

Available online at www.sciencedirect.com

indagationes mathematicae

Indagationes Mathematicae 21 (2011) 106-111

www.elsevier.com/locate/indag

Finite groups with some \mathcal{H} -subgroups*

Xianhua Li*, Tao Zhao, Yong Xu

School of Mathematical Science, Soochow University, Suzhou, Jiangsu 215006, People's Republic of China

Received 2 January 2011; accepted 21 March 2011

Communicated by Prof. R. Tijdeman

Abstract

A subgroup *H* is said to be an \mathcal{H} -subgroup of a finite group *G* if $H^g \cap N_G(H) \leq H$ for all $g \in G$. For every prime *p* dividing the order of *G*, let *P* be a Sylow *p*-subgroup of *G* and *D* a subgroup of *P* with 1 < |D| < |P|. We investigate the structure of *G* under the assumption that each subgroup *H* of *P* with |H| = |D| is an \mathcal{H} -subgroup of *G*. Some earlier results are generalized. Some results about formation are obtained.

© 2011 Royal Netherlands Academy of Arts and Sciences. Published by Elsevier B.V. All rights reserved.

MSC: 20D10; 20D20

Keywords: H-subgroup; p-nilpotent group; Supersolvable group; Formation

1. Introduction

All groups considered in this paper are finite. \mathcal{F} denotes a formation, a normal subgroup N of a group G is said to be \mathcal{F} -hypercentral in G provided N has a chain of subgroups $1 = N_0 \leq N_1 \leq \cdots \leq N_r = N$ such that each N_{i+1}/N_i is an \mathcal{F} -central chief factor of G, the product of all \mathcal{F} -hypercentral subgroups of G is again an \mathcal{F} -hypercentral subgroup of G. It is denoted by $Z_{\mathcal{F}}(G)$ and called the \mathcal{F} -hypercenter of G. \mathcal{U} and \mathcal{N} denote the classes of all supersolvable groups and nilpotent groups respectively. Other terminology and notations are standard, as in [11].

doi:10.1016/j.indag.2011.03.001

 $[\]stackrel{\circ}{\sim}$ This work was supported by the National Natural Science Foundation of China (Grant N. 10871032), the Natural Science Foundation of Jiangsu Province (N. BK2008156).

^{*} Corresponding author. Tel.: +86 512 65112637; fax: +86 512 65112637.

E-mail address: xhli@suda.edu.cn (X. Li).

^{0019-3577/\$ -} see front matter © 2011 Royal Netherlands Academy of Arts and Sciences. Published by Elsevier B.V. All rights reserved.

In [3], Bianchi et al. introduced the concept of an \mathcal{H} -subgroup and investigated the influence of \mathcal{H} -subgroups on the structure of a group G. A subgroup H is called an \mathcal{H} -subgroup of Gif $H^g \cap N_G(H) \leq H$ for all $g \in G$. We use $\mathcal{H}(G)$ to denote the set of all \mathcal{H} -subgroups of a group G. Bianchi et al. in [3] proved that a group G is a supersolvable T-group (a group in which normality is transitive) if and only if every subgroup of G is an \mathcal{H} -subgroup. Later on, Csörgö and Herzog [4] obtained that a group G is supersolvable if every cyclic subgroup of Gof prime order or order 4 is an \mathcal{H} -subgroup. Asaad [1] proved that a group G is supersolvable if every maximal subgroup of every Sylow subgroup of G is an \mathcal{H} -subgroup. Recently, Guo and Wei [7] provided a unified version of the results mentioned above if the order of G is odd. By assuming some subgroups of G to be p-nilpotent or supersolvable. But the case of groups of even order remained open. In this paper, we continue to study this problem further and discuss the case when G is of even order. Moreover, the results were extended to saturated formations.

2. Preliminaries

For convenience, we list here some known results which are crucial in proving our main results.

Lemma 2.1. Let K and H be subgroups of a group G. Then

- (1) If $H \leq K$ and $H \in \mathcal{H}(G)$, then $H \in \mathcal{H}(K)$.
- (2) If $N \leq G$ and $N \leq H$, then $H \in \mathcal{H}(G)$ if and only if $H/N \in \mathcal{H}(G/N)$.
- (3) Suppose that $N \leq G$, P is a p-subgroup of G which belongs to $\mathcal{H}(G)$ and (|N|, |P|) = 1. Then $PN \in \mathcal{H}(G)$ and $PN/N \in \mathcal{H}(G/N)$.

Proof. (1) is from [3, Lemma 7 (2)]; (2) is from [3, Lemma 2 (1)]; (3) is from [4, Lemma 6].

Lemma 2.2 ([3, Theorem 6 (2)]). Let G be a group and $H \in \mathcal{H}(G)$. If H is subnormal in G, then H is normal in G.

Lemma 2.3 ([8, Theorem 1]). Let p be a fixed prime and P a Sylow p-subgroup of a group G. Then the following two statements are true:

- (1) If p is odd and every minimal subgroup of P lies in the center of $N_G(P)$, then G is p-nilpotent.
- (2) If p = 2 and every cyclic subgroup of P of order 2 and 4 is quasinormal in $N_G(P)$, then G is 2-nilpotent.

Lemma 2.4 ([1, Corollary 1.2]). Let P be a Sylow p-subgroup of G and let p be the smallest prime dividing |G|. Then G is p-nilpotent if and only if every maximal subgroup of P belongs to $\mathcal{H}(G)$.

Lemma 2.5 ([7, Theorem 3.4]). Let G be a group with odd order, p the smallest prime dividing |G| and P a Sylow p-subgroup of G. If P is cyclic or there exists a subgroup D of P with 1 < |D| < |P| such that every subgroup H of P with order |D| belongs to $\mathcal{H}(G)$, then G is p-nilpotent.

Lemma 2.6 ([12, Lemma 2.16]). Let \mathcal{F} be a saturated formation containing the class of all supersolvable groups \mathcal{U} and G be a group with a normal subgroup E such that $G/E \in \mathcal{F}$. If E is cyclic, then $G \in \mathcal{F}$.

Lemma 2.7. Suppose that P is a normal 2-subgroup of a group G. If every cyclic subgroup of P of order 2 and 4 is normal in G, then $P \leq Z_{\infty}(G)$.

Proof. Pick an arbitrary Sylow q-subgroup G_q of G, where $q \neq 2$. Consider the subgroup $M = PG_q$. Since every cyclic subgroup of P of order 2 and 4 is normal in G, they are normal in M. Thus it is easy to see that M is 2-nilpotent and then $M = P \times G_q$. This implies that $O^p(G) \leq C_G(P)$. Therefore $P \leq Z_{\infty}(G)$. \Box

Lemma 2.8. Let P be a nontrivial normal p-subgroup of a group G, where p is an odd prime. If every minimal subgroup of P is normal in G, then $P \leq Z_U(G)$.

Proof. By [2, Theorem 1.1], it is obvious. \Box

3. Main results

Theorem 3.1. Let P be a Sylow 2-subgroup of a group G. Suppose that there exists a subgroup D of P with 1 < |D| < |P| such that every subgroup H of P with order |D| belongs to $\mathcal{H}(G)$. When |P: D| > 2, suppose in addition that, H belongs to $\mathcal{H}(G)$ if there exists $D_1 \leq H \leq P$ with $2|D_1| = |D|$ and H/D_1 is cyclic of order 4. Then G is 2-nilpotent.

Proof. Suppose that the result is false and let G be a counterexample of minimal order. First, by Lemma 2.1 we know if M is a proper subgroup of G with $|M|_2 > |D|$, then M is 2-nilpotent. Furthermore, we have:

(1) |D| > 2 and |P:D| > 2.

If |D| = 2, then by hypothesis every cyclic subgroup of P with order 2 and order 4 belongs to $\mathcal{H}(G)$ and so it belongs to $\mathcal{H}(N_G(P))$. Hence Lemma 2.2 shows that every cyclic subgroup of P of order 2 and order 4 is normal in $N_G(P)$, then G is 2-nilpotent by Lemma 2.3, a contradiction. By Lemma 2.4, we have |P : D| > 2.

(2) G is not a non-abelian simple group.

Assume that *G* is non-abelian simple. Let *H* be a subgroup of *P* such that |H| = |D|. Then *H* is an *H*-subgroup of *G* and $N_G(H)$ is a proper subgroup of *G* and so it is 2-nilpotent by inductive hypothesis. It follows that $N_G(H)/C_G(H)$ is a 2-group. By [6, Corollary B3], *H* is a Sylow 2-subgroup of the normal closure H^G of *H* in *G* which is *G*, as *G* is simple, and hence *H* is a Sylow 2-subgroup of *G*, but this contradicts to the fact that 1 < |D| = |H| < |P|. Hence *G* is not a non-abelian simple group.

(3) $O_{2'}(G) = 1.$

If not, then by Lemma 2.1, the hypothesis hold for $G/O_{2'}(G)$. Therefore, $G/O_{2'}(G)$ is 2-nilpotent by our minimal choice of G and so G is 2-nilpotent, a contradiction. (4) $O_2(G) \neq 1$.

By (2) and (3), *G* has a proper normal subgroup *N* of even order. Let $P_1 = P \cap N$ be a Sylow 2-subgroup of *N*. If $|P_1| > |D|$, then by Lemma 2.1, every subgroup *H* of P_1 with |H| = |D| belongs to $\mathcal{H}(N)$. Moreover, *H* belongs to $\mathcal{H}(N)$ if there exists $D_1 \leq H \leq P_1$ with $2|D_1| = |D|$ and H/D_1 is cyclic of order 4. Thus *N* is 2-nilpotent by our minimal choice of *G*, and so *N* is a 2-group. If $|P_1| \leq |D|$, then there exists a subgroup *H* of *P* such that $P_1 \leq H$ and |H| = 2|D|. By (1), HN < G. Clearly *H* is a Sylow 2-subgroup of *HN* and every maximal subgroup of *H* belongs to $\mathcal{H}(HN)$. Then HN is 2-nilpotent by Lemma 2.4. Hence *N* is 2-nilpotent and so *N* is a 2-group.

(5) Let N be a minimal normal subgroup of G contained in P, then $|N| \leq |D|$ and so N < P.

If |D| < |N|, then there exists a subgroup H of N with |H| = |D| such that $H \in \mathcal{H}(G)$. Since $H \leq \subseteq N \leq G$, $H \leq G$ by Lemma 2.2, which contradicts to the minimal normality of N in G. Thus we have $|N| \leq |D|$ and so N < P.

(6) G has the unique minimal normal subgroup N contained in P and G/N is 2-nilpotent.

Let $N \leq P$ be a minimal normal subgroup of G. If |N| < |D|, then G/N satisfies the hypothesis of the theorem by Lemma 2.1. Thus G/N is 2-nilpotent by the minimal choice of G. So we may suppose |N| = |D| by (5). Let K be a subgroup of P containing N and |K/N| = 2. By (1), |N| > 2 and then N is noncyclic, so are all subgroups of P containing N. Hence there exists a maximal subgroup L of K such that K = NL. Clearly, |N| = |L| = |D|. Since $L \in \mathcal{H}(G), L \in \mathcal{H}(N_G(P))$ by Lemma 2.1, so $L \leq N_G(P)$ by Lemma 2.2. Then $K/N = LN/N \leq N_G(P)N/N = N_{G/N}(P/N)$. Since |P : D| > 2, let $X/N \leq P/N$ be cyclic of order 4. Since X is noncyclic and X/N is cyclic, there is a maximal subgroup L of X such that N is not contained in L. Thus X = LN and |L| = 2|D|. Since $L/L \cap N \cong LN/N = X/N$ is cyclic of order 4, by hypothesis, $L \in \mathcal{H}(G)$ and so $L \in \mathcal{H}(N_G(P))$. Thus $L \leq N_G(P)$ by Lemma 2.2. Then $X/N = LN/N \leq N_G(P)N/N = N_{G/N}(P/N)$.

Now we have proved that every cyclic subgroup of P/N of order 2 and order 4 is normal in $N_{G/N}(P/N)$, so G/N is 2-nilpotent by Lemma 2.3. The uniqueness of N is obvious. (7) The final contradiction.

By (6), G/N is 2-nilpotent. Then there exists a normal subgroup M of G such that |G : M| = 2. Let $P_1 = P \cap M$ be a Sylow 2-subgroup of M. By (1), $|P_1| > |D|$. Lemma 2.1 shows that every subgroup H of P_1 with order |D| belongs to $\mathcal{H}(M)$. When $|P_1 : D| > 2$, H belongs to $\mathcal{H}(M)$ if there exists $D_1 \leq H \leq P_1$ with $2|D_1| = |D|$ and H/D_1 is cyclic of order 4. Thus M is 2-nilpotent by our minimal choice of G. Then G is 2-nilpotent, the final contradiction. \Box

Remark. (1) By Lemma 2.4, we know that the converse of Theorem 3.1 is also true. (2) The hypothesis that "When |P : D| > 2, suppose in addition that, H belongs to $\mathcal{H}(G)$ if there exists $D_1 \leq H \leq P$ with $2|D_1| = |D|$ and H/D_1 is cyclic of order 4" cannot be removed, for the semidirect product $[Q_8]Z_3$ is a counterexample.

By Theorem 3.1 and Lemma 2.5, we have:

Corollary 3.1. Let G be a group. Suppose that for every prime p dividing |G|, there exists a Sylow p-subgroup P of G such that P is cyclic or P has a subgroup D satisfying 1 < |D| < |P| and every subgroup H of P with order |D| belongs to $\mathcal{H}(G)$. When P is a 2-group and |P : D| > 2, suppose in addition that, H belongs to $\mathcal{H}(G)$ if there exists $D_1 \leq H \leq P$ with $2|D_1| = |D|$ and H/D_1 is cyclic of order 4. Then G has a Sylow tower of supersolvable type.

Theorem 3.2. Let *E* be a normal subgroup of *G* such that $G/E \in \mathcal{F}$, a saturated formation containing the class of all supersolvable groups \mathcal{U} . Suppose that for every prime *p* dividing |E|, there exists a Sylow *p*-subgroup *P* of *E* such that *P* is cyclic or *P* has a subgroup *D* with 1 < |D| < |P| such that every subgroup *H* of *P* with order |D| belongs to $\mathcal{H}(G)$. When *P* is a 2-group and |P : D| > 2, suppose in addition that, *H* belongs to $\mathcal{H}(G)$ if there exists $D_1 \leq |H \leq P$ with $2|D_1| = |D|$ and H/D_1 is cyclic of order 4. Then $G \in \mathcal{F}$.

Proof. Suppose that the result is false and let *G* be a counterexample such that |G||E| is minimal. By Corollary 3.1, *G* possesses a Sylow tower of supersolvable type. Let *p* be the largest prime dividing |E| and *P* a Sylow *p*-subgroup of *E*, then *P* is normal in *G*. By Lemma 2.1, G/P with its normal subgroup E/P satisfies the hypothesis of our theorem and hence $G/P \in \mathcal{F}$ by induction. Therefore we have E = P. If P is cyclic, then $G \in \mathcal{F}$ by Lemma 2.6. So we may assume that P is not cyclic. Since every subgroup of P with order |D| belongs to $\mathcal{H}(G)$ and it is subnormal in G. By Lemma 2.2, we know that every subgroup of P with order |D| is normal in G. When P is a 2-group and |P : D| > 2, H is also normal in G if there exists $D_1 \leq H \leq P$ with $2|D_1| = |D|$ and H/D_1 is cyclic of order 4. Let N be a minimal normal subgroup of G contained in P, then clearly $|N| \leq |D|$.

If |N| = |D|, then every subgroup H of P with order |N| is normal in G. In this case, we claim that |N| = p. If |N| > p, then N is not cyclic. Let $\overline{H} = H/N$ be a subgroup of $\overline{P} = P/N$ of order p. Then there exists a maximal subgroup L of H such that H = LN and $L \leq G$. However, $1 \neq L \cap N \leq G$, which contradicts to the minimal normality of N. Thus |N| = p, which implies that every minimal subgroup of P is normal in G. If p > 2, then by Lemma 2.8, $P \leq Z_{\mathcal{U}}(G)$. Since $Z_{\mathcal{U}}(G) \leq Z_{\mathcal{F}}(G)$ by [5, IV, Proposition 3.11], $P \leq Z_{\mathcal{F}}(G)$ and so $G \in \mathcal{F}$, as desired. If p = 2, then by hypothesis and the above discussion, we have every cyclic subgroup of P of order 2 and order 4 is normal in G. By Lemma 2.7, $P \leq Z_{\infty}(G)$. Thus $P \leq Z_{\mathcal{F}}(G)$ and so $G \in \mathcal{F}$, a contradiction.

Now we assume that |N| < |D|. By Lemma 2.1, G/N with its normal subgroup P/N satisfies the hypothesis of our theorem and hence $G/N \in \mathcal{F}$ by the minimal choice of G. Since \mathcal{F} is a saturated formation, we may assume that N is the unique minimal normal subgroup of G contained in P. Let K be a subgroup of P of order |D|. Since K is normal in G by the above discussion, the unique minimality of N implies that N is contained in K. Noting that |K| = |D| < |P|, it follows that N is contained in every maximal subgroup of P, that is, $N \le \Phi(P) \le \Phi(G)$. So we have $G \in \mathcal{F}$, as required. \Box

Theorem 3.3. Let *E* be a normal subgroup of *G* such that $G/E \in \mathcal{F}$, a saturated formation containing *U*. Suppose that for every prime *p* dividing $|F^*(E)|$, there exists a Sylow *p*-subgroup *P* of $F^*(E)$ such that *P* is cyclic or *P* has a subgroup *D* with 1 < |D| < |P| such that every subgroup *H* of *P* with order |D| belongs to $\mathcal{H}(G)$. When *P* is a 2-group and |P : D| > 2, suppose in addition that, *H* belongs to $\mathcal{H}(G)$ if there exists $D_1 \leq H \leq P$ with $2|D_1| = |D|$ and H/D_1 is cyclic of order 4. Then $G \in \mathcal{F}$.

Proof. By Lemma 2.1, we have every subgroup *H* of *P* with |H| = |D| belongs to $\mathcal{H}(F^*(E))$. When *P* is a 2-group and |P:D| > 2, *H* belongs to $\mathcal{H}(F^*(E))$ if there exists $D_1 \leq H \leq P$ with $2|D_1| = |D|$ and H/D_1 is cyclic of order 4. By Corollary 3.1, $F^*(E)$ possesses a Sylow tower of supersolvable type. In particular, $F^*(E)$ is solvable and so $F^*(E) = F(E)$. Since every subgroup of F(E) is subnormal in *G*, by hypothesis and Lemma 2.2, we know that for every prime *p* dividing $|F^*(E)|$, there exists a Sylow *p*-subgroup *P* of $F^*(E)$ such that *P* is cyclic or *P* has a subgroup *D* with 1 < |D| < |P| such that every subgroup *H* of *P* with order |D| is normal in *G*. When *P* is a 2-group and |P:D| > 2, *H* is also normal in *G* if there exists $D_1 \leq H \leq P$ with $2|D_1| = |D|$ and H/D_1 is cyclic of order 4. By [12, Theorem 1.3], we have $G \in \mathcal{F}$, as required. \Box

Remark. Following Li [9], a subgroup H of a group G is called an NE-subgroup if it satisfies $N_G(H) \cap H^G = H$, where H^G denotes the normal closure of H in G. In [10], the author proved that: Let \mathcal{F} be a saturated formation containing \mathcal{U} . Suppose that G is a group with a solvable normal subgroup H such that $G/H \in \mathcal{F}$. If all maximal subgroups of every Sylow subgroup of F(H) are NE-subgroups of G, then $G \in \mathcal{F}$ (Theorem 4.4).

After this theorem, the author said: "we do not know whether Theorem 4.4 remains true if we replace F(H) by $F^*(H)$ and drop the condition that H is solvable in Theorem 4.4".

Since an *NE*-subgroup is an \mathcal{H} -subgroup, obviously, the answers to the above question is positive by our Theorem 3.3.

Acknowledgments

The authors are very grateful to the referee for his/her valuable suggestions given to this paper.

References

- [1] M. Asaad, On p-nilpotence and supersolvablity of finite groups, Comm. Algebra 34 (1) (2006) 189–195.
- [2] M. Asaad, M. Ramadan, Finite groups whose minimal subgroups are *c*-supplemented, Comm. Algebra 36 (3) (2008) 1034–1040.
- [3] M. Bianchi, A. Gillio Berta Mauri, M. Herzog, L. Verardi, On finite sovlable groups in which normality is a transitive relation, J. Group Theory 3 (2) (2000) 147–156.
- [4] P. Csörgö, M. Herzog, On supersolvable groups and the nilpotator, Comm. Algebra 32 (2) (2004) 609-620.
- [5] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin, 1992.
- [6] D. Goldschmidt, Strongly closed 2-subgroups of finite groups, Ann. of Math. (2) 102 (3) (1975) 475-489.
- [7] X.Y. Guo, X.B. Wei, The influence of H-subgroups on the structure of finite groups, J. Group Theory 13 (2) (2010) 267–276.
- [8] S.R. Li, On minimal subgroups of finite groups, Comm. Algebra 22 (6) (1994) 1913–1918.
- [9] S.R. Li, On minimal non-PE-groups, J. Pure Appl. Algebra 132 (2) (1998) 149–158.
- [10] Y.M. Li, Finite groups with NE-subgroups, J. Group theory 9 (1) (2006) 49–58.
- [11] D.J.S. Robinson, A Course in the Theory of Groups, 2nd ed., Springer, New York, 1996.
- [12] A.N. Skiba, On weakly s-permutable subgroups of finite groups, J. Algebra 315 (1) (2007) 192–209.