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Summary

Population genetics is a powerful tool for measuring
important larval connections between marine popula-

tions [1–4]. Similarly, oceanographic models based on
environmental data can simulate particle movements

in ocean currents and make quantitative estimates
of larval connections between populations possible

[5–9]. However, these two powerful approaches have
remained disconnected because no general models

currently provide a means of directly comparing dis-
persal predictions with empirical genetic data (except,

see [10]). In addition, previous genetic models have
considered relatively simple dispersal scenarios that

are often unrealistic for marine larvae [11–15], and re-

cent landscape genetic models have yet to be applied
in a marine context [16–20]. We have developed a

genetic model that uses connectivity estimates from
oceanographic models to predict genetic patterns

resulting from larval dispersal in a Caribbean coral.
We then compare the predictions to empirical data

for threatened staghorn corals. Our coupled oceano-
graphic-genetic model predicts many of the patterns

observed in this and other empirical datasets; such
patterns include the isolation of the Bahamas and an

east-west divergence near Puerto Rico [3, 21–23].
This new approach provides both a valuable tool for

predicting genetic structure in marine populations
and a means of explicitly testing these predictions

with empirical data (Figure 1).

Results

Oceanographic Model
Ocean simulations are based on the MICOM North
Atlantic simulations [8] between 24�S and approximately
70�N (see [6, 24, 25]). The model uses wind data to esti-
mate currents at 19 vertical layers and has been tested
with ocean drifters [26]. To generate connectivity matri-
ces for each model run, we released 1000 particles at
87 randomly chosen Caribbean locations for each of
the years in the range from 1982–1986. Particles were
released during the summer (Julian days 205–219) and
had durations of 14 days, consistent with expected

*Correspondence: hgalindo@stanford.edu
larval duration for staghorn corals [27]. Arrival calcula-
tions incorporated a buffer within 25 km of the model
coastal boundary, which is set in MICOM at 25 m depth.
For each model run, we used observations of particle
arrival at each locality on day 14 to estimate a connectiv-
ity matrix (probability that a particle released at point i
arrives at point j ). (Access to the matrices is available
from the authors upon request.)

Description of the Genetic Model

The genetic model uses a connectivity matrix to simu-
late the effects of dispersal and genetic drift on a one-lo-
cus, two-allele neutral marker without mutation. All pop-
ulations begin with equal allele frequencies and diploid
populations of approximately 100 individuals. In each
nonoverlapping generation, 50% of individuals are ran-
domly chosen for synchronous reproduction, and a lar-
val pool is then created in Hardy-Weinberg equilibrium
from the selected parents. The above assumptions are
characteristic of basic population genetic models [4,
14]. (See Supplemental Data available with this article
online for choice of parameters.)

Larval movement is simulated in two ways. The deter-
ministic model uses a connectivity matrix to calculate
the fraction of the larval pool that disperses between
each pair of populations. In the individual-based sto-
chastic model, entries in the same connectivity matrix
are used as relative probabilities that a larva disperses
to each of the other populations, is retained, or experi-
ences mortality before settling. The two versions assess
the relative impact of allowing genetic drift to occur only
during reproduction (deterministic) or during both repro-
duction and dispersal (stochastic). After arrival, all lar-
vae settle and enter the adult population. Allele frequen-
cies vary across generations, but population sizes are
reset to initial conditions every generation. Multiple
runs of the single-locus model are interpreted as data
from multiple loci because each run is independent.
Five sets of ten runs each used the connectivity matrix
for each of the years from 1982–1986. An additional set
of simulations used the matrices for all five years in a
repeated sequence (the ‘‘all-years’’ simulations). Each
of these six sets was run for 100 generations with both
the deterministic and stochastic model versions for a
total of twelve oceanographic regimes. Last, we ran a
set of ten runs with each of the two model versions by
using a panmictic matrix to provide a null model for
data analysis. (Additional runs with larger populations
and longer durations are described in the Supplemental
Data).

Genetic Results and Testing A Priori Hypotheses

We analyzed data from 120 model runs by using Arle-
quin 2.0 [28] to calculate genetic differences among
populations (FST), among groups defined a priori (FCT),
and among populations within groups (FSC). For all
twelve oceanographic regimes, we found strong popu-
lation genetic structure. Mean FST values for all 87
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populations fall between 0.115 and 0.568, with every
value being significantly different from zero (data not
shown). In contrast, the mean FST for the null panmictic
model was 20.007; none of these runs were significant.

Next, data from the 87 populations were grouped in
two ways. First, we created groups corresponding to
collection sites across the Caribbean for a genetic anal-
ysis of staghorn corals (Vollmer and S.R.P., unpublished
data). For the simulated populations, genetic differ-
ences were strong among regions, but not among pop-
ulations within regions (data are displayed in Figure 2).
Mean FCT values ranged between 0.130 and 0.590 and
were significant for 90%–100% of the runs in each
oceanographic regime except for the 1984 deterministic
regime (60% runs significant). In contrast, FSC values
were nonsignificant except for 10% of runs for the
1983 stochastic regime (FSC = 0.095), 50% for the 1984
stochastic regime (FSC = 0.015–0.206), and 100% for
the 1984 deterministic regime (FSC = 0.014–0.272).
Mean FCT values were 0.000 and 0.002 for the null deter-
ministic and stochastic models respectively with only
one stochastic run being significant. Null model FSC

values were all nonsignificant and had means of
20.010 to 20.005.

We then created an east-west comparison of all 87 Ca-
ribbean populations by separating them across a line
running NE-SW between Puerto Rico and the Dominican
Republic [29]. Compared to results for the coral group-
ings, evidence for an east-west divide in populations
was less robust. Only 20%–70% of the runs under deter-
ministic regimes showed significant FCT values (mean
values from 0.034–0.062). However, results from the sto-
chastic model showed a higher east-west division; there
were significant values in 60%–90% of the runs, with
mean values ranging from 0.141–0.302. For all runs in
both versions of the model, significant FSC values indi-
cated that variation within regions was substantial
(mean values ranged from 0.077–0.285). Null model
mean FCT/FSC values were 0.000/20.010 and 0.000/
20.005 for the deterministic and stochastic models, re-
spectively, with only two stochastic runs having signifi-
cant FCT values.

Overall, genetic structure from all-years simulations
tended to be lower than those run for a single year at
a time (Figure 2), reflecting differences in currents from
year to year. The individual-based stochastic model
often predicts higher genetic differentiation because of
additional genetic drift during dispersal. However, the
patterns are qualitatively the same as those of the deter-
ministic model.

Figure 1. Conceptual Model of Coupled Oceanographic-Genetic

Approach
Geographic Inferences from Genetic Simulations
To explore geographic predictions of the model, we
used two common clustering methods. First, we used
PRIMER 5.0 [30] to calculate Bray-Curtis distances for
all pairs of 87 populations across all ten loci and to pro-
duce dendrograms that clustered genetically similar
populations. The reliability of population clusters was
estimated by jackknifing across loci. Clusters that
were robust across all twelve oceanographic regimes
are shown in an insert in Figure 3. This approach is anal-
ogous to methods used to combine phylogenetic trees
from genetic analyses to show population groups that
have similar gene frequencies. Membership in some of
these groups varies among runs or years. For example,
population 42 (Turks and Caicos Isl.) sometimes joins
the Hispaniola group. However, some regional group-
ings, especially those in the eastern Caribbean and
those along the Meso-American Barrier Reef, were
robust (Figure 3).

Next, we used the software STRUCTURE to define the
most likely genetic clusters based on the relative proba-
bilities of the data given a certain number of clusters
(Pr(XjK)). Populations were then grouped according to
the similarity of their patterns of relative membership
(q values [31]) in each of the genetic clusters as deter-
mined by the model. (Details are available in the Supple-
mental Data).

When overlaid on a map of the Caribbean, results from
both the PRIMER and STRUCTURE analyses indicate

Figure 2. Fixation Indices across Oceanographic Models Run for

1982–1986 and All Years

Data show mean overall levels of genetic differentiation for model

populations grouped according to A. cervicornis collection sites.

Population groupings: Bahamas = 34, 35, 38; Turks and Caicos =

42; Puerto Rico = 16, 17; Curacao = 11, 12; Panama = 4, 5; Belize =

61, 70, 71; Yucatan = 63, Jamaica = 83, numbers from Figure 3.)

Error bars represent one standard deviation. Results from the deter-

ministic (closed circles) versus stochastic versions of the model

(open circles) are shown. A. cervicornis data represent a range of

values across mitochondrial and nuclear loci (Vollmer and S.R.P.,

unpublished data).
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Figure 3. Results of Caribbean Model

The 87 randomly chosen larval-release locations are indicated here by black or colored circles. Each release location corresponds to a 25 km

arrival zone (shaded gray) where larval arrivals were counted. Release locations were chosen along a rhumbline, which occasionally resulted

in the locations being far from the coast (e.g., 48, 51, 79). Collection sites for A. cervicornis are indicated by black stars. Colored circles indicate

arrival locations with genetically similar populations as determined by the consensus dendrogram (insert) from PRIMER. These groupings also

represent the genetic cluster analysis from STRUCTURE. The curved dotted line demarks the east-west genetic boundary suggested by Baums

et al. [47] and Taylor and Hellberg [3].
very similar geographic groupings of genetically clus-
tered populations (Figure 3). These clusters include the
northern Gulf of Mexico (Populations 56–58, brown cir-
cles in Figure 3), eastern Florida straits (31–33, light
blue), the Bahamas (38, yellow), Panama (1, 3–7, laven-
der), and Turks and Caicos/Dominican Republic (13,
14, 41–47, dark green). Results from the two analyses
differ slightly in a few cases. STRUCTURE indicates
a single south Cuba/Jamaica cluster (8–10, 81–87),
whereas PRIMER divides this cluster into two closely re-
lated groups (8–10, 83–87, turquoise; 81–82 purple). A
similar situation occurs for the single north-Cuba cluster
(28–30, 36, 37, 39, 40) from STRUCTURE and the two
related clusters from PRIMER (28–30, 36–37, 39, dark
blue; 40, dark purple). In contrast, STRUCTURE divides
the Yucatan/Belize group (2, 60–65, 68–73, 77) from the
group southwest of Cuba (74–76, 78, 80), whereas
PRIMER put them in a single group (2, 60–80, green).
Last, both analyses group the U.S. Virgin Islands (16,
17, red) separately from the Lesser Antilles (19–27,
pink) but differ in their placement of population 18.
Although results occasionally differ in their resolution,
they are entirely consistent at the regional scale.

Comparison to Empirical Data

Staghorn corals, Acropora cervicornis, in the Caribbean
have been recently shown to exhibit strong population
structure, especially for populations more than 500 km
apart (Vollmer and S.R.P, unpublished data). Across
major regions of the Caribbean (Panama, Belize, the
Bahamas, Turks and Caicos, Puerto Rico and Curacao),
data from three nuclear introns and mtDNA indicate
that genetic differentiation for staghorn corals is high,
with an average FST of 0.021–0.235 (Vollmer and S.R.P.,
unpublished data). These values are similar to those
from the AMOVA analysis on the coral groupings in
the model data, particularly for the all-years simulations
(Figure 2).

Comparing the model results to genetic data shows
broad concordance at the regional scale. For collection
sites across the east-west divide, analysis of A. cervi-
cornis data gives a highly significant FCT of 0.08 (p value,
0.001). Although differing quantitatively, results from
analysis of the all-years stochastic dataset indicate
a mean FCT of 0.31 (significant for 60% of the runs).
For comparison, the mean FCT for the null panmictic sim-
ulations with the stochastic model was 20.001, with
none of the runs being significant. Empirical results
also indicate that the Bahamas are isolated from the
rest of the Caribbean (FCT = 0.06; p = 0.003). The all-
years stochastic dataset has a high mean FCT of 0.20
across runs, but none of the runs have a significant
FCT because of high variation among populations.
Mean FCT for the null model was 0.0009, with two of
the runs being significant by chance. However, the
STRUCTURE and PRIMER results clearly distinguish
between the Bahamas (population 38) and the rest of
the Caribbean (Figure 3).
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Discussion

A New Tool for Investigation of Marine Larval
Dispersal

We show that advanced oceanographic simulations can
be used to predict genetic structure of marine popula-
tions and that these predictions can then be tested
against empirical data. Larval dispersal connects many
marine populations, and knowledge of these connec-
tions is fundamental to the design of marine managed
areas, fisheries management, and conservation plans
[1, 32, 33, 34]. However, tracking larval dispersal trajec-
tories is very difficult [35], and a detailed understanding
of marine connectivity requires integrating approaches
from oceanography, marine ecology, tagging studies,
and population genetics [1, 6]. The seascape model pre-
sented here is a step forward in explicitly using ocean-
ography to predict population genetic structure and
then directly comparing these predictions to empirical
genetic results and known biogeographic patterns.

Among Caribbean corals, regional genetic differences
for four species ([21–23] and Vollmer and S.R.P., unpub-
lished data) are consistent with our modeling results. In
addition, biogeographic and genetic studies of reef fish
(e.g., [3, 29]) and reef faunal assemblages [36–38] high-
lighted an east-west biogeographic divide, as well as
north-south distinctions, in the Caribbean. In general,
our coupled model predicts genetic divisions for low-
dispersal species from east to west and from north to
south across the Caribbean Sea. However, these con-
clusions may not hold for species with wider dispersal,
and empirical support for strong Caribbean genetic
structure is rarer in these species [39–42].

Our simple oceanographic-genetic model success-
fully predicts broad-scale genetic structure and pro-
vides a seascape view of marine neighborhoods. How-
ever, larval behavior [43], local adaptation [44], or
larval mortality may reduce connectivity to levels below
those produced in our model [6]. Many marine species
have longer planktonic durations than the simulations
we perform here [1, 2], and genetic structure in these
species may depend on factors other than oceanogra-
phy. In these cases, deviations of empirical data from
model predictions may signal important larval-dispersal
features not explainable by simple oceanography.

Limitations
Although our coupled oceanographic-genetic model
successfully predicts the qualitative pattern of genetic
structure, it cannot accurately predict the magnitude
of genetic differences (e.g., levels of FST in Figure 2). Bet-
ter numerical predictions would require additional bio-
logical data (such as spawning, recruitment, mortality,
and population sizes [26]) and further oceanographic
information, particularly for species with complicated
larval behavior. In addition, model areas that by chance
have low density of particle releases may restrict step-
ping-stone dispersal. Because the rate of genetic drift
and the build-up of FST depend strongly on difficult-to-
measure parameters such as effective population size
[13], accurate quantitative predictions of FST are un-
likely. In addition, a more complex genetic model involv-
ing multiple alleles at several loci, mutation, and recom-
bination would allow a drift-migration equilibrium to be
attained and rare dispersal events to be incorporated.
Finally, small-scale differences in genetic structure can-
not be easily predicted by our current models because
the oceanographic simulations do not perform well in
shallow water [26]. Yet, some closely spaced marine
populations have strong genetic differences ([3] and
Vollmer and S.R.P., unpublished data). A higher-resolu-
tion oceanographic circulation model is needed to make
comparisons with genetic datasets on a finer geo-
graphic scale.

Future Applications
Our genetic model provides a flexible framework appli-
cable to any dispersal scenario for which a connectivity
matrix can be provided. Sources of such matrices could
include other oceanographic models or empirical data
from natural or artificial tagging studies (e.g., [45, 46]).
Model parameters such as population sizes, initial con-
ditions, and reproductive patterns are easily modified to
fit the life-history strategies for a wide variety of species.
Comparisons between the deterministic and stochastic
models indicate that both predict similar geographic
patterns of genetic structure, but the added level of ge-
netic drift during the dispersal phase in the stochastic
model leads to more distinct structure. Data analysis
with Arlequin, PRIMER, and STRUCTURE provide sim-
ple comparisons to empirical data sets and similar geo-
graphic clusters of related populations. The coupled
seascape model can be a powerful source of insight
into the role of oceanographic features in marine popu-
lation biology.

Supplemental Data

Supplemental Data are available with this article online at http://

www.current-biology.com/cgi/content/full/16/16/1622/DC1/.
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