both wedges be translated away from the origin. The fundamental domain 
of r will be the complement of 2 pairs of s-separated wedges. The pairs of wedges were 
constructed SO that hi(cl(W; - g;‘(Vi2))) = E - (W: + vii) and the quotient is obtained 
by identifying the boundaries of each pair of wedges. 

In order to guarantee that the closures of the translated wedges are distinct, it is useful to 
consider each wedge paired with the other wedges. Let SZ?’ = A: u (Af u A,:). If 

j#i 

ViGT(gi(-QI+), ~47) then Vi = Vi1 + Vi2 for some Vi1 ET(A:, di) and vi2ET(gi(~:), 
gi(A;)), and if - v,ET(gi(dF), d,:) then vi = vi1 + Vi2 for some - vizET(gi(d+), 
gi(A;)) and - Vii ET(A:, d;). In this case let %‘-: = W+ + vii, w; = W; - gi_l(vi2), 
Jt+ = Ml + Vii, and A,: = M; - gi-l(viz). 

3.5 THEOREM. Let hi(X) = gi(X) + Vi for i~{1,2,. . . , PI>, and I- = (hI,h2,. . . , h,). Zf 
l(T) acts as a Schottky subgroup on W and: 

0) viET(gi(d+), de; ), then r acts properly discontinuously on E. 

E - 
(i 

u (?Y+ u 9f; ) 
> 

is a fundamental polyhedron for the action of r on E. 

(ii) - ViET(gi(~~ ), JX!‘; ), then r acts properly discontinuously on E. 

E - 
(i 

u(d+ u di’; ) 
> 

is a fundamental polyhedron fur the action of r on E. 

Fig. 3. Fundamental polyhedron for margulis space-time. 
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Proof: It suffices to prove the theorem for the case Vi E T(gi(d: ), a’; ). It is clear from 

the construction that no 2 elements of X = E - u (W: u W;) are r-equivalent. 
i 

3.6 Assume that there exists a p E E which is not r-equivalent to any point in X. Thus, 
one may construct an infinite sequence of embedded images of the wedges all containing 
p in the following manner: 

Let y0 = e and ~Y+‘“~~ = w. For integers n > 1 choose y,, E r, i, E (1,2}, and 
jn~(--l, l}, so that p~y,,(W{i), y.+l(W”~,“::) c y,(Wi,“), and Y,,+~ = mhi;. 

The leading term of yn is hi,” and by an application of the Brouwer fixed point theorem Cl] it 
can be shown that x+(y”)~A$, yn+l,Z is defined to be hey,,, where k E { 1, - l} is chosen so 
that k # i,,. From the previous discussion it is noted that x+ (m+ 1,2)Egk(A$‘). Define the 
plane S, = (x’(y,), x’(y,)) for all rn~{O, l/2, 1, 3/2, 2.. .}. 

Consider the intersection of the embedded images of the wedges and the plane 
P = {x1x3 = p3 >. p is r-equivalent to elements in all of the wedges -/Y-F. One can assume 
that p is contained in a “small” wedge o, where the angle between every pair of rays 
contained in m n P is I 71/2. In particular, S, n P contains a ray lying completely within 
w n P for positive all positive integers n. 

Choose Lo c P to be the line closest to p which bounds a half plane in P containing all 
of w n P and whose normal in P forms an angle of less than 7c/4 with all rays contained 
o n P. Let L, c P be the closest line to p parallel to Lo and bounding a half plane in 
P containing m(W!;) n P. (Lo, L1, L2,. . .} is an infinite sequence of parallel lines in 
P constructed so that p( p, L, + 1 ) I p( p, L,). To arrive at a contradiction to the assumption, 
it is enough to show that (p(p, L,) - p(p, L,+ 1)) is bounded from below. 

3.7 There exists an E > 0 such that for any x EX the a-ball centered at x, B(x, E), is 
contained in X u (h: X) u (h; X) u (h: X) u (h; X). Of course, p(p, L,) < (p(p, Lo) - E). 

If ym is &hyperbolic there is a minimum compression for any s-ball in the plane S,. 
Quantitatively, 

I(y,)B(O, E) n S, I B(0, s6/2) n S,. (1) 

Consider the case where y,, is b-hyperbolic for positive integer n. For every y E y;'(L,), 

B(y, E) is contained in the complement of hj;( Wj;:; ). Since the angle between P n S, and 
the normal to L, in P was constructed to be less than n/4, B(x, ~8/2~!*) for all XEL, is 
contained in the complement of yn + I (W!;:; ) and 

P(P, L,+ 1) < P(P, L”) - (sW23’2). (2) 

If y,, is not b-hyperbolic then yn+ ijz is &hyperbolic. (1) holds for yn+ l,z and the action of 
g;’ does not contract any vector by more than a factor of n(g,) so that 

~(m)B(O, s) n (gk’(Sn+i,2 )) = B(O, Gk)sV21’2) n (&(S,+ i&). (3) 

There exists a ray in gk1(Sn+1,2) n P lying in w n P and 

P(P, L,+ 1) < P(P7 Ln) - (4gk)m3’*). (4) 

This is a contradiction since (2) and (4) bound (p(p, L,) - p(p, L,+ 1)) from below. Thus, 
there is no PEE which is not r-equivalent to an element of X and X is a fundamental 
domain for the action of r on E. (i) follows. W 
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3.8 Let dS denote the boundary of the set S. In the case where the fundamental 
polyhedron is E - (W: uW; VW: VW;), r identifies W”: with aW; and aW: 
with aW;. Similarly, I identifies &A: with aA; and 84: with &A; when the 
fundamental polyhedron is E - (A?: u A ; u .M: u A;). 

COROLLARY. The Margulis space-times arising from Theorem 2.6 are homeomorphic to 
solid handlebodies of genus n. 

It seems natural to conjecture that all Margulis space-times are homeomorphic to solid 
handlebodies of genus n. This is certainly true for n = 1. 
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