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FUNDAMENTAL POLYHEDRA FOR MARGULIS SPACE-TIMES

Topp A. DRUMM

(Received 23 July 1990; in revised form 12 December 1991)

1 INTRODUCTION

CompLETE affinely flat manifolds correspond to subgroups I' = Aff(R") which act properly
discontinuously on R”, and n,(M) = I for M = R"/T". Milnor [6] has shown that if G is
virtually polycyclic then there is some complete affinely flat manifold M such that
n,(M) = G, and he asked if the converse was true.

Margulis {4, 5] demonstrated that there exist free subgroups I' = Aff(R3) acting
properly discontinuously on R3, thus answering Milnor’s question negatively. By Fried and
Goldman [2], the underlying linear group of I' must be conjugate to a subgroup of

"SO° (2, 1). The corresponding quotient manifolds will thus be called Margulis space-times.
Drumm and Goldman [ 1] have given geometric conditions for the group I' to act properly
discontinuously on R3.

0.2 Geometric conditions, similar to [1], for the group I" to act properly discontinu-
ously on R?, are obtained through the construction of a fundamental polyhedra for the
action of I acting on R*. These fundamental polyhedra are noncompact [2, 3]. With the
identifications, the manifolds are seen to have the topological type of a solid handlebody.

§1. GEOMETRY OF R*!

1.1 Consider I' = (hy, hy,. .., h,) = V>G = H where G = SO° (2,1) and V is the
group of parallel translations in 3-space. I' will act on E = R*! with the Lorentzian
inner product B(u,v) = u,v, + u,v, — u3vy Iinvariant under the action of G.
C = {ueE|B(u, u) = 0} is the null cone and W = {ue C|u; > 0} is its upper nappe. For
linearly independent u, ve E, {u, v} denotes the plane spanned by u and v. p(A, B) denotes
the Euclidean distance between the sets A and B, cl{A) is the closure of A in the usual
topology, and |u| is the Euclidean length of the vector u.

The “Lorentzian cross product” is defined to be

UaUy — U3V,
UXlv = fuzv; — U, 03
UaDy — Uy U,
It can easily be checked that:

(1) Bu,uRv)= B(v, v&u) = 0,
(1) uRvV = — vXu;
(iii) BuRy, uRv) = B(u, v)> — B(u, u) B(v, v).
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1.2 Let l: H — G be the projection onto the linear part of elements of H. [ is injective [2]
and if " acts properly discontinuously on E then /(I') is also free, otherwise the kernel would
be an abelian subgroup. The discussion will concern only purely hyperbolic I(I'), i.e. every
nonidentity element of /(I') is hyperbolic.

ge G is hyperbolic if it has three distinct positive real eigenvalues, A(g) <1 < i(g)~ .
Corresponding repelling, fixed, and attracting eigenvectors x; , xJ, and x, , respectively, are
defined so that x, , x,/ € W S?, where S? is the Euclidean unit sphere, and B(x?, x?) = 1
such that B(xJ, x, ®x, ) >0, ie. {x,x, ,x,; } is a right handed basis for E. For é > 0,
g€ G is d-hyperbolic if g is hyperbolic and p(x, , x,) > d.

veE is called spacelike if B(v, v) > 0, timelike if B(v, v) < 0, and lightlike if B(v, v) = 0.
The set of spacelike vectors, the set of timelike vectors, and the set of lightlike vectors are
each invariant under the action of G. For spacelike v, define unique vectors X, ,
x, € W n S? such that B(v, xI) = 0 and B(v, x, ®x," ) > 0. In fact, x, ®x," is a positive
scalar multiple of v. Note that if v = xJ then x;* = x;7. Also, if u, ve W n §? are linearly
independent then uRlv is spacelike, x (uKIv) = u, and x* (uRv) = v.

1.3 Define a “conical neighborhood” A = W of ve W to be an open connected subset of
W containing v, such that if we W then kwe W for all k > 0.
A free subgroup G, with generators g;, of G “acts as a Schottky group on W” if there are
conical neighborhoods A7 of x} such that cl(AF) N cl<Aii U (A UAf )) = J and
j#1

cl(g:(A;7)) = W — A", For disjoint conical open sets A and B,
T(A, B) = {veE|B(v,agb) > 0 Vaecl(A) and becl(B)}.

In particular, if A and B are connected T(A, B) is an open infinite pyramid whose vertex is
the origin and whose 4 corners are parallel to vectors in the boundary of A and B.

§2. FUNDAMENTAL POLYHEDRA FOR THE LINEAR PART

2.1 First, fundamental domains for the action of G; = {(g;> on E-{2 half planes} are
constructed. Only then will the translational part of the affine action be considered.

Let T = {hy, h,,. .., h,>, where hi(x) = g;x + v; and I(h;) = g; and I(T') is a Schottky
subgroup of G. Let A} be the conical (but not canonical) neighborhoods of x;; whose
closures are distinct and cl(g;(A; ) = W — A/,

22 On € = C — {veC|v = kx} for some ke R}, a fundamental domain for the action
of G; is the complement of A U (— A}')and A; U (— A ). Define v, je{1,2,...,n},to
be of norm 1 and in the boundary of A where viRvE # 0 and g;(v;; )/ Il gi(vij)l = vi§.

The action under consideration is linear and it is easy to see that a fundamental domain
for ¢ and the timelike vectors is the region between F;* = {ve {v;{, v}, >|B(v, v) < 0} and
F; = {ve{vi,v)|B(v,v) <0}

For the spacelike vectors, as with the timelike vectors, the fundamental domain is
bounded by planar objects that include the vi’s. Consider the half planes that are B-
perpendicular, i.e. Euclidean tangent, to the cone.

Denote the “positive” half planes perpendicular to C at veC as

P(v) = {weE|x} =vorkv=w, keR},
and the “negative” half planes perpendicular to C at ve C as

N() = {weE|x, =v orkv=wkeR}
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a. xz3=1 level

b. x5z =0 Level

C xz3=~1 level

Fig. 1. Horizontal view of a pair of wedges.

Fig. 2. 3D view of a pair of wedges.
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Note that g;(P(v;;)) = P(v;j) and g;(N(v;;)) = N(vj), since g(x;)/[|g(x.) )| = x5y for

hyperbolic ge G and veE. Define the “wedges” W7 to be the open region bounded by

F* uP(vii) u P(v3)not containing F;* U P(v{;) U P(v}) and the “wedges” M7 to be the

half-space bounded by F# U N(vii) U N(v}) and not containing F;7 U N(vi;) u N(v3).
A fundamental domain for the action of G;

(i) on E—P(x,,)—P(x;) isE— W —W; and
(i) on E — N(x;) — N(x;) is E—Mj — M.

3. AFFINE FUNDAMENTAL POLYHEDRA

3.1 Fundamental domains for the action of H; = {h;> on E are obtained from the
above domains. The fundamental domain for the action of I' on E is the intersection of the
fundamental domains of the action of the H;’s on E provided the fundamental domain for
each H; completely contains the complement of the fundamental domain for the other H;.
The fundamental domains involving the P(v)’s will be discussed and the argument for the
N(v)’s is completely analogous.

x,yeE are I'-equivalent if there exists a ye” such that y(x) =y, and the relation
between constructing a fundamental domain and showing proper discontinuity is given by:

3.2 LemMA. T, a group of affine homeomorphisms of E, acts properly discontinuously and
freely on E if there exists a 3-dimensional submanifold X with boundary (a fundamental
domain), such that:

(i) no 2 elements of the interior of X are I'-equivalent,
(ii) and every element of E is T'-equivalent to an element of X.

The fundamental domain of a cyclic affine group is bounded by translates of compon-
ents of the boundary of a fundamental domain for the corresponding cyclic linear group.
cl(h;(W{))=cl(g:(W; )+ v;) =(E — W) + v, and a fundamental domain for the action
of H; = (h;> on E is the complement of W;” and W + v; if these 2 sets have disjoint
closures.

If p(y,z+4+v)>0 for all choices of yec(W;) and zecl(W}) then
AW )W +v;)= . In particular, if for each pair of vectors yecl(W; ) and
zecl(W) there is a vector ueE such that B(y,u)# B(z+ v;,u) then
AW )ncdWiH +v,)= .

To construct u given the vectors ye W and ze W, first examine the case in which
y and z are both spacelike. In this case, x;f ecl(A; ), x; ecl(A" ), and u = x; Rx. . If y is
not spacelike and z is spacelike, let u = (y/ |y | )®x. . If z is not spacelike and y is spacelike,
let u = x;” ®(z/| z||). If neither y nor z are spacelike, let u = (y/|y[)R(z/[z||). Note that
B(y, u) = 0 if y is not spacelike. If y is spacelike then x;7 = x,; and B(y, u) < 0. Similarly,
B(z,u) > 0.

If B(v,uw)>0 for all possible vectors u described above then cl(W;)n
(W +v;)= ¢ and a fundamental domain for H; is the complement of W; and
W +v;. For yecl(W; ) and zecl(W;") one can construct a vector u as above such that
B(z + v;, u) = B(z, u) + B(v;,u) > k and B(y,u) < 0.

3.3 The set of vs such that B(v;,,u) >0 for a fixed u is a half space bounded by
(X, ,x; >, the null plane of u. The set of translations giving rise to a fundamental domain
for the given A7 in this construction is T(A;”, A;"), the set of “allowable translations.”
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Another set of allowable translations 1is obtained by noting that
cl(h;(W; — g7 *(v;))) = E — W . In this case the wedges separate if B(— g; *(v;),u) <0
for all u = z®w where we cl(A;" ) and ze cl(A; ). Equivalently, if u = g;(u) then B(v;,u) > 0
for u = zRw where wecl(g;(A;" ))and zecl(g;(A;)) and the set of allowable translations is
T(g:(A ), g:(A7)).

These two sets of allowable translations can be combined to make a larger third set of
allowable translations. If v; = v;; + v;; where B(v;;, u) > 0 and B(v;,, u) > 0 for all u and
u described above, then the complement of #' = W — g7 '(vi;)and #°;" = W/ + v, is
a fundamental domain for the action of H; on E since the closures of the wedges are distinct.

A fundamental domain for the action of H; on E is E—w  —w ./, if
v,;eT(A; ,g:(A;")) where v, eT(A;7,A") and v,,€T(g:(A;), g:(A;")) are such that
Vi = Vip + Via.

3.4 In passing from the fundamental domain of H; to the fundamental domain of T, it is
useful to demand both wedges be translated away from the origin. The fundamental domain
of I will be the complement of 2 pairs of e-separated wedges. The pairs of wedges were
constructed so that h;(cl(W; — g }(vi2))) = E — (W;" + v;;) and the quotient is obtained
by identifying the boundaries of each pair of wedges.

In order to guarantee that the closures of the translated wedges are distinct, it is useful to
consider each wedge paired with the other wedges. Let &/F =AZ|J(Af UA;) If

j# i
v;eT(g;(#), o) then v, =v; +v;, for some v, eT(A/, ;) anjd vioeT(g:(),
g:(A7)), and if — v;eT(gi(F), o) then v, = v;; +v;, for some —v,eT(g:(F),
gi(A7 ) and — v, eT(AS, o/ ). In this case let #;' = W + v, W = W; — g7 '(vi2),
M =M + vy, and A7 =M — g7 (via).

3.5 TueoreM. Let hy(x) = gi(x) + v; for ie{1,2,...,n},and T =<hy, hyy ..., By ). If
KT) acts as a Schottky subgroup on W and:

() v,;eT(g:(#5"), A7), then T acts properly discontinuously on E.
E - <U(W Fuouw )) is a fundamental polyhedron for the action of T on E.

@) l— v,eT(g(t), ), then T acts properly discontinuously on E.
E - (U( MO M )) is a fundamental polyhedron for the action of I on E.

i

Fig. 3. Fundamental polyhedron for margulis space-time.
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Proof. 1t suffices to prove the theorem for the case v;e T(g;(<Z;" ), o7 ). It is clear from

i

the construction that no 2 elements of X = E — <U (Wt ouw’ )) are I'-equivalent.

3.6 Assume that there exists a pe E which is not I'-equivalent to any point in X. Thus,
one may construct an infinite sequence of embedded images of the wedges all containing
p in the following manner:

Let yo=¢ and ‘/I/f;’ = w. For integers n> 1 choose y,eT, i,e{l,2}, and
Jn€{—1,1}, s0 that pey, (W' 1), yus 1 (H00) € 9 (W3), and yuyy = pahin.

Bt

The leading term of y, is {° and by an application of the Brouwer fixed point theorem [1] it
can be shown that x* (y,)€ A%, y,.,,, is defined to be hy,, where ke {1, —1} is chosen so
that k # iy. From the previous discussion it is noted that x* (y,+,2)€gx(A{). Define the
plane S,, = {x*(yn), X°(y)) for al me {0, 1/2, 1,3/2,2...}.

Consider the intersection of the embedded images of the wedges and the plane
P = {x|x3 = p3 }. p is ['-equivalent to elements in all of the wedges ¥ /. One can assume
that p is contained in a “small” wedge w, where the angle between every pair of rays
contained in w N P is < n/2. In particular, S, n P contains a ray lying completely within
o n P for positive all positive integers n.

Choose L, = P to be the line closest to p which bounds a half plane in P containing all
of w n P and whose normal in P forms an angle of less than /4 with all rays contained
o N P. Let L, = P be the closest line to p parallel to L, and bounding a half plane in
P containing y,(#°#") n P. {Lo,L,, Ly, ...} is an infinite sequence of parallel lines in
P constructed so that p(p, L,+1) < p(p, L,). To arrive at a contradiction to the assumption,
it is enough to show that (p(p, L,) — p(p, L, + 1)) is bounded from below.

3.7 There exists an ¢ > 0 such that for any xe X the e-ball centered at x, B(x, ¢), is
contained in X U (h{ X) u (h7 X) v (b3 X) w (k3 X). Of course, p(p, L,) < (p(p, Lo) — ¢).
If y,, is 6-hyperbolic there is a minimum compression for any ¢-ball in the plane S,,.

Quantitatively,
[(7,,)B(0,e) " S,, = B(0,8/2) n S,,. (1)

Consider the case where 7, is 5-hyperbolic for positive integer n. For every yey, '(L,),
B(y, ¢) is contained in the complement of hir(#7{»:!). Since the angle between P N S,, and

the normal to L, in P was constructed to be less than /4, B(x, £5/23?) for all xeL, is
contained in the complement of y,, , (# {+!) and

n+1

p(p’ Ln+ 1) < p(P’ Ln) - (85/23/2)' (2)

If y, is not é-hyperbolic then 7, 1, is d-hyperbolic. (1) holds for y, . ;,, and the action of
g« ! does not contract any vector by more than a factor of A(g,) so that

1(y,)B(O, &) N (ge "(Snr1/2)) < B(O, A(gx)ed/2"*) 1 (9" (Su+1/2))- 3
There exists a ray in gy '(S,+1,2) N P lying in @ n P and
p(P Lus 1) < p(p, L) — (A(g1)80/2°%). @)

This is a contradiction since (2) and (4) bound (p(p, L,) — p(p, L,+1)) from below. Thus,
there is no peE which is not [-equivalent to an element of X and X is a fundamental
domain for the action of " on E. (i) follows. [ |
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3.8 Let 0S denote the boundary of the set S. In the case where the fundamental
polyhedron is E — (W { % T u% 3 u#7), I identifies 0% { with 6% ;{ and o# 5
with 0% ;. Similarly, I identifies 0.#{ with o.# 1 and o.# 35 with d.#; when the
fundamental polyhedron is E — (A WM UM5 U M7).

CoroLLARY. The Margulis space-times arising from Theorem 2.6 are homeomorphic to
solid handlebodies of genus n.

It seems natural to conjecture that all Margulis space-times are homeomorphic to solid
handlebodies of genus n. This is certainly true for n = 1.
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