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Abstract 

Goldring, N., Woodin cardinals and presaturated ideals, Annals of Pure and Applied Logic 55 
(1992) 285-303. 

Models of set theory are constructed where the non-stationary ideal on p,,,,,I (,I an 
uncountable regular cardinal) is presaturated. The initial model has a Woodin cardinal. Using 
the Levy collapse the Woodin cardinal becomes I + in the final model. These models provide 
new information about the consistency strength of a presaturated ideal on g,,J for I greater 
than w,. 

1. Introduction 

In this paper we describe a generic extension of V where the non-stationary 
(henceforth NS) ideal on ??J. is presaturated. More specifically, we show that in 
the model obtained by collapsing all ordinals less than a Woodin cardinal to some 
regular uncountable cardinal A, the NS ideal on P&. is presaturated (we define 
the notion of a presaturated ideal below). 

This result improves on an unpublished result of Foreman, Magidor and 
Shelah, which says that in the model obtained by collapsing all ordinals less than 
a supercompact cardinal to a regular uncountable cardinal A., the NS ideal on 
.L?P& is presaturated. The proof of this unpublished result is very much in the 
spirit of some of the proofs in [2], e.g., the proof that after collapsing all ordinals 
less than a supercompact to some regular uncountable cardinal A, the NS ideal on 
A is precipitous. Our proof relies heavily on their work. 

Finally, as far as consistency results go, our result shows that, for example, the 
consistency strength of a presaturated ideal on PPo,w,, is no greater than that of a 
Woodin cardinal. For n > 1, this reduces the known consistency strength of the 
above claim from that of a supercompact cardinal to that of a Woodin cardinal. 
For n = 1, our result gives no new consistency strength information since in that 
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case, Woodin and Shelah have shown that, starting with a model with a Woodin 
cardinal, one can force to get a model where the NS ideal on K1 is saturated, let 
alone presaturated (their result improves on a result in [2], where the authors 
used a supercompact in the ground model). However, even in this case we get 
new information about the particular model where we get the NS ideal on gm,wl 
to be presaturated. 

2. 

We start by introducing some definitions. We want to show that if 6 is Woodin 
in V, then there is a forcing extension of V where the NS ideal on $Pm,A is 
presaturated. In general, for any ideal on 9PU,A, we have the following definition 
(where If stands for the positive sets with respect to Z, i.e., the complement of Z 
in GYP&). 

Definition 2.1. An ideal Z on PPm,n is presaturuted iff whenever G is generic over 
I+, A+ is not collapsed in V[G]. 

The notion of a presaturated ideal was introduced by Baumgartner and Taylor 
in [l]. They also formulated there an equivalent definition, which will be more 
useful for our purposes. Before we state the equivalent definition (Lemma 2.3), 
we need one more definition: 

Definition 2.2. Let KG A be uncountable cardinals, K regular. Let A be an 
antichain of stationary sets with respect to some ideal Z in P,A. Let B be any 
positive set in P,n. Then: 

A ~B={DEAID~B$Z}. 

Loosely speaking, A 1 B is the part of the antichain which is ‘below’ B when 
forcing with I+. 

Note. In the above definition, we referred to ‘antichains’. In general, A is an 
antichain in 9’,J with respect to an ideal Z if all members B, C (B # C) of A are 
positive with respect to Z and their intersection belongs to 1. We will often just say 
‘A is an antichain’ when the space and the ideal are clear from the context. 

We now have the following lemma: 

Lemma 2.3. Assume 2” = il+ and A a = A. Then an ideal Z on kYw,A is presaturated 

iff for any o antichains (A’ 1 i E w) and any positive set B, there is a positive set 

D c B such that each IA’ r DI s A. 

For a proof see [l]. 
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Remark. In the model where we will be proving that the NS ideal on P& is 
presaturated, 2* = A+ and A” = A. Thus the above equivalence holds in that 
model. Also, we will only use the right-to-left implication (‘new’ definition+ 
‘old’ definition) which does not depend on any cardinal arithmetic. 

We will be interested only in the NS ideal on g’,,A: A subset of PK’,A is NS iff it 
is disjoint from a club subset of P?,J. In general, there are two distinct notions of 
‘club’ subsets of P?&, club and strongly club; (a set C c PPKn is club in PK’,;\- iff it is 
unbounded in ?$J-i.e. every set in P?J is covered by a set in C and it is 
closed - i.e. the union of any increasing sequence of length less than K of sets in 
C is itself in C; C is strongly club in PKA iff there is a structure & of the form 
&= (A,A)iew, where h:A<* + A and C = {N < Sp 1 JNI CK}). However, in the 
case we are interested in, i.e., K = w,, the two notions coincide (see e.g., 
[2] - the result itself is due to Kueker, see [5]). The notions of club and NS for 
subsets of PKX are defined in a similar way. 

The proof of the theorem relies heavily on the relationship between stationary 
sets of gm,n and ?Pm,X, for X such that A c X. We state here the facts we use. If S 
is a stationary (club) subset of Pw,X then 

s*={YnAIYEs} 

is stationary (club) in 6PU,il. 
Conversely, if S is a stationary (club) subset of 6Pm,A then 

S={YEP~,X/YnnES} 

is a stationary (club) subset of PU,X. 
A proof of these facts can be found in [2]. 
Finally, the partial order we will force with is the Levy partial order, which 

for cardinals il < S, collapses all (Y, A < a < 6 to A, i.e., its domain is {p 1 IpI < 

A A p is a function A dam(p) c S X A A V( a, p) E dam(p) (~(a, /I?) < a)} and it 
is ordered by reverse inclusion, i.e., p s q iff q cp. We denote this partial order 
by Lv(<6, A). 

If ;1 is an infinite regular cardinal and 6 an inaccessible cardinal greater than A, 
then Lv(<6, A) is <A closed and has the 6-C.C. (see [3, p. 191, Lemma 20.41). 
Thus if G is generic over Lv(<6, A) then 6 = A+ in V[G] and no cardinals less 
than or equal to A or greater than or equal to 6 were collapsed. 

We will use the following factorization of the Levy collapse: 

Lv(<S, il) = Lv(<y, A) x Q;, 

where 

Qt = {p E Lv(<6, A) ( V( (Y, /3) E dam(p) (Y 2 y}. 

In the proof we will often look at restrictions of a generic filter on Lv(<6, A). 
We denote the filter on Lv(<S, A) by G6 and its restriction to Lv(<cr, A) 
(J. < (Y < 6) by G, (G, is generic over Lv(<cu, A)). 
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3. 

We now state our theorem. 

Theorem 3.1. Let 6 be a Woodin cardinal, let A be a regular uncountable 
cardinal, A. < 6. Let G be a generic filter over Lv(<6, A). Then in V[G] 
(=V[G,]), the NS ideal over $!?,,A is presaturated. 

Proof. By Lemma 2.3, we want to show that given any o maximal antichains in 
‘9& (in V[G]) (A’ 1 i E O) with A’ = (Ag 1 p < ri) and a stationary set B c 
9$,,& there is a stationary subset D of B such that (A’ 1 DI s A for all i. Since 
2*= A+ = 6 holds in V[G], any maximal antichain A in P’,,A has size at most 6. 
Thus yi s 6, for all i E CO. If yi < 6, then yj c A, and there is nothing to show 
regarding A’. Hence we may assume yi = 6 for all i E CO. From now until the end 
of the proof, we fix A = (A’ 1 i E o} and B. Since their choice was arbitrary, we 
will be done if we can show that there is a stationary subset D of B such that 
IA’ 1 DJ c A. for all i E w. 

It is difficult to prove our claim directly for 6, since 6 is not (necessarily) the 
critical point of an elementary embedding. However, there are many ordinals 
below 6 which are the critical points of elementary embeddings, and we will 
show that there is enough resemblance between these and 6 for the proof to go 
through. This will be made clearer below. 

First, we introduce the following definitions: 

Definition 3.2. Assume A = (A’ ( i E w > is a sequence of maximal antichains in 
P& and that (Y < 6. We say that CY reflects 6 for (A’ 1 i E w ) if (A’ 1 LX ) i E w ) E 
V[G,] and, further, A’ 1 (Y is a maximal antichain in Pa& in V[Gn] for all i E w. 

Note. Since we have fixed (A’ I . z E w) at the beginning of the proof, we will just 
say ‘(Y reflects a’, when referring to that sequence of antichains. 

The proof will use extensively the relationship between stationary sets in 6Pm,n 
and those in PP,_,H@, for some large regular 8. For N c HO and A an antichain in 
CP&, we ask about N n A belonging to a member of A. Here and elsewhere, H, 
will stand for the set of all sets of hereditary cardinality less than (Y. The following 
definition appears in [2]. 

Definition 3.3. Let A be a regular uncountable cardinal and let 0 be a regular 
cardinal >2” : Let .& = (H,, E, de ). Let N be a countable elementary substruc- 
tureof&andletA=(A,I~</3),p62*.“b e an antichain of stationary sets in 

~I& 
l WesayNcontainsanindexforAiff3yEN,y<PsuchthatNniEA,. 
l We say that N can be extended to contain an index for A (relative to a) iff 

3M-C&suchthatN~M,NnA.=MnA,Mn~~A,andy~M. Wecallsuch 
an M a good extension of N for A (relative to a). 
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Remark. The definition of ‘containing an index of A’ does not depend on the 

structure Se; however, since the N’s we will typically look at will be elementary 

substructures of some structure d, we mentioned it for both parts of the 

definition, anyway. Also, we will sometimes omit the clause ‘relative to J& when 

the ~4 in question will be clear from the context. 

Let 13, be (2’“)+. Let As, be a well-ordering of HLjGal. (From now on, unless 

otherwise stated, K,, will always mean Hi:‘;-‘.) Let SB,, be the set of all 

countable elementary substructures N of (H,,, E, de,) such that for all i in w, N 

contains an index for A’ 1 LY and N fl A. E B. We can then show the following: 

Lemma 3.4. Let 6, A, G be as in the statement of the theorem. Let A, B be as 

fixed above. Assume B E V[Ga], LY reflects 6 and S,,, is stationary in 

(P?~,Hen)v~Gal. Then (in V[G6]) there is a subset D of B such that IA’ 1 DI CA for 

all i E 0. 

Proof. We work in V[G6]. S,,, is still stationary in V[G,] since 

Lv(<6, h)/Lv(<a, a> 

is proper. (It is Q”,, which is o-closed.) In V[G,] we have f : A-, He* which is 

one-one and onto. Since in V[G6], the set of all subsets of Hen which are closed 

under f, f-’ is closed unbounded, its intersection with S,,, is stationary. Let T,,, 

be the (stationary) set of all N’s in S,,, which are closed under f, f-‘. Let 

T&z = {f-“‘N ( NE T,,,}. We then have that 

T ;,~={N~~)NET,,,). 

(f-“‘N c N n k f o 11 ows from the closure of N under f-r. On the other hand, 

N fl~cl’,-:“” follows from the closure of N under f, since (Y =f-‘(f(a)).) 

B.a is stationary, it must meet every antichain in PPU,h. In particular, it 

must meet each A’. For the rest of, the proof, fix i. Assume Ti,* f7Al is 

stationary. Let R = Tz,, “4;. Then R = {f”N 1 NE R} is stationary in 6PC,,,He,. 

Since fi c &#, every N in R contains an index for A’ 1 a. 

Let 

g(N) = the least /3 E N such that N n ;1 E Ag. 

Then g is regressive on A, so there is a stationary set Q c J? such that g is 

constant on Q, say g(N) = n for all N in Q. Since every N in R contains an index 

for A’ 1 a, we must have that rl< (Y. 

Now look at 

Q*={Nn~INEQ}={f-l”NINEQ}. 

We have that Q* c A& since N n A. E A, for all N in Q. Also, Q* CA; since 

Q* c R c A& Since Q* is stationary, we have that y = n. 

So we have shown that if T* B,,nAk is stationary then y < Q: Hence 

IA’ 1 T&I c A. Since the choice of i was arbitrary, IA’ 1 T&J c ), for all i. Also 

T* B,=C B. Hence Ti,, is the set D we were looking for. q 
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Thus to prove the theorem, it is sufficient to find an a such that B belongs to 

V[G,], a reflects 6 and S,,, is stationary in (P,,HH,)VIG~l. The rest of the proof is 

devoted to showing such an (Y exists. 

We first reduce the requirement that Se,, be stationary in (P~,H~,)“~~-I to an 

alternative requirement (this reduction is due to Foreman, Magidor and Shelah): 

Lemma 3.5. Assume (Y is such that B belongs to V[GLy], (Y reflects 6 and 

C, = {N< (HO,, ~,A~=)IINI=X~andforafli,A’rff~NandNhas 
a good extension for A’ 1 a} 

contains a club in ((9’w,He,))vLGa1. Then S,,, is stationary in (P~,H~,)“[~~I. 

Proof. We work in V[G=]. Assume C, contains a club (in (&P,,&J) but that S,,, 

is not stationary (in (Pm,HOo) “tG*‘). Then the complement of S,,, contains a club. 

Thus there is a club set TB,a of countable elementary substructures N of 

(4~~~ E, de, ) which either lack an index for some A’ 1 a (i E w) or are such that 

N rl il $ B. Now the set of countable elementary substructures N of (He,, E, AB, ) 
which satisfy N fl A E B is stationary, so that we can find an N in TB,a such that for 

all i E o, N has a good extension for A’ 1 (Y but there is an i such that N does not 

contain an index for A’ r (Y. 

Let N be such a structure: So N lacks an index for A’ r a but it may be 

extended to contain one; say M is such an extension. Thus M contains an index 

for A’ r a. Have we reached a contradiction? No. First, M has an index for A’ 1 a 

but may lack one for A’ 1 a, j #i. Second, even if M contained indices for A’ r a 

for all i E o, M may no longer belong to TB,n. 
Consider the first problem, that of adding indices to N for all antichains 

A’ 1 (Y, i E o. We may try to add indices one by one. Say NO = N and N, is a good 

extension of NO for A0 r cr. We now wish to add an index to NI for A’ r (Y. The 

problem is that NI may no longer belong to C,, in which case we do not know 

that we can add an index for A1 r LX to it. 

Thus it turns out that both problems arise out of the fact that a good extension 

of a member of C, (TB,w) may no longer belong to C, (TB,=). To solve this 

problem, we look at the sets 

and 

Ck= {N < (HUNG”‘, E, A& ) IN( = K. and C, E N} 

T k,,= {N < (HUNG”‘, E, Ae2) 1 INI =X0 and TB,a EN}. 

CL and TL,, are both clubs in (Pw,He,)v’Gul, and they both have the property 

that if M is a good extension of one of their members, then M itself is a member 

of them. We only have to verify that they still have the original properties that 

C,, T,,, (respectively) had. 

We start with the easier case, TB,or. Let NE T&. We have that N II He, E Ts,=, 
since TB,a is club. Thus either N tl He, fl A. $ B or there is an i in o such that 
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N fl He, does not contain an index for A’ 1 (Y. If N fl HH, fl A 4 B, then N n A 4 

B (A c He,). If N fl He, does not contain an index for A’ 1 a, neither does N, 

since an index for A’ 1 a is a member of He,. 
Next we show that C& has the property that, for any i E co, every member of it 

can be extended to contain an index for A’ 1 LY. We will rely on a technical 

lemma, whose proof we postpone until after the proof of the main lemma. The 

lemma we need is the following (this lemma is part of the Foreman, Magidor and 

Shelah proof. A version of it appears in [2]): 

Lemma 3.6. Let A < 8 < o be regular uncountable cardinals such that 22’< 8. Let 

A, be a well-ordering of HO. Let N < (H,,, E, A,), INI = X0 and 8 E N. Let 
A E N fl He be a maximal antichain of Pm& (with respect to the NS ideal). Then: if 
N fl He has a good extension for A (with respect to (H,, E, A, 1 Ha x H, )), then 
so does N (with respect to (HO, E, A,)). 

Now assume the lemma. Recall that 

CL = {N < (HiiG”‘, E, A,,+) 1 INI = K0 and C, E N} 

and we want to show that if N is in Cb,, then for all i E o, N has a good extension 

for A’ r a in CL. 

Fix N E CL. Since N E CL, C, E N, so that N fl HFIG*l E C, (since C, is club in 

PP,,H~[Gul). So N n He* has a good extension for A’ r (Y. But then so does N, by 

Lemma 3.6. (Note that we defined A,, to be an extension of AOn; we also have 

that 0 E N and that 22’ < 8,, so that we are justified in applying Lemma 3.6.) 

So both CL and Tb,, have the property that we wanted them to have. We can 

now proceed to get a contradiction to our assumption (that T,,, was club). Let 

B = {N < (He;, E, A,;) 1 INI =X0 and N rl A E B}. 

B is stationary. 

Let N,, E Tb,, n CL n B. Then No fl il E B, so NO E TL,, implies that there is an i 
such that No does not contain an index for A’ r (Y. No E CL, so N,, has a good 

extension for (the least such) A’ 1 a; say N1. 

Construct a sequence of models No -K N, 4 N2 < . . * such that Nk+, is a good 

extension of Nk for Ak, i.e., Nktl contains indices for (at least) 

A’ra;..., Ak r a Consider M = lJieo Ni. We have that [MI = rC,, M < (He,+, E, 
de;), M has indices for (A’ r a 1 i E o) but M E CL, contradiction (since NE CL 

implies that there is an i such that N does not contain an index for A’ r a). 0 

Thus, in order to finish the proof of the theorem, it is enough to show that 

there is an cr < 6 such that (Y reflects 6 (for A), B E V[G,] and the set C, defined 

above is club in (Pm, He,) “lGul We call such an (Y good for A, B. . 
We conclude this section by proving Lemma 3.6: 
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Proof of Lemma 3.6. First note that if N < (HO, E, A,) then N fl He < (H,, E, 
A, r HO x H,) so that the statement of the lemma makes sense. 

Let ~4 = (HO, E, A,), 93 = (HO, E, A, r He x H,). We will prove this lemma 
by describing a canonical way for constructing good extensions (when they exist). 
We will then argue that since this process works for N tl He, it works for N. 

We set out this process in a separate lemma. We use here and later on the 
notation SH(N) for the Skolem Hull of N. Hence we use SH&(N) for the Skolem 
Hull of N in A 

Lemma 3.7. Let N-C (He, E, de) and let A be a maximal antichain of 9& with 
2(“-) < 8, I. C 8 regular uncountable cardinals. Zf N has a good extension for A, 
then there exists a /3 < 2@O) such that SH(N U {/3}) in (He, E, A0 ) is such an 
extension. 

Proof. Let & = (He, E, de). Let A4 -C ~4 be a good extension of N, say 
M n A E A,. Then SH&(N U {/3}) c M, since NcM,/~EM, and M-C&. But 
then SH&(N U {/3}) must be a good extension of N for A. (Since N rl A = M n 
A, N n A = (SH&(N U (j3))) n A.) 0 

We now go back to the ‘main’ lemma: 
N fl He has a good extension for A. By the lemma just proved, we may assume 

this extension is M = SH%((N n H,) U {/3}) (for some /3 < 2’““)). 
We want to show that K = SH&(N U {/I}) is a good extension of N. It is 

enough to show that KnA= M nil: We know that (Nn He)nA= M n A, SO 
that NrlA=MnA. So if KfIk=Mflk, then KnA=NflA and K is a good 
extension of N. (K contains an index for A, namely, 6.) 

So we want to show that 

(SHYB(N n H,) U {#I}) n A = (SH&(N U {/3})) n A. 

If cr E (SH&(N U {p})) n A, then (Y = z(a, /3) for some Skolem term t and some 
aeN. 

Let 

t(a, y) 
f(Y)={@ 

if z(a, y) is an ordinal <A, 

otherwise. 

f is a function from 2(Ao) into A. Hence f E He. Since a E N, f E N, as well. Hence 
f EN n HO. But then f (@) E M; thus (Y EM, since CY = t(a, p) = f (#Q. So K fl3c c 
MnA and hence Knn=MrTn. Cl 

Thus far, we have not used the fact that 6 was a Woodin cardinal. We will use 
the Woodin property of 6 to show that there is an (Y < 6 which is good for A and 
B. 
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We will use the following definition of a Woodin cardinal: 

Definition 4.1. 6 is a Woodin cardinal iff for all A c V, there are arbitrarily large 
K < 6 such that for all (Y < 6 there is a j : V+ M with j elementary, crit(j) = 
K, j(~) > a, M transitive, V, c M and A n V, = j(A) rl V,. 

Remarks. (1) In the definition above we can replace A by (A, 1 /3 < S), A, c V,, 
demanding that A, 17 V, = j(AB) fl V, for all p E 6 since we can code 6 subsets of 
V, by a single subset of V,. We will often use this version of Woodinness. 

(2) In the definition of a Woodin cardinal, j and M can be chosen such that M is 
o-closed in V. See [6, p. 104, Lemma 4.21, for a proof. 

Informally, we would like to apply the Woodin property of 6 to the sequence 
of antichains A = (A’ 1 i E o). Loosely speaking, we would like to be able to find 
a K < 6 such that for any /3 < 6 there is always an elementary embedding with 
critical point K from one model to another where the two models ‘agree’ on the 
antichains up to /3, i.e., j(A’) 1 p =A’ 1 p. 

The problem with getting the above situation to hold is that A can be thought 
of as a subset of V, in V[G], but 6 is no longer Woodin in V[G] (it was made to 
be A’). Thus, we cannot apply the Woodin property of 6 directly to A. 

Also, even if we find a way to get around this problem, there is a question of 
what kind of elementary embeddings we will now have. Since 6 is il+ in V[G], we 
will have to make use of generic elementary embeddings, i.e., extend an 
elementary embedding j : V-M, originally in V, to be defined on a generic 
extension of V. 

The solution taken in this paper is the following: We begin with the model 
V[G] = V[G6]. W e will use the Woodin property of 6 to show that for any cx < 6 
there exists an elementary embedding j: V ++ M, crit(j) = K, j(K) > (Y such that j 
has the following property: We can find a V-generic filter over ]'(Lv(<K, 

n))~ Hj(K), such that j can be extended to a j*, j*: V[GK]+ M[HjC,,] (j* an 
elementary embedding), with the property that M[HjC,,] is o-closed in V[HiCK,]. 
Further, we may choose ~jc~, such that in addition: 

(a) H, = G,. 
(b) j(A’ r K) 1 cy = A’ r CY for all i E w. 
In fact, since our aim is to find a K which is good for A, B we will want the K 

mentioned above to reflect 6 and be such that B E V[G,]. We will postpone the 
proof that a K satisfying all the above mentioned requirements exists to the next 
section. We will now show how, assuming such a K exists, we can complete the 
proof of the theorem. 

Lemma 4.2. Let il < K < 6 be regular uncountable cardinals. Let Gb be generic 
over Lv(<6, d). Let A = (A’ 1 . 1 E co) be a sequence of maximal antichains in 
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(q&)“lGJ (with A’ = (Ai ( /3 < 6)). Let B be a stationary set in 9& (in V[G,]). 
Assume K satisfies the foliowing: 

1. K refrects 6. 
2. B E V[GJ. 
3. For any a < 6 there exists an elementary embedding j: V-, M, crit(j) = 

K, j(K) > (Y such that j has the following property: 
There is a V-generic filter over j(Lv(<K, A)), II&,, such that j can be extended 

toaj*,j*: W&l-+ M[fM (i* an elementary embedding), with the property that 
M[H,t,J is o-closed in V[Hjt,,]. Further, we may choose HjcK, such that in 
addition : 

(a) H, = G,. 

(b) j(A’rtc) rcu=A’lcu forahieco. 
Then K b good for A, B. 

Proof. Our convention above regarding He’s still holds, i.e., HO, is HFJGK1, unless 
otherwise indicated. By the definition of K being good (after end of proof of 
Lemma 3.9, it is enough to show that the set 

C, = {N< (f&K, E, 4,) 1 INI =&I and for all i, A’ 1 K E N and N has 

a good extension for A’ r K} 

contains a club in (LP’,,HeJ (in V[GK]). A ssume not. Let i be the least such that 
the set S,,i of all N < (He,, E, AoK ) such that INI = K0 and N does not have a 

good extension for A’ is stationary in PW,HeK. 
We first work in V[G,]. Let g:il + HiLGK1 be one-one and onto (g E V[G,], 

where y = IH,J+). Let SE,i = {g-“‘IV ( N E SK,i}. Then S:,i is stationary in 5Pu,A. 
Let /? be the least ordinal such that S:,i nA$ is stationary. Let (Y > /3, IHexI’ be 

such that (A’ 1 a 1 i E CO) E V[Ga] ( we will show in Section 5, Corollary 5.5, that 
the set of all (Y’S such that (A’ 1 CY ( i E o) E V[GLy] is club in 6). Use hypothesis 
3(a-b) in the statement of the lemma to find a j, j : V[GK]+ M[Hj(,,] (with critical 
point K) where H, = G,, M[Hjt,,] . IS w-closed in V[Hj,,,] and j(A’ r K) 1 LY = 
A’ 1 a, for all i E w. 

NOW work in V[Hjt,,]: 
Since A’ 1 a E V[G,], we have that A; E V[Ga]. Since (Y > IHe,lf, S,*,i E V[Ga]. 

Thus S:,i n AL E V[G,] and is stationary in V[G,] (since it is stationary in a 
bigger model, V[G,]). Thus S:,inA;j is stationary in V[H,(,J: The forcing 
]‘(Lv(<K, A))/Lv”(<a, A) is w-closed in M; but since M is w-closed in V, this 
means that the quotient forcing is actually u-closed, and thus proper, in V. So the 
fact that Sz,i n A; is stationary in V[G,] implies that Sz,ifI A$ is stationary in 

v[Hj(~)I. 
Let 

C1 = {N < H$K~)l 1 INI = X0 and /3, g, g-‘, j 1 He, E N}. 
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(j is defined in V[Hj,,,], so there is no problem in closing under j r He,.) C, is 

club (in PU,(H,$p)‘)). So there exists an N in C1, N fJ A E Sz,i fl A$. Look at 

g”(N fl A) = K. Since N II 3, E Sz,, K E 5’K.i. SO j(K) EJ(S~,~). (Note that SK,j E 

V[G,], so that K E SK,i + K E V[G,], and thus j is well defined on these sets). 

NOW move back to M[HjcK)]: In M[ZYjcK)], j(K) E j(S,,i) means j(K) has no good 

extension for j(A’ r K); but it does, since N is such an extension. 

We need to argue: 

(2) N is a good extension of j(K) for j(A’ 1 K). 

(1) follows from the fact that M[Hj(,,] is w-closed in V[Hj~,,]; N is a countable 

object which is a subset of a set of M[Hj(,,] (namely, H$$‘J(~)]) and thus belongs 

to MIHj(rc)I- 

To show (2) holds, we need to show: 

(a) N contains an index for j(A’ r K). 

(b) N II A = j(K) fl il. 

(c) j(K) =N. 

Proof. (a) We chose N so that N n A EAR, and p EN. We also have that 

j(A’ r~) 1 a=A’ r a, so that A; E j(A’ r K); thus N contains an index for 

j(A’ 1 K). 
(b) and (c). This is the same argument as in the [2] proof: N fl A = K n L since 

N is closed under g, g-‘. K n L = j(K) n A since the critical point of j is greater 

than A. Finally, K c N since N is closed under g, and j(K) c N since N is closed 

under j 1 Ho,. 
So in M[Hj(,,], j(K) l j(SKFj). But j(K) does have a good extension for 

j(A’ 1 K); this is a contradiction. Thus C, is club in (PP,,,, He,) and K is good for 

A, B. 0 

Assuming a K as in the hypotheses of Lemma 4.2 can always be found (in our 

circumstances), we can find a K such that these hypotheses hold with respect to 

the particular sequence of antichains (A’ ( i E co) and the particular stationary set 

B that we have fixed at the beginning of the proof of the theorem. Then Lemma 

4.2 guarantees that K is good for A, B and thus the proof of Theorem 3.1 is 

completed. 

5. 

This section is devoted to showing that a K satisfying the hypotheses of Lemma 

4.2 exists. We will assume throughout this section that 6 is a Woodin cardinal and 

that G6 is a generic filter over Lv(<6, A) (A < 6 regular). Also, since the 

hypotheses of Lemma 4.2 refer to one sequence of antichains in ?P,,12 in V[G,] 
and one stationary set in ??,,A, we will assume, as before, that (A’ ) i E w) is a 
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sequence of maximal antichains in PU,A in V[G6] and that B is a stationary set in 

PU,A in V[G6]. 
We first discuss the issue of ‘extending elementary embeddings’. In our 

situation, 6 is a Woodin cardinal and we have a K < 6 such that j : V+ M has 

critical point K (j an elementary embedding). For any V generic filter G, over 

Lv(<K, A.) we can always find a V-generic filter over j(Lv(<rc, A)), HjCK,, such 

that G, c ~j~p,. This is true because 

(a) j(Lv(<K, A)) = Lv~(<K, A) X (Q<“‘)“. 

(b) LV”(<K, A) = LV"(<K, A). 

(a) follows by the factoring of the Levy collapse remarked on earlier and the 

fact that j(Lv(<K, A)) = L@“(<j(K), A). 

(b) is true because the critical point of j is K and so V, E M and thus Lv(<K, A) 

computed in A4 is the same as when computed in V. 
From (a) and (b) together we get that 

(c) j(Lv(<K, n))=h"(<K, A) X (Q’K’“‘)‘? 

This allows us to pick a V-generic filter over j(Lv(<K, A)) extending G,. 

This, in turn, implies that j can be extended to an elementary j*, j* : V[G,]+ 
M[HjC,,]. See e.g., [4]. From now on we will denote both j and j* by j. 

In our case, we start with the model V[G6], where G6 is generic over 

Lv(<6, A). Starting with j: V ---, M, crit(j) = K, we not only want to be able to 

pick a V-generic filter Hi(K) extending G, as described above, but also to be able 

to guarantee that HjcK, ‘agrees to a large extent’ with G*. More precisely, we want 

K to be such that for any IX < 6, 3j: V + M, crit(j) = K such that j can be 

extended in the way described above but with H, = G, (where H, = 

HjC,, 1 Lv”(<a, A)). Here it is the Woodinness of 6 which guarantees this can be 

done. 

Claim 5.1. Let 6 be a Woodin cardinal and let K < 6 be such that for all (Y < 6 

there is an elementary embedding j, j : V + M, c&(j) = K, j(K) > a and j(Lv(< 

6, A)) f-l v, = Lv(<6, A) II v,. Let Gb be V generic over Lv(C6, A). Then 
Lv”(<o, A) = Lv~(<(u, A) and there exists a V-generic Jilter over j(Lv(<K, A)), 

Hj(K)T such that G, = H,. 

Proof. Let K be as in the claim. Since Lv(<&, A.) c V,, the above equality 

will guarantee that j(Lv(<G, A)) II V, = Lv(<a, A); or that Lv”(<a, A) = 

Lv”(<cY, A). Hence G, will be (V-) generic over the initial part of the forcing 

(j(Lv(<K, A))) in M (note that j(Lv(<K, A)) = j(Lv(<G, A.)) 1 j(K), since j(K) > 

a); we can then choose any V[G,]-generic filter over the rest of the forcing 

(j(Lv(<K, )c))/Lv(<c~, A)) to get our filter Hi(K). 0 
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We also want that j : V[GK] ---, M[H,(,,] will be such that M[Hj(,,] is o-closed in 
V[HjcKJ. This will follow if we choose j : V + M so that M is w-closed in V: 

Claim 5.2. Let j : V+ M be an elementary embedding from V to M, with 
crit(j) = K. Let G be a generic filter over Lv(<K, A). Let H be a V-generic filter 
over j(Lv(<K, A)) extending G. Let q <A. Then if M is 17 closed in V (i.e. 
“M c M, where “M is computed in V) then M[H] is r] closed in V[H]. 

Proof. Let (x, 1 cx E 7) be an q sequence of elements of M[H] in V[H]. Let t be 
a j(Lv(<K, A.)) name for (x, ( a e q ). We may assume 

l It j(Lv(<K,A)),V ‘t is an 77 sequence of elements each of which is in M[H]‘. 

It is enough to show that 

D = {P (P itj(Lv(<w.h)).Vt E M[HI) 
is dense in j(Lv(<K, A)) ( since then the generic filter H must meet this set). 

Let p E j(Lv(<rc, A)). Construct a descending sequence of conditions (in V) 
(paI (Y < q) with pO =p and such that pn It z(k) = o,, for some M name a, (this 
is possible since pnIt z(a) E M[H]). j(Lv(<K, A)) is 4 closed in M, so, in 
particular, it is r] closed in M. M is r) closed in V (this was our assumption) so 
that j(Lv(<K, A.)) is n closed in V, as well. Hence there is a lower bound for 
(pa ) a< Q) in j(Lv(<rc, A)). Let 9 be a lower bound for (pa 1 a< 11). Then 
qItzEM[H]. q 

We now want to explain how we can make sure that (we can find a K such 
that) we can find an extended j with j: V[GK]+= M[H,(,,] such that j(A’ 1 K) 1 IX = 

A’ 1 (Y. The idea is to use the Woodin property in V for names of the antichains. 
It turns out that it is simpler to work with names for subsets of 6, rather than 
names for the antichains themselves. We thus proceed to code (A’ ( i E W) as a 
subset of 6. 

Coding of (A’ 1 ice) asasubsetof 6 
We will use the following one-one and onto functions for our codings: 

fi : A+ (P&)” = (PPw,Ay”‘, 

fi:A* h-+6, 

f,:6*0+6, 

where f2 and f3 belong to V and fi belongs to V[Ga] for all a > p, where 

B = (I~uJ,4)v. B < 6 since 6 is inaccessible. Note that (5P&)V = (9U,A)VrG61 
because Lv(<6, A) is w-closed. 

1. Coding subsets of 9,,12: If X c SPU,A, then f -“‘X codes X. f -“‘X c A (thus 
subsets of SPm,A can be thought of as subsets of A., on a tail-end of the 
forcing). 
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2. Coding A’ = (A’, 1 a< 6): Let XL=f;“‘A’,. Thus we can think of our 

antichain as a sequence of subsets of A, (Xi, 1 (Y < S ). Define (g, ) (Y -=c 6 ) , 
g, : A+ 6 as follows: 

g&3) =_&(A * a + PI for P < A. 

Since the ranges of the g,‘s are disjoint, X’ = Uorcb g:X’, codes (Xi, ) (Y < 

S) andX’c6. 

3. Coding (A’ 1 HEW): Let Xi code A’(i~w) as in 2. Define (hj(i~w), 

hi: 6+ 6 as follows: h;(P) =f3(8 . i + p) for p < 6. Then IJieo hy X’ codes 

(A’~~Ew) asasubsetof 6. 

From now until the end of this section, fr-f3 will refer to the coding functions 

mentioned above and X, Xi will code (A’ I i E o), A’ (resp.). The coding will be 

done in the way it was set up above. 

When can we code and decode (A’ I . z E IN) correctly? More specifically, we 

will be working in some V[Ga]. For which a’s does X fl a belong to V[G,] and 

code there the sequence (A’ 1 a 1 i E co)? 

We answer this question in two stages. First, we have: 

Lemma 5.3. Let 6 be an inaccessible cardinal. Let E c 6 in V[G,], where G6 is 
generic over Lv(<6, A), A < 6 regular cardinal. Then there is a club C c 6 (C in 

V) such that a E C j E fl (Y E V[Ga]. 

Proof. Let E c S in V[G,]. Let E be a name for E. For /3 < 6, let F, be a 

maximal antichain in Lv(<6, A) that decides whether p belongs to E (i.e., 

p E Fe + p Ikfi E & or p It/? $ E). Note that lFBl < 6 (because Lv(<6, A) has the 

6-c.c.) and p E Lv(<6, A) + p E Lv(<a, A) for some (Y < 6. Thus we can define 

f: 6* 6 as follows: 

f(y) = least (Y such that { FB 1 p < y} c Lv( < (Y, A). 

Let C be the set of closure points of f . Then (Y E C + E fl a, E V[G,] since 

En~={(p<cuI~p~G,pItp~E}. Cl 

Corollary 5.4. There is a club set C5 c 6 such that a: E C5 3 X rl IX E C5 and X fl a 
codes (A’ r a I i E w ) (the coding and decoding can be done in V[G,]). 

Proof. Our coding functions fi,f2,f3 all belong to V[GB], for all p > IP~,lzI”, so 

that the coding and decoding can be done in almost all V[Gm]‘s. The main 

problem is when does X fl (Y code (A’ 1 (Y I i E o), and the answer is that cy has 

to be a closure point of the coding functions - and there are club many such (Y’s. 

More specifically, let 

c, = {a< 6 I a> (lcPJ)“>. 

C,={a<b Ifi IA. (Y:A. cr--,a and is onto a}. 

C,={a<6(f, r{o-i+/?IiEm,/3<a}: 

{6.i+~IiE~,p<cu}*cuandisonto~}. 
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Ci, C2 and C3 are all clubs in 6. Let x’ c 6 code A’ for i E o as explained above. 

Let X c 6 code (A’ 1 i E w). By Lemma 5.3, there exists a club Cqc 6 such that 

cr E C,*X tl (Y E V[G,]. Let 

c5=c1nc,nc,nc,. 

Let (Y E C5. Since &E Cq, X n (Y E V[G,]. Since LYE &, X fl & codes (via f;) 

(xinu5jiEW). Since cu~c~rlc~, each X’ n a codes A’ 1 CY (via f2 and fJ. 

(Note. We need (Y E C1 so that fi E V[G,].) Thus (A’ / (Y ( i E w) E V[G,] (and 

hence also A’ 1 a E V[GLT] for each i E w). 0 

Note, in particular, that we have the following: 

Corollary 5.5. There is a club set in 6 of points a such that (A’ 1 a ) i E o) E 

V[Gnl. 

(We used this fact in the proof of Lemma 4.2.) 

We now continue in trying to get a j: V[Gx]+ M[Hj(,,] such that 

j(A’ r K) 1 (Y = A’ 1 a by starting with a j: V -+ M for which there is agreement 

between the names for these sets and their images under j. 

Let 4’ be an Lv(<6, h) name for A’ (i E CO). We know we can find a K such that 

foranya<63j,j:V -+ M, such that j(A’) tl V, = A’ fl V,. We want to show that 

we can get agreement on the A”s themselves from the agreement on the names. 

To work out all the details for this, we will have to choose ‘nice’ names for 

A’ (i E w). In fact, it will be easier to work with the codes Xi for A’ (discussed 

above) and names for them. 

Fix (Y. Suppose we want a j, j: V[GK]+= M[lfj(,,] with j(A’ 1 K) 1 (Y = A’ r a 
Assume that (as before) X’ is a code for A’, and assume we have j: V[GK]+ 
M[HjC,,] with j(X’ fl K) f7 (Y =X’ fl LY. Also assume that K, (Y E Cs. Since K E C5, 

x’ fl K codes A’ 1 K (viafi, fi). So j(X’ fl K) codes j(A’ r K) (via j(fi), j(h)). Since 

(Y E C5, j(X’ rl K) rl a codes j(A’ 1 K) [ a, while X’ n (Y codes A’ 1 a. We want 

to argue that if the codes (Xi rl a, j(X’ fl K) fl a) are the same the sets they code 

(A’P%j(A’PK) r ) (Y are the same. This will be true as long as the coding 

functions we use in V[GK] and V[Hj(Kj] are the same, or at least agree on the 

relevant domains. 

Now fi:k+PU,A (since KEC~, fie V[G,]). So j(fi)=fi. Also, f2:A-6-t6; 
and (Y E C5 + f2 : A * a--, (Y is one-one and onto; so if we choose (Y E C5 and K so 

that j(fJ fl V, =f2 fl V,, we will get that f2 1 A . LY = j(f2) r A . (Y, and hence f2 and 

j(f2) will agree when decoding Xi fl a and j(X’ rl K) fl a, respectively. 

We summarize the last few paragraphs in the following claim (the notation 

remains fixed). 

Claim 5.6. Let K, (Y -=c 6 be such that K, (Y E C and let j : V[Gx]+ M[Hj(,,] be an 
elementary embedding such that j(f2) fl V, = f2 n V, and j(X’ fl K) n LY = X’ n (Y. 

Then j(A’ r~) r a=A’ 1 LY. 
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We will now choose ‘nice’ names for x’. Let (Di$I b < S) be a name for Xi, 
where D$ is a maximal antichain in Lv(<K, A) deciding whether fi belongs to X’ 
and ob is the antichain split into two: those conditions deciding that /3 belongs to 
Xi and those that decide that /3 does not belong to x’. (Let J? be a name for x’. 
Then PED~JPII~~EX’ or ~Itfl$X’; Db={(p,i) IpeDg,i~{O, l} and 
pIt~~~andi=OorpI~~$~andi=l}.) 

Thus (ok 16 < K) is an Lv(<K, A) name for x’ rl K; (& 1 p < a) is a name 
for _X fl (Y. Supposez we arrange that (j((& 1-p < K))) Ia = (of ) /3 < a). (Let 

j(‘,“;> I B < K)) = (& ) B <j(~)). Then by j((D’, I B < K)) 1 a 1 mean (Ei I B < 

By elementarity of j, j( (D$ I /3 < K)) 

j((& I B d) r 

is a name for j(x’ II K), and so 
(Y is a name for j(X’ II K) II a. so the name.s for Xi fl (Y, j(X’ rl 

K) fl a are the same; the sefs will be the same if the generic filters interpreting the 
names are the same, at least as far as the conditions mentioned in the names are 
concerned. 

So let D be a club set in 6 (D E V) such that y E D + (Dh I p < y) c V, for all 
i. We then have: 

Lemma 5.7. Let X’ (i E o), (& I p < S) and D be as described above. Let 

(Y E D and let K < 6 be the critical point of an elementary embedding j : V+ M 

such thatj(K)>~undj((DBIP<6))nVa=(DBIP<6)nV~. LetH&) be V- 

generic over j(Lv(<K, A)) such that H, = G,. Then: 

(1) (j((D’,IP<K))) ra=(&IP<& 
(2) j(X'nK)nCY=x'nCX 

Proof. (1) Since (Y E D, (& I p < CY) ‘c’ (D$ ( p < 6) n V,. Also, if j( (Dk I p < 

6))=(l$lp-d), th en (Ebl/?<6) is determined by (&I/?<K), since 

j(K)> cx. 

(2) Since (D$ I /3 < a) c V,, all we need to interpret this name in V[G6] is G,. 
Since (j((~~Ip<~)))~cu=(~igI~ < a), all we need to interpret (j( (DB I B < 

K))) 1 a in M[H,(,,] is H,. Since G, = H,, these interpretations will be the same 
in both models. Thus, as argued in the paragraphs before the statement of this 
lemma, X’ rl (Y (named by (Db I/? < a)) is the same as j(X’ rl K) fl IY (named by 

j((&3 ( p -=I K)) 14. 0 

We are now almost done showing that there exists a K satisfying the hypotheses 
of Lemma 4.2. What we still need to show is that we can make sure that K, the 
critical point of our embedding, reflects 6 and that B E V[G,]. Note first that we 
have the following general fact about Woodin cardinals: 

Lemma 5.8. Let 6 be a Woodin cardinal, C c 6 club in 6. Let K < 6 be such that 

for all a < 6 3j : V += M such that crit( j) = K and j(C) fl (Y = C fl a. Then K E C. 
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Proof. Let K be as in the claim, and assume K 4 C. Then K is not a limit point of 
C. Let LY be the largest ordinal in C that is smaller than K. Let /3 be the least 
ordinal in C that is bigger than K. Let y > /? and let j : V + M, c&(j) = K, j(~) > y 

and C II y = j(C) fl y. Then we have: 

V k CY is the largest ordinal in C which is less than K. 

By elementarity of j, 

M kj(cu) is the largest ordinal in j(C) which is less than j(~). 

so 

M k (Y is the largest ordinal in j(C) which is less than j(~). 

(Note that since (Y < K, j(a) = a.) But /3 E C, /3 > K, /I < y so /3 E]‘(C) and 
(Y < /? < j(~), contradiction. 0 

Recall the club set C5 defined above of points LY such that (among other things) 
(A’ 1 (Y ( i E o) belongs to V[G,]. The set B is a subset of .?P& and thus belongs 
to some V[Ge] for some /3 less than 6. Let C be C5\/3. We immediately get the 

following: 

Corolhuy 5.9. Let 6 be a Woodin cardinal. Let K < 6 be such that for all a < 6 
there is a j: V+- M such that crit(j) = K and j(C) fl LY = C II a: Then B E V[G,] 

and (A’ r K 1 i E o) E V[G,]. 

Proof. Immediate from lemma, since it implies that K E C. 0 

Thus it only remains to show that we can make sure A’ 1 K is a maximal 
antichain in V[G,] for all i E w. In fact, as we will argue below, no extra 
conditions have to be put on K in order to guarantee that: 

Lemma 5.10. Let 6 be a Woodin cardinal, Gd a generic filter over Lv(< 6, A) and 
let K < 6 be such that for all a there is an elementary embedding j : V+ M with 
critical point K, j(K) > a and V, c M and such that: 

j(C)ncu=Cncu, 

j(Lv(<G, A)) n V, = Lv(-~, A) n V,, 

j((~iBla<s))nV,=(d~lB<s)nv, (foralliear) 

j(f2) n V, =X n V,. 

Then K satisfies the hypotheses of Lemma 4.2. 
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Proof. From the claims and lemmas established thus far, we have that for a K as 
above: 

1. B E V[GK] (this follows from Corollary 5.9). 
2. (A’ 1 K 1 i E u) E V[GK] (this follows from Corollary 5.9). 
3. For any a<63j:V --, M, crit(j) = K, j(~) > LY such that j has the following 

property: 
There is a V-generic filter over ~(Lv(<K, A)), H+,, such that j can be 
extended to a j*, j* : V[G,]+ M[Hjc,,] (j* an elementary embedding), with 
the property that M[Hj(,,] is w-closed in V[~j~,,]. Further, we may choose 
HicK, such that in addition: 
(a) H, = G,. (That we may have H, = G, follows from Claim 5.1. That j 
may be chosen (in advance) SO that M[Hj(,,] is w-closed in V[Hj(K)] follows 
from Remark (2) after Definition 4.1 and Claim 5.2.) 
(b)j(A’rK) ra=A’r f (Y or all i E co. (This follows from Claim 5.6 and 
Lemma 5.7.) 

Thus we only have to show that (A’ r K 1 i E to) is a maximal antichain in PW,A 
in V[G,], thus completing the proof that K reflects 6. So assume that for some 
i E w, A’ 1 K is not maximal in V[GK]. Then 3s E V[GK] such that S is stationary 
in PW,A but S fl A’, is not stationary in V[GK] for all LY < K. Let p be such that 
S n Ai is stationary. Let (Y > fi, a E C, a a limit point of C, and use property 3 
with respect to LY, i.e., let j be an elementary embedding, j: V[GK]+M[Hjc,)], 

where H, = G, and 

j(A’rK) ra=Ai rcU. 

Since j is elementary, 

M]Hj(,,] Fj(S) nj(Ai) . is not stationary for all (Y less than j(~). 

Since S c $PW,k (and K = A+), j(S) = S. Thus 

M[Hjc,,] k S fl A’, is not stationary for all a less than j(~). 

But S tl A; is stationary in V[G,] ( a E C so A’ r a E V[G,]; S E V[G,]). SO 

S n A; must be stationary in M[G,] as well (M[G,] c V[G,]), provided S nA$ 

belongs to M[G,]. But cuei ( since aEC and Cncu=j(C)ncu and a: is a 
limit point of C). So j(A’) r a E M[G,], and hence A; E M[G,]. Also, since 

S = g&, S E U&I, and Lv(<K, A.) has the K chain condition, it follows that 
there is a y < K such that S E V[G,]. But S E V[G,] + j(S) E M[Hj,y,] = M[H,] = 

M[G,] since y < K. Hence S, and thus S fl A& belong to M[G,] and S n A$ is 
stationary in M[G,]. Thus S n A; is stationary in M[Hj(,,] (since M !=Lv(< 
j(~), A)/Lv(<a, A) is proper). But p < CY<~(K), contradiction. tl 

The proof of this lemma completes the proof of Theorem 3.1. III 
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