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Consider a risk-averse decision maker in the setting of a single-leg dynamic revenue management problem
with revenue controlled by limiting capacity for a fixed set of prices. Instead of focussing on maximising the
expected revenue, the decision maker has the main objective of minimising the risk of failing to achieve a given
target revenue. Interpreting the revenue management problem in the framework of finite Markov decision pro-
cesses, we augment the state space of the risk-neutral problem definition and change the objective function to the
probability of failing a certain specified target revenue. This enables us to obtain a dynamic programming solution
that generates the policy minimising the risk of not attaining this target revenue. We compare this solution with
recently proposed risk-sensitive policies in a numerical study and discuss advantages and limitations.
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1. Introduction

Revenue management systems have become a standard tool in
various industries beyond the original airline industry. These
industries range from cruise lines, rental cars, media advertis-
ing, medical services to event management (see eg Talluri and
van Ryzin, 2005).
We consider a typical revenue management model: a firm

operating in a monopolistic setting offering multiple products.
These products consume a fixed resource of a limited capacity.
The firm sells the products over a finite time horizon. At the end
of this time, the salvage value of the resource is assumed
to be 0.
The firm can influence its revenue stream by allocating

capacity to different classes of demand. Its objective is to find
a policy which optimises an objective function. Normally, this
objective function is risk-neutral, and the policy is chosen to
maximise expected revenue. Such a risk-neutral objective can
be motivated by the law of large numbers if the revenue process
repeats itself very often, for example, a daily operating airline
flight connection.
However, a risk-neutral policy might not be requested under

all scenarios and a risk-averse policy might be advantageous for
the decision maker. Lancaster (2003) remarks that a risk-neutral
model is often not sufficient, even in the airline industry, as a
stable revenue might be preferable because of financial
constraints.

In practice, decision makers present some level of risk
aversion in revenue management, as mentioned by Bitran and
Caldentey (2003). Weatherford (2004) reports the same experi-
ence. He observed that airline analysts feel uncomfortable with
recommendations of their (risk-neutral) revenue management
systems, in particular while waiting for the high-fare passengers
a few days before flight departure.
In recent papers by Barz and Waldmann (2007), Huang and

Chang (2011) and Koenig and Meissner (2015), risk-neutral and
risk-sensitive policies are analysed. The results show that an
appropriate risk-averse policy can be selected if the decision
maker knows the parameters representing his level of risk
aversion. Such parameters have to be determined, which is
something that is not straightforward in either of the published
approaches, whether the underlying concept is an exponential
utility function or a discount factor relaxing an optimality
condition. Usually, the parameters have to be estimated by
running numerical experiments and evaluating risk measures,
such as mean-variance or conditional-value-at-risk, on the results.
Thus, we propose using the target-percentile risk measure,

discussed by Boda and Filar (2006), as the object function.
The target-percentile risk measure computes the probability of
the return failing to achieve a previous given fixed target. There
are several advantages of using this measure. First, one
important structural property is its time consistency. It says that
optimality of decisions should only consider the future. Time
consistency is a desirable property for multi-period risk mea-
sures as it allows its use in dynamic programming, as shown for
example by the work of Shapiro (2009). Second, it does not
assume a special kind of revenue distribution, as it measures the
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percentile of the given target level. Third, numerical computa-
tion schemes are available as described by Wu and Lin (1999).
Fourth, Boda and Filar (2006) show that multi-stage versions
for the well-established risk measure value-at-risk can be
developed using the target-percentile measure.
Fifth and important, it is easily interpreted by practitioners

and does not require a risk sensitivity parameter which might be
difficult to assess. Practitioners know the cash constraints of
their businesses, which enable them financial liquidity and
operational freedom. For their businesses, thus, they know the
desired target level which they can use as input parameter in
our model.
The structure of the paper is as follows. We review the

relevant literature in Section 2. In Section 3, we describe our
model as a Markov decision process and its extension to apply
the target-percentile risk measure. This section also contains
some implementation details. Section 4 shows numerical results
of our approach and provides a comparison with results of other
approaches. Finally, we conclude the paper in Section 5.

2. Related work

Most revenue management models use a risk-neutral objective
function. We refer to the work of Talluri and van Ryzin (2005)
for an overview of these kinds of models. In general, revenue
management models are categorised often as capacity control
model or dynamic pricing. However, Maglaras and Meissner
(2006) discuss the similarities between both categories and give
a common formulation in a risk-neutral setting.
The risk-neutral model of dynamic capacity control, which

we consider here, was introduced by Lee and Hersh (1993).
The corresponding Markov decision process is described by
Lautenbacher and Stidham (1999).
The approaches for incorporating risk in revenue manage-

ment models are analogous to the general decision making
under risk: expected utility theory, mean-variance considera-
tions, probabilistic constraints.
Expected utility theory as an element for reflecting risk in

revenue management is recommended by Weatherford (2004).
He states that the assumption of risk neutrality is not given for
many practical scenarios and proposes expected utility theory as
a risk-averse solution. Instead the well-adopted (risk-neutral)
expected marginal seat revenue model, standard algorithms
introduced by Beloba (1989), the expected marginal seat utility
heuristic can reflect risk sensitivity for decision making.
Weatherford and Beloba (2002) also show how forecasting
errors affect the revenue.
Recent works of Barz and Waldmann (2007), Feng and Xiao

(2008) and Xiong et al (2011) are employing expected utility
theory, too. Both papers support the application of an exponen-
tial utility function to account for risk aversion. Barz and
Waldmann (2007) use the Markov decision process formulation
of static and dynamic capacity control models, whereas Feng
and Xiao (2008) provide closed form solutions from a more

general point of view, and Xiong et al (2011) consider over-
booking in their model.
As the first revenue management model with risk considera-

tions, the model of Feng and Xiao (1999) uses variance as its
risk measure; in particular, the variance of sales because of price
changes. In order to integrate risk into their objective function,
they combine expected revenue with a weighted penalty
function for the sales variance. The risk sensitivity of the
decision maker can be adjusted by the weighting.
Recently, Huang and Chang (2011) presented a risk-sensitive

modification of the optimality condition for the dynamic
capacity control model and investigated their method by
measuring mean versus standard deviation in simulation runs.
They offer a ranking of their risk-sensitive policies using a
Sharpe ratio of revenue and standard deviation.
Illustrating the vulnerability of risk-neutral revenue manage-

ment because of demand forecast inaccuracy, Lancaster (2003)
recommends a revenue-per-available-seat-mile-at-risk metric,
which integrates risk measurement with the value at risk
(V@R) metric. This metric is the expected maximum of under-
performance over a time horizon at a chosen confidence level.
That cost of price changes should be considered from a risk

perspective is demonstrated by Koenig and Meissner (2010)
who compare the suitability of two different pricing strategies
by the risk measures standard deviation and conditional value at
risk (CV@R). In a further paper, Koenig and Meissner (2015)
evaluate a range of risk-sensitive policies for the dynamic
capacity control model. Gönsch and Hassler (2014) propose an
heuristic for computing an CV@R-optimal policy in a recent
paper. Their approach solves a knapsack problem for each state
in their value function.
Risk sensitivity is incorporated by Levin et al (2008) into a

dynamic pricing model of perishable products. Their objective
function consists of maximum expected revenue constrained by
a desired minimum level of revenue with minimum acceptable
probability. This constraint is similar to a V@R formulation.
The authors formulate a hybrid objective function which
combines the risk-neutral objective of expected revenue and a
penalty term representing risk aversion. Principally, they
approach this risk-adjusted maximisation problem by using a
further state which a risk-neutral dynamic pricing model does
not require. This state keeps track of already gained revenue.
In a capacity control setting, we base our risk incorporation

on a state space expansion, too, but our underlying model is
derived from a Markov decision process formulation.

3. Description of model

In the following, we describe the dynamic capacity control
problem as a Markov decision process in a similar way as
previously done by Lautenbacher and Stidham (1999) and Barz
andWaldmann (2007). This model is then expanded in the state
space in order to become a model which allows the application
of a risk-minimising policy. To achieve this, we follow the
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approach of Wu and Lin (1999). Our objective function is the
target-percentile dynamic risk measure. Finally, we point out
some aspects for implementation of this approach.

3.1. Markov decision process for dynamic capacity control
model

We consider the capacity control model stated by Lee and
Hersh (1993), which is often referred to as dynamic capacity
control. Although originally developed for airline revenue
management, it can be transferred to other industries.
We describe the model in terms of its original airline revenue
management context in order to be more intuitive.
We assume that the booking requests follow a Poisson arrival

process. Thus, the booking period for a single-leg flight is
separated into N decision periods in such a way that
the probability of more than one request can be ignored. The
decision periods are denoted by n∈ {0,…,N}. The departure is
at n= 0. If it supports understanding, we will use n as subscript
else omit it. Further, there are k booking classes with fares
Fi, F1>F2>…>Fk> 0 and F= {F1,…, Fk}. The probability
of a request for fare class i in decision period n is given by pn,i.
Further, we set the probabilities for n= 0 as zero for all fare
classes: p0,i= 0; this step just supports our model setting as the
last decision will be made at time n= 1. The probability of no

request in period n is pn;0 ¼ 1 -
Pk

i¼1 pn;i. The initial capacity
of seats is given byC. The remaining seats are given by c⩽C in
a time period.
We have a finite-state, discrete-time, Markov decision pro-

cess Γ= (S, A, R, P) with state space S and action space A.
Further, R denotes the reward set and P, the set of transition
probabilities. Time runs in discrete steps and represents the
remaining time before flight departure.
The state space S contains all possible configurations of

remaining capacity c and request for a fare class i. Thus
S= {0, 1,…,C} × {0, 1,…, k} and a state (c, i)∈ S says that
we have c seats left and a request for fare class i. We set the fare
class 0 with fare F0= 0, as is often common practice.
Our action space A(c, i) corresponds to the ‘reject’ and

‘accept’ decisions for a given state. We have A(c, i)= {0, 1}∀
(c, i)∈S|c, i>0 and A(c, 0)=A(0, i)= {0} to only allow the
accepting and rejecting of seats at the valid fare prices and not
for the artificial class i=0. Overbooking is not allowed.
Let R be the set of rewards (fares) when accepting one

booking. Rewards are denoted by rn(s, a)∈R with s∈ S, a∈A
and rn((c, i), a)= aFi for n, c> 0 and 0 otherwise. The transition
probabilities p∈P are defined for states (c, i), (c− a, j)∈ S with
a∈A by pn((c− a, j)|(c, i), a)= pn,j for n=N,N− 1,…, 0, and 0
otherwise.
A decision maker decides on a sequence of rules an=dn(cn, in),

which determine a policy π= {dN, dN−1,…, d1}. Thus, a policy
determines if a booking request is accepted or rejected in state
(cn, in).

Now let ρπNðc; iÞ ¼
PN

n¼0 rn denote the random variable of
the gained revenue for a particular policy π beginning with

capacity c and request i atN remaining time steps. The expected
revenue is given by

υπN c; ið Þ ¼ Eπ ρπN c; ið Þ� � ¼ Eπ

XN
n¼1

rn cn; inð Þ; dn cn; inð Þð Þ
" #

:

The maximal expected revenue and its associated risk-neutral
policy can be computed by the Bellman equation for this
problem. However, we are interested in a policy which mini-
mises the time-consistent dynamic risk measure of not achiev-
ing a target revenue x in the accumulated return.

3.2. Markov decision process for minimising risk of failing
target

We are interested in minimising the risk of not attaining a
specified target revenue xN for the dynamic capacity control
model. Thus, we want to find a policy π, which minimises the
objective function representing the probability of not achieving
a previous specified target level xN. In order to derive
this objective function, we follow the approaches mentioned
by White (1988), Wu and Lin (1999) and Boda and Filar
(2006) and expand the Markov decision process Γ by a
larger state space. The extended Markov decision process ~Γ is

similar to Γ. It consists of ~Γ ¼ ð~S; ~A; ~R; ~PÞ ¼ ð~S;A;R;PÞ, as
described below.
The state space S is replaced by the new state space ~S ¼

S ´R with elements ((c, i), x) with R ¼ ð -1;1Þ. The new
state space ~S consists of states of the configurations of remain-
ing capacity c and a request for fare class i, and additionally, a
revenue target x. All state variables are updated over time, for
example, the revenue target x decreases by the realised fare
price in accordance with decrementing c by selling a seat.
The action space ~A is generated from action state A by

~Aððc; iÞ; xÞ ¼ Aðc; iÞ; ∀ ((c, i) , x) and, thus, ~A ¼ ∪ ððc;iÞ;xÞ2~S
~Aððc; iÞ; xÞ ¼ ∪ ðc;iÞ2SAðc; iÞ ¼ A. In a similar way, the reward

set ~R is build from R. For ~s 2 ~S; a 2 A, the reward ~rnð~s; aÞ 2 ~R
is ~rnðððc; iÞ; xÞ; aÞ ¼ aFi for c, i> 0 and 0 otherwise. Thus,
~R ¼ R.
As well, ~P ¼ P, as the transition probabilities ~P are deter-

mined by P. We have ~p 2 ~P and, with states ððc; iÞ; xÞ;
ððc - a; jÞ; x - aFiÞ 2 ~S and a∈A, the transition probability is
given by ~pnððc - a; jÞ; x - aFiÞ j ððc; iÞ; xÞ; aÞ ¼ pn;j for n=N,
N− 1,…, 0 and else 0.
We are interested in the probability that our obtained total

revenue does not attain a target level x. Let the set of
deterministic Markovian policies be ~Π and let the random
variable for the cumulative gained reward, applying policy ~π 2
~Π beginning with capacity c, request i, remaining time steps N,

and target x, be ρ~πNððc; iÞ; xÞ ¼
PN

n¼0 ~rn. For the policy ~π, the
target-percentile risk measure is defined as

V~π
N c; ið Þ; xð Þ :¼ P ρ~πN c; ið Þ; xð Þ⩽x� �

; (1)
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where P denotes a probability. The time consistency property
of the target-percentile risk measure can be shown as demon-
strated by Boda and Filar (2006).
Thus, we are looking now for an optimal policy ~π* for each

objective function V ~π
Nððc; iÞ; xÞ that minimises the risk of failing

target level x:

~π* 2 argmin
~π2~Π

V ~π
N c; ið Þ; xð Þ c; ið Þ; xð Þ 2 ~S

��� �
: (2)

The associated percentile (minimum risk level for x) is

denoted V ~π*
N .

FollowingWu and Lin (1999) and Boda and Filar (2006), we
can derive the dynamic programming equations for computa-

tion of the minimum percentile V~π*
N (see Appendix). We attain

the following equations for x 2 R; 8 c; ið Þ 2 S :

V~π*

0 c; ið Þ; xð Þ ¼
1 x>0

0 otherwise;

(

V ~π*

n c; ið Þ; xð Þ ¼ min
a2A

Xk
j¼0

pn - 1;jV
~π*

n - 1 c - a; jð Þ; x - aFið Þ
( )

;

n 2 1 ¼ Nf g: ð3Þ
In time n= 0, the initial probabilities are one for a target x> 0

(as there is no remaining time for earning any value) and 0 for a
target x⩽ 0 (as this will definitely be met because our initial
revenue is zero). Note that the final percentile of all time periods

is determined by V ~π*
N + 1ðc; i; xÞ; in V ~π*

N ðc; i; xÞ, we already know
the requested class i at time N.
The optimal policy ~π* can be computed from the minimum

percentile V~π*
N by Equation (2) for a given target level x.

It should be pointed out that an optimal policy describes one
way to obtain the target level, but several optimal policies might
exist. Therefore, if more than one decision rule can be chosen in
a certain state in order to achieve the minimum percentile we
select the decision rule which contributes most to the revenue.
In particular, we prefer to accept a request if the probabilities of
both possible decisions a∈ {0, 1} are equal when determining

the minimum in Equation (3),
Pk

j¼0 pn- 1;jV
~π*
n - 1ððc; jÞ; xÞ ¼Pk

j¼0 pn - 1;jV
~π*
n - 1ððc - 1; jÞ; x -FiÞ and the risk-neutral solution

would accept the request, too. In this manner, we achieve the
same probabilities regarding the target but with the policy
which yields the greater expected revenue.
Furthermore, if we have in some state achieved the target

level the following states can be arbitrarily chosen. In practice,
the policy for the ongoing states should be optimised then under
another criterion, such as the expected revenue. Moreover, if the
target can never be obtained in the given setting, all policies are
equally improper and no optimal target-percentile policy exists
(technically, all policies are optimal but none is proper). In both
cases, we apply the risk-neutral policy which maximises the
expected revenue throughout this paper if not otherwise stated.

For efficient implementation, we apply an usual transforma-
tion of the dynamic programming formulation of Equation (3).

Introducing the operator Tnðc; xÞ :¼
Pk

i¼0 pn;iVnðc; i; xÞ helps
reducing the state space by variables representing the fare class
of an arrival. Defining Wn(c, x):=Tn(c, x)Vn(c, i, x), we trans-
form Equation (3), as follows, for x 2 R; c 2 f0; ¼ ;Cg:

W~π*

0 c; xð Þ ¼
1 x>0

0 otherwise;

(

W~π*

n c; xð Þ ¼Tn c; xð ÞV~π*

n c; i; xð Þ

¼
Xk
i¼0

pn;i min
a2A

W~π*

n - 1 c - a; x - aFið Þ
n o

: ð4Þ

The computation of all possible cumulative rewards given by
the variable x could be reduced if done on a suitable grid for
larger problems as described in the works of Wu and Lin (1999)
and Boda et al (2004). In this paper, we do not apply the grid
reduction.

Example. In order to illustrate the method, we give a stylised
example. Consider only two classes with fares F1= 200;
F2= 100, two remaining time periods N= 2, one seat left
C= 1, and the probabilities for arrivals p1,1= 0.10,
p1,2= 0.15, p2,1= p2,2= 0.20. Thus, for example, the prob-
ability of a request of fare 2 in period 1 before departure is
15%. We have a few scenarios in this setting: if a request for a
distinct fare class comes in period 2 before departure, we can
accept it or reject this fare class and then wait for possible
arrivals in the last period and, if they appear, accept. It is easy
to see that the policy which always accepts (expected revenue
of 81) is better off when compared with others. However,
consider that now we want the best policy for a target value of
200. The expected revenue maximising policy fails that target
with probability of 0.74. A better choice for this target would
be only acceptance of the highest fare class, a policy which
fails only with a likelihood of 0.72.

4. Numerical simulation and results

In their introductory paper about dynamic capacity control, Lee
and Hersh (1993) used an example which also served for
illustration in the recent papers of Barz and Waldmann (2007),
Huang and Chang (2011) and Koenig and Meissner (2015).
Thus, we can also demonstrate the proposed target-percentile
policy in the same exemplary setup.

4.1. Exemplary simulation setup

There are N= 30 time periods before departure, and the initial
number of seats is C= 10. The four fare classes are F1=
200,F2= 150,F3= 120,F4= 80. The probabilities for a request
of a fare class in a given time period are shown in Table 1.
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In order to see how the target-percentile policy works, we
conducted an experiment with 1000 sample runs. Random
arrivals were simulated in a Monte Carlo manner using the
values of Table 1. When compared with other proposed
policies, the same sample paths (random arrivals) were used,
of course.
A single simulation run is initialised with values for remain-

ing seats, time periods before departure, and a policy. The
policy contains for each state the acceptable fare classes. The
state is described by remaining time periods, remaining seats,
and a remaining target value. The simulation then continues
to loop over the time periods until the departure time zero
is reached. Inside the loop, a random generator simulates
requests for fare classes which are accepted if the current policy
allows acceptance of the class or else rejected. An update of the
state is as follows: time periods are always decremented by one,
seats are decremented only if a fare is accepted, and the target
value is decremented by the gained fare price.

Policy illustration. Figure 1 visualises the policy ~π* for the
described example. We see slices through a three-dimensional
matrix which displays the index of the maximum allowed fare
class for each state (c, x) in time n with initial target of 1200.
In order to use the policy, we start in the state (10, 1200) with
30 time periods to go. This is the top corner on the right hand
side of the presented box. The state at this position in the
matrix gives the maximum allowed fare class, which lets one
decide how to act at this point in time before departure. Only
fare classes with higher or equal price than the associated class
shown are accepted. As time marches on, one moves always
one step further along the time dimension to departure time
zero; this is parallel to the south-west direction in the figure.
The policy decides now which way to move in both other
dimensions. An acceptance of a request causes a move down-
wards along the dimension of the capacity, orthogonally
downwards in the matrix. Finally, the price of an accepted fare
dictates how to move in the target direction, along the north-
west direction in the figure. Thus, considering the figure, the
simulation will generate random trajectories from the top cor-
ner on the right hand side to the bottom corner on the left hand
side. Of course, the end of each trajectory will often be dif-
ferent because of the random realisations but it has to end with
coordinate n= 0.
We illustrate the effect of changing a target level on the

policy in Figure 2. The figure shows for two different target
levels (1200, 1400) the corresponding policies when revenue
has not yet been gained. The effect of increasing the target can

Table 1 Fares and request probabilities for fare class i and time
period n

i Fi 1⩽ n⩽ 4 5⩽n⩽ 11 12⩽ n⩽ 18 19⩽ n⩽ 25 26⩽ n⩽ 30

1 200 0.15 0.14 0.10 0.06 0.08
2 150 0.15 0.14 0.10 0.06 0.08
3 120 0 0.16 0.10 0.14 0.14
4 80 0 0.16 0.10 0.14 0.14

Figure 1 Target level policy: Indices of maximum allowed fare class of policy ~π* are shown for each state (c, x) with remaining capacity
0⩽ c⩽ 10, revenue target 0⩽ x⩽ 1200 in time n,1⩽ n⩽ 30. The indices of the four fare classes are visualised by greyscale where brightness
increases with fare class, For example, class 1 is darkest. Only fare classes of higher or equal price than indicated by the greyscale are
accepted in a state. Note, states which offer no optimal solution because the revenue is not obtainable, given the remaining capacity and time,
are transparent.
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be observed by the right hand side of the matrices which show
the indices of the maximum allowed fare class for each state.
For example, a capacity of at least six seats is required for a
target of 1200, but a capacity of at least seven seats is required
for a target of 1400. Only the highest fare class is accepted
when only six seats are available for the target of 1200,
respectively, when only seven seats are available for the target
of 1400. Figure 2 illustrates the pure target policies for 1200 and
1400. As already mentioned, we apply the risk-neutral policy in
states which do not allow to achieve a target; this is not shown
in this figure.

Evaluation. As the proposed policy optimises the target-
percentile, we start our evaluation with different (obtainable)
target revenues, comparing the theoretical and the simulation
results. As mentioned in Section 3.2, there are scenarios when
target revenue is achieved but time is remaining and one or
more seats are left. We present the average of remaining time
and seats for such cases as well. Further, the averaged revenue
is computed by switching to the risk-neutral policy or the first-
come-first-serve (FCFS) policy when the target has been
achieved. Table 2 shows the results for seven different targets.
The average of failed cases in the simulation is plausible
within numerical errors to the theoretical percentile, validating
that the policy does as expected.
The expected revenue of the risk-neutral policy for the

analysed problem is 1407.2. Looking at the results of Table 2,
we see that a policy which aims towards a lower target revenue
than the expected value accepts an upcoming request early in
time. Decisions are made soon and not post-poned to later
periods. This effect is easily observable as remaining time and
seats decrease, while the target is increasing. Policies with
lower targets have a greater probability for reaching the target.
It can be more easily obtained by accepting requests early, thus
leaving more time for balancing against having no profitable
requests in the next time periods. For the very low target of 800,
the target policy is similar to the FCFS policy and every request
is taken early in order to achieve the low target. For the very
high target of 1900, the target policy ‘speculates’ for unlikely

combinations of requests of high fares and leaves with
empty seats.
The effect between switching to the risk-neutral or FCFS

policy for the remaining time after achieving the target can be
observed for the revenue and standard deviation. Of course,
there is no impact on failed target, remaining time and seats.
With decreasing remaining time (or increasing target), the
difference between the revenue and standard deviation of using
the risk-neutral or FCFS policy for the remaining time
diminishes. The average revenues of the target policies are in
each case lower than that of the risk-neutral policy but greater
than the FCFS policy. The standard deviation of these revenues
grows with an increasing target, although when compared with
the risk-neutral and FCFS cases, their policies less often fail the
targets. This can be explained by comparing the distribution
histograms of the revenues of the policies. In the following, we
apply the risk-neutral policy when a target is reached. Figure 3
shows the distribution histograms of 1000 simulation runs of
three policies: one with low target 1200, one with high target
1400, and a risk-neutral one maximising expected revenue.
The distribution associated with the low target has its peak

above its target value 1200 and a slight negative skew. It has
only small frequencies for values lower than 1200 but also for
values higher than 1500, as its standard deviation from Table 2
also emphasises. It has a peak at 1300. The risk-neutral solution
shows a negative skewed distribution with a peak at 1500 with a
long tail to very low values, though some high revenues at
1800. Compared with the policy with target 1200, its revenues
are more often below 1200; however, given the revenue is
greater 1200, it will be better off. Its risk of falling below 1200
remains higher than the risk of the low target policy.
The distribution of the policy with high target 1400 has a

strong negative skew with a long tail to low values, too. The
peak of the distribution is at 1400. Compared with the risk-
neutral counterpart, this policy shifts frequency from 1300 to
1400 revenue. The target is achieved mainly at the expense of
1300 revenue and greater than 1500 revenue. Further, it shows
also higher frequencies for low revenue than both other policies.
Hence, if it fails the target, there is a greater risk of obtaining
only low revenue.

Figure 2 Illustration of the effect by changing the target revenue on the policy: The figures show the indices of the maximum allowed fare
class of the policies for a capacity between 1 and 10 seats, a remaining time between 1 and 30 periods and when revenue has not yet been
collected. Only fare classes up to the indicated level are accepted in a state. States which do not allow a policy to attain the target are shown
in black colour.
(a) Target xN= 1200.
(b) Target xN= 1400.
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The histogram demonstrates that the policy with low target
aims at a lower average revenue and smaller variance, but the
policy with a higher target, near to the expected revenue of the
risk-neutral solution, does not.
In order to evaluate the performance of target revenue

policies in more detail, we compare them with the risk-

sensitive policies derived from expected utility theory, as in
Barz and Waldmann (2007). We select the latter policies for
comparison as they result from optimising the dynamic capacity
control model using an exponential utility and no heuristics.
Referring to the recent works of Huang and Chang (2011) and
Koenig and Meissner (2015), we view the mean, standard
deviation, and CV@R of the policies. The CV@R is a measure
for the expected revenue given the revenue is below a certain
quantile specified by a confidence level α; it is the expected
value in the α percent of worst cases.
Table 3 compares both types of risk-sensitive policies.

Beyond the mean, standard deviation, and CV@R with con-
fidence level 5%, the observed relative frequency of failing the
1000 target is given. We see that the target policy for 1000 has
the least risk of failing it. However, it is also observable that the
target policies only limit the risk of failing their certain target
and do not provide more preferable results in terms of the other
measures. The expected utility based policies have higher
average revenues than most target policies. If the target policies
aim at a level greater than 1200, the CV@R drops down with
further increasing the level. The CV@R of the policies employ-
ing an exponential utility function decreases with decreasing
level of risk aversion. The standard deviation decreases with
higher target and higher level of risk sensitivity for both types of
policies, with exception of the 1400 target. Discussed already
by Figure 3, the CV@R results also show that the target policies
do not limit the risk of obtaining only low revenues in the worst
cases. Further, it is interesting that the policies aimed at targets

Table 2 Results of policy simulation for different target values. The probabilities and averages for failing to achieve a target are given (lower
means better) and also, averages of remaining time and seats if target could be achieved

Target value 1900 1600 1500 1400 1300 1200 800
V~π*
n

0.993 0.740 0.528 0.336 0.183 0.088 0.004

Simulation of target value policies
Failed target 0.998 0.749 0.510 0.354 0.189 0.117 0.006
Remaining time 0 0.04 0.22 0.82 1.93 3.87 13.92
Remaining seats 0 0.01 0.04 0.11 0.23 0.49 3.16

Using risk-neutral policy for remaining time
Revenue 1006.2 1314.8 1362.5 1367.4 1345.8 1319.9 1354.2
Standard deviation 291.15 276.97 242.76 191.56 161.23 160.81 177.26

Using FCFS policy for remaining time
Revenue 1006.2 1314.6 1361.6 1365.4 1338.3 1307.0 1290.4
Standard deviation 291.15 276.57 241.59 188.48 151.86 146.46 155.88

Simulation of risk-neutral policy
Failed target 1.000 0.821 0.621 0.420 0.271 0.158 0.014
Revenue ← 1402.2→
Standard deviation ← 210.36→

Simulation of FCFS policy
Failed target 1000 0.982 0.911 0.742 0.504 0.270 0.006
Revenue ← 1290.4→
Standard deviation ← 155.88→
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Figure 3 Histogram of the distributions of revenue in the
simulation using policies with targets 1200 (left bars), 1400 (middle
bars) and the risk-neutral policy (right bars).
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different from 1000 do not guarantee good performance
regarding the 1000 target.
This effect becomes more observable in the distribution

histogram of the 1000 revenue target policy and the expected
utility policy with high risk aversion γ= 0.01, as shown in
Figure 4. The target policy has a lower average revenue, a
higher 5% CV@R, and a higher standard deviation than the
exponential utility policy, and it achieves at least a revenue of
1000 in more cases. The frequencies for the revenues 800 and
900 are lower for the target policy than for the exponential
utility policy. The target policy has higher frequencies for
revenues between 1000 and 1200 and between 1700 and 1800.
It has lower frequencies between 1300 and 1600 than its
counterpart. This explains the lower mean revenue.
Figures 3 and 4 show that the target policies dent the

distribution slightly below the target. Thereby, the whole
distribution, for values lower and greater than the target, is
influenced. Frequencies below this dent may increase as
frequencies for the target do. In particular, distribution lower
then the target need not be modified in a favourable manner
regarding the lowest revenues, that is to say the worst cases.
The results of Table 3 show, that decisions makers should

choose a policy according their prioritisation of measures. For
example, a risk-averse policy is appropriate for decision makers
if their business could be more negatively impacted by a (few)
worst case scenarios than forgoing revenue in average.

Further numerical experiments. We did further numerical
experiments beyond the previous illustrative one. In order to
investigate the target policy, we show five more scenarios
which differed with respect to their load factor. The load factor

is given by λ ¼ 1=C
PN

n¼0

Pk
j¼1 pjn and gives information

about demand in relation to capacity. The previous example
had a load factor of λ= 1.32.
We changed only the request probabilities of the previous

example and hold the other parameters fixed to get further

scenarios. To this end, we built the further scenarios by
choosing random request probabilities which yielded different
load factors. Then we simulated 1000 sample runs with each
scenario. Table 4 show results of the risk-neutral policy and
of the target policy which were applied to the scenarios.
We selected those targets for each policy which were 115, 100
and 85% times the expected revenue of the risk-neutral policy.
As Table 4 shows, the target policies achieved the desired target
more often than the risk-neutral policies in the numerical
simulations. That advantage of the target policies increased
along with the increasing load factor.

5. Conclusions

A risk-averse policy minimising the failure of a previously
defined, certain revenue target has been proposed for a revenue
management problem, namely the dynamic capacity control
setting. This policy is derived by extending the state space of
the Markov decision process formulation of the problem.
We have discussed aspects for implementing the policy
numerically. In numerical experiments, we have analysed the
proposed policy and evaluated against risk-neutral and another
risk-sensitive policies. We have compared the mean, standard
deviation, and conditional-value-of-risk of those policies. The
optimal policy for a given target revenue focuses on minimising
the likelihood of the failing of this certain target but does not
compensate for other risk measures.
The analysis of the revenue distributions of the target revenue

aimed policies in numerical experiments disclose how impor-
tant correct understanding of such a policy is when applied. The
decision maker must be aware of its limitations; in particular,
that it is the policy with lowest probability of failing the target,
but the probability of worst outcomes are not eliminated.

Table 3 Comparison between two risk-sensitive policies: target-
percentile optimising and exponential utility function optimising

policies (the risk aversion increases in conjunction with γ). CV@R is
for α= 5%

Policy Mean Standard.
deviation

CV@R Frequency
(ρ< 1000)

Target 800 1354.2 177.3 941.2 0.028
Target 900 1349.6 171.8 960.4 0.029
Target 1000 1331.6 170.3 959.4 0.020
Target 1100 1322.0 165.5 951.8 0.031
Target 1200 1319.9 160.8 927.0 0.029
Target 1300 1345.8 161.2 910.2 0.041
Target 1400 1367.4 191.6 874.0 0.050
Utility γ= 0.010 1359.5 162.3 953.2 0.027
Utility γ= 0.005 1383.8 176.3 939.6 0.029
Utility γ= 0.001 1402.3 206.8 886.6 0.050
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Figure 4 Histogram of the distributions of revenue in the
simulation with policy with target 1000 (left bars) and policy using
exponential utility function with γ= 0.01 (right bars).
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However, using a low target revenue supports limiting
such risk.
The presented approach can be further developed in order to

achieve a policy which optimises value-at-risk as proposed by
Boda and Filar (2006). Furthermore, it also offers the basis for
the development of investigating policies balancing out mean
revenue versus target achievement.
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Appendix

The following theorems are based on the work of Bouakiz and
Kebir (1995). The theorems show that our dynamic program-
ming equations find the optimal policy.

Theorem 1 For each (c, i)∈ S and n⩾ 0, V ~π*
n ððc; iÞ; �Þ is a

distribution function.

Table 4 Results of numerical simulation with scenarios which
differed by their load factors λ. Revenues are averaged over 1000

sample runs. The given differences are the observed relative
frequencies of failed target instances of the risk-neutral policy minus
the observed relative frequencies of failed target instances of the

target policy. The differences show how more often the target level
policies achieved the target but the risk-neutral ones did not. For

example, in the example of the last row of the table, the target policy
did failed in 1.4% of all sample runs and the risk-neutral one in 7.1%

λ= 0.89, expected revenue= 1157.2, simulation revenue= 1155.9
Target V~π*

n
Failed
target

Difference failed versus
risk neutral

Revenue

1340 0.697 0.699 0.001 1145.0
1160 0.453 0.449 0.022 1151.5
990 0.255 0.258 0.002 1156.6

λ= 0.99, expected revenue= 1280.1, simulation revenue= 1277.8
1480 0.750 0.750 0.038 1251.6
1290 0.453 0.470 0.070 1259.2
1090 0.210 0.212 0.013 1271.6

λ= 1.11, expected revenue= 1356.3, simulation revenue= 1358.7
1560 0.779 0.776 0.072 1320.2
1360 0.398 0.387 0.046 1345.1
1160 0.131 0.119 0.039 1335.8

λ= 1.48, expected revenue= 1482.0, simulation revenue= 1484.3
1710 0.828 0.821 0.073 1391.4
1490 0.386 0.382 0.070 1446.2
1260 0.070 0.075 0.037 1389.6

λ= 1.76, expected revenue= 1525.5, simulation revenue=1522.7
1760 0.931 0.934 0.034 1269.2
1530 0.333 0.320 0.160 1477.9
1300 0.012 0.014 0.057 1437.4
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V ~π*
0 ððc; iÞ; �Þ is a distribution function. Assume that

V ~π*
n - 1ððc; iÞ; �Þ is a distribution function. As by definition

V ~π*

n ððc; iÞ; xÞ ¼ min
a2A

Xk
j¼0

pn - 1;jV
~π*

n - 1 c - a; jð Þ; x - aFið Þ
( )

:

The sets A, S, R are all finite. The finite convex combination
and minimum of distribution functions are distribution func-

tions, too. Thus, V~π*
n ððc; iÞ; �Þ is a distribution function.

Theorem 2 For each n⩾ 1, the sequence fV~π*
n g satisfies the

relations

V ~π*

n c; ið Þ; xð Þ

¼
1; if x>ρ~π

*

N c; ið Þ

min
a2A

Pk
j¼0

pn - 1;jV ~π*
n - 1 c - a; jð Þ; x - aFið Þ

( )
; if x⩽ρ~π*N c; ið Þ:

8>>><
>>>:

We define the following operators for convenience. Let a be
an arbitrary action and δn an arbitrary decision rule at time n.
The operators Ma, Mδn and M are as follows:

Magn c; ið Þ; xð Þ ¼
Xk
j¼0

pn - 1;jgn - 1 c - a; jð Þ; x - aFið Þ;

Mδngn c; ið Þ; xð Þ ¼ Mδn c; ið Þ; xð Þgn c; ið Þ; xð Þ;
Mgn c; ið Þ; xð Þ ¼ min

a2A
Magn c; ið Þ; xð Þf g:

Let π= (δn− 1,…, δ1) be a policy and δn be a decision rule.
Let policy γ= (δn, δn− 1,…, δ1), then V γ

nððc; iÞ; xÞ ¼
MδnVπ

n - 1ððc; iÞ; xÞ by definition. With a= δn((c, i), x), it is

V γ
n c; ið Þ; xð Þ ¼ MaVπ

n - 1 c; ið Þ; xð Þ:
It follows that

V γ
n c; ið Þ; xð Þ⩾MVπ

n - 1 c; ið Þ; xð Þ⩾MV~π*

n- 1 c; ið Þ; xð Þ;
and the minimum over γ yields

V ~π*

n c; ið Þ; xð Þ⩾MV~π*

n - 1 c; ið Þ; xð Þ:

With γ, a and Vn
γ((c, i), x)=MaVn− 1

π ((c, i), x) as before, it is

V ~π*

n c; ið Þ; xð Þ⩽MaVπ
n - 1 c; ið Þ; xð Þ; 8π:

Let ϵ>0 be arbitrary and λ be a policy which depends on
c; ið Þ; x; ϵ such that

Vλ
n - 1 c; ið Þ; xð Þ⩽V ~π*

n - 1 c; ið Þ; xð Þ + ϵ:
As π is arbitrary in the above formula,

V ~π*

n c; ið Þ; xð Þ⩽MaVλ
n - 1 c; ið Þ; xð Þ

⩽Ma V~π*

n - 1 c; ið Þ; xð Þ + ϵ
h i

⩽MaV ~π*

n - 1 c; ið Þ; xð Þ + ϵ:
Now, since δn is an arbitrary decision rule, a= δn((c, i), x), it

follows

V~π*

n c; ið Þ; xð Þ⩽MV~π*

n - 1 c; ið Þ; xð Þ + ϵ;
and ϵ>0 is arbitrary,

V ~π*

n c; ið Þ; xð Þ⩽MV~π*

n - 1 c; ið Þ; xð Þ:
Hence,

V~π*

n ððc; iÞ; xÞ ¼ MV~π*

n - 1ððc; iÞ; xÞ:
Note, the sequence fV ~π*

n g is monotonically decreasing. It is

V ~π*
1 ⩽V ~π*

0 . Hence, assuming that V ~π*
n ⩽V ~π*

n - 1, we have

V ~π*
n + 1 ¼ MV~π*

n ⩽MV~π*
n - 1 ¼ V ~π*

n .
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