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1. INTRODUCTION

We investigate the following hyperbolic conservation laws with damping

v,—u,=0
(1.1)
u,+plvy,=—au,a>0,p'(v)<0

which can be used to describe the compressible flow through porous media
where u is the velocity, v > 0 is the specific volume and p(v) is the pressure,
with the discontinuous initial value

(uplx), vo(x)) = (1.2)

{(u,,(.x), v_(x)), x<0
(u (x), v (X)), x>0,

where u_{x), vz (x) are smooth function such that lim_ _ y(u+(x), v (X)) =
(u¥,v*yand v* >0.
For the system without the damping term, 1.e.,

v,—u,=0
(1.3)
u,+plv),=0,p'(r)<0

the same kind of discontinuous initial value problem (1.3), (1.2) has been
studied in [LZ] where w_(x), vi{x) are considered as perturbated
Riemann data. It has been proved under certain restriction on the initial
data (1.2) that the problem (1.3), (1.2) admits a unique global solution in
a class of piecewise continuous and piecewise smooth functions and the
solution has a global structure similar to that of the corresponding
Riemann problem with Riemann data (¢ ,v~) and (u*,v™). The
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Riemann problem for (1.3) has been studied very well. (see [CH], [LI1],
[DD], [SM], etc.])

However, the Riemann problem for the system (1.1) with damping term
has not been well studied in the literature since there is no self-similar
solution anymore and it becomes much more complicated. It is well-known
that this problem is of significance. It plays a special role in the study of
the existence, uniqueness and asymptotic behavior of the solution for the
general initial-value problem.

To study the discontinuous initial value problem of (1.1), (1.2) is also a
part of the program to show that the system (1.1) can be modeled by

time asymptotically even in the case when shock waves may develop in the
solutions of (1.1) (see [HL] and [HT] for detail).

We investigate the perturbated Riemann problem (1.1), (1.2) and con-
struct the globally defined piece-wise continuous and piece-wise smooth
solutions with showing the qualitative behavior in a sequence of papers.
This paper handles the case in which the two states (¢ ", v " )and (u ™, ™)
are connected by a backword shock curve and a forward shock curve sub-
sequently in the phase plane. For other kind of relation between (v, v )
and (¥*,¢™), the result can be found in [TX]. For simplicity, we take a
typical form of the state function p(v) to discuss, namely, p(v}=av 7, a >0,
1 <y <3, which 1s the state function for polytropic gas. The case y =1 has
been discussed in [ HT].

Under certain restriction on the strength of the initial discontinuity and
the perturbation in the initial data, expressed as condition A and conditon
B respectively, explained in Section 2 and Section 3, we prove that the
problem (1.1), {1.2) admits a unique global discontinuous solution on 7 =0
in a class of piecewise continuous and piecewise smooth functions which
only contains two entropy shocks--a backward shock and a forward
shock. The shocks do not disappear for any finite time and do disappear
with the strength decay exponentially fast when time ¢ tends to infinity. We
prove the result for unperturbated Riemann data in Section 2 first. The
result for perturbated Riemann data is obtained in Section 3.

For general Cauchy problem of inhomogeneous hyperbolic system, the
discussion on the existence of weak solutions can be also found in [ DH],
[LI]., [YW], [DCL], [HM], [LT]. etc.
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2. CONSTRUCTION AND BEHAVIOR OF SOLUTION FOR RIEMANN PROBLEM

The unperturbated initial data discussed in this section is called as
Riemann data, namely

; (™, v ) x<0
0o ) — ,
(u(0, x), v(0, x)) {(u*,v*), >0 (2.1)

We take a=1 and x=1 in (1.1) for convenience. Then the characteristic
speed takes the form i= —\/;-r"”’“""z and ,u:\/;‘v' 12 for the
backward and forward family respectively.

Introduce Riemann invariants

r=u—¢
(2.2)
s =u+ ¢,
where
2y >
PRENENTE (2.3)
y—1
Thus
u_s+r
2
‘ (2.4)
(:},__1( ):l?_'(];'t
r= §—F
N
and the system (1.1) can be written as
roA Ay = —3r+s)
(2.5)
s,4us.=—Xr+s)
which is equivalent to (1.1) wherever the solution i1s smooth.
By the notation of
=240
ot ox
(2.6)
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{2.5} becomes

r'=—3{r+s)
(2.7)

1

§'=—

[SIE NI

(r +5).

A discontinuity in a solution of (1.1) is characterized by the left-hand,
respectively right-hand, values at the discontinuity, and by the discon-
tinuity’s speed. These quantities are related among them by the well-known
Rankine-Hugoniot condition, which, in the present case, implies that

dx,(t) _pler) —pley)

dt e (2.8)
up — g =/ (plog) —ple (v, —vg) (v, —tg)

or

dx,(t) _ \/P(UR) —plry)
dt vy~ Upg (29)

up—tug=—/(plog) —plo W, —vg) (v, — ),

where (ug, tg)={(u, t}t,x, (1) +0), (u,, v,)=(u v)t,x;(t)—0), i=1 in
(2.8) and /=2 1n (2.9) respectively.

A discontinuity is called a backward shock (or forward shock) if (2.8)
{or (2.9)) holds and the entropy condition is satisfied as well, namely,
tp<t,{Or vtg>v,) (2.10) (or (2.11}))

By using (2.2) and (2.3), it 1s easy to rewrite the above formulae in (r, s)
variables in the following form where the exact expression will be given
later.

de, (1)
c}t =/ {Sr FR S L)
(2.12)
hilsp, rp;8,,r;)=0
and
SR—FRr>8;—¥y, (2.13)
or
dx,(1)
it =/(Sp. TR S 1271
¢ (2.14)

ho(sp.rris,, r)=0
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and

SpR—FRr<S,—Tr,. (2.15)

In the coming discussion, we may choose either (u, v) or (r, ) according
to the convenience.

For the initial data (2.1) in the present paper, there exists a state (7, 34)
(or (uy, vy) In (u, v) variables) such that

hi(8g.Fp; 8 r )=0,

ho(st o rt;se. re) =0, and

(2.16)
Sog—Ftog>S —r

So—rp>st —r,

where (r*,s%) and (r~,s ) are determined by (u#*,v*%) and (v ", v )
through (2.2) and (2.3). This means that the two states (¢ ,v ) and
(u*,v*) are connected by a backward shock curve and a forward one sub-
sequently in the phase plane.

Now we construct the global discontinuous solution for (1.1) (2.1) and
(2.16).

Just like the case of y=1 in [ HT], we first use the initial data to obtain
the unique global C! solution

(u (L,x) v (LxVN=w ¢ v7) (2.17)
on the domain
R7={(LX) 120, x<€ 7“),4&:(&(1):1(1_‘ (< (t)))}
and
(U, (tLx) o (,x)=w e ,v") (2.18)

on the domain

dg (1)

R, :{(t.x) [120,x=¢ (1),
dt

=p(v, (f, CJU))}

for the corresponding initial value problem.

By the local existence theorem in [LY], this discontinuous initial value
problem (1.1), (2.1) admits a unique discontinuous solution at least on a
local domain R(J)={(r,x}|0<1<4d, —w<x<o} in a class of piece-
wise continuous and piecewise smooth functions and this solution contains
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only a backward shock x=x,(1) and a forward shock x = x,(¢} passing
through the origin.

In view of the entropy condition on the initial discontinuities, it is known
that x = x,{#) must be located on the left side of x =¢ _(¢) while x = x,(1)
on the right side of x=¢ (7). Therefore, the solution on the left side
of x=ux,(7) and the right side of x=x,(¢) will be furnished by
(u _(t,x),v_(t,x)) and (u, (1, x),v (2 x)) respectively. Thus, in order
to construct the globally defined discontinuous solution for (1.1) (2.1),
we only need to solve the following free boundary problem on the
angular domain R=lim,_, R(T), where R(T)={(1,x)|0<t<T,
X < x <.

{(FBP): On the free boundary x = x,(£)(x,{0)=0, 1 = 0)

dx,(1) {v gy 12
d v —u

(2.19)
(r+s)—(r_+s_)==2{(r_—v)(v7=0T ")} (v_—v),
where all of the values are taken at (¢, x,(1)).
On the free boundary x = x,(#)(x,(0)=0,1t>0)
dx,(1) {v '>'—1'+"}"'2
dt v, —v (2.20)

(r+s)—(r.+s,)==2{(t,—v_ ) (v 7" —o "N (v—r,)

where all of the values are taken at (¢, x5(¢})). Moreover, the entropy condi-
tion has to be satisfied on the free boundaries, namely,

(s—r}t, x (N> (s_—r_YMt, x (1))(t=0) (2.21)
{(s—r)e xs(0)> (s, —r )6 xo(0)) (£ =0). (2.22)

Without loss of generality, we assume that
ur>0 and O<v <vt <l {2.23)

The other cases can be discussed similarly.

In order to guarantee that the problem (1.1) (2.1) admits a unique global
discontinuous solution on t> 0 which only contains two entropy shocks,
we introduce condition A which makes restriction on the strength of initial
shocks and guarantees that the gradient of # and v on the inner side of the
two shocks-free boundaries never becomes large.

THEOREM 2.1.  Under condition A stated below, the free boundary
problem (1.1), (2.19), (2.20) admits a global classical solution (r,s)e C' in
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R with x,(1)e C? (i=1,2) on which (221) and (2.22) hold respectively.
Furthermore, this solution possesses the following properties. For any
(t.x)eR,

S S<Ss<s T, re <r<rg, vo < v<max{u(t, x,(1). v(t, x,(1))}

(2.24)
. . 2v 2v 3
min { min RO (o, x ()
Xﬂﬂhx)3——y 3——y

AL TL!

) 2v 2
Ssb\,+321 - < max { max —— (s(\, +3—L> (, .\',(a))} (2.25)

T X2t t X)) 3 — y’ . }'
AT
m 1 NP/ L X,
:"llfif‘\‘;:’;——},‘ 2 3_}’
<<t

gr»ﬁ-%—émax{ max i, <rv\.+~g—vw>(ﬂ,x2([)’))}, (2.26)

—7 <\‘|1r;r.,\‘)3—}’ 3—'}'
/B
where
2 Y + - (1 —y)2 1 + + — —
S =7 v, = ' —rT,s —rF g, .
* y_l(max{ Py 2max{5 b, (2.27)
2\/; (12 So— %o
e L (228)

and x,(7;t, x¥x5(t; t, X)) denotes the backward (forward) characteristic
passing through (t, x) such that

Xl =x,5(a; 1, x)

(2.29)
Xa(By=x,(p;t x)
Moreover, for any point (t, x\(1)), 0 <t < o0, it holds that
(v —rgle VK —v<(v —uy) e (2.30)
and for any point (t, x5(1)), 0 <t < o0, it holds that
(v —vp)e M <v, —v< (v —uvy) e, (2.31)
where v_ =v_(t, x(t)), v, =v (1 Xo(t)), A; is a positive constant (i=1, 2,

3, 4).
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The condition A can be stated as follows. Denote

1;&}'>[1+ W=D +(1—-¢77) }
¢~1 2 /A=D1 =)

) -7 H-D+(1-=¢7)

K:_)=< "‘\/V )[—1+ MJ
0=V (-1 2/ME—11-¢7) (2.32)

K =[K(OT ' [B=n S =111 =) =K )n— 1)1 + 1

Condition A. Let {J =v" /vy, o =v /vy, where {J =, > 1.

1. Forany {e(l,{; ],

e 5o (SN L
K(({, (g ) —max \/20' —_— s >0

s (2.33)

For any {e(1,{ ],

(2.34)

2. For any {e(l,{; ]. it holds that

- _ -2 >0 (235
<3—y){\/(¢—1)<1~cn £ >0 (23)

to
3
LE <)Y, (2.36)
4,
K\(() ] > K,5(C) (2.37)
(C_l)(l_§7 ) ‘:=CUI \/(C_l)(l_‘:ﬁ;‘) §=‘:<f

505.123,2-11
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Remark 2.2. It is easy to see that all of the inequalities in condition A,
except (2.33);, and (2.34),, hold automaticly as y— 1 since K,({)—
(VC+ D20, h Kald) > (V/T—1)¥(20) and K(O) = JA/C+ 1) [(6
2/ f) —{\/4:~ 1)*¢], as y — 1. Thus the condition A reduces to

_ 2 _ ey - l . .l
6\ﬂ+z>(\ﬁ_1)-z—+(\/§+l)3-c—_, for {e(l,{o1]

0

2 1
6 o= y_13 v 13'
L_+\/E>(ﬂ ) +(ﬂ+ ) 5

It is obvious that there exists a constant b > 1 such that (*) holds if {; <b.
Furthermore, it can be claimed, by a lengthy but straightforward calcula-
tion, that for any fixed y e (1, 3), there exists a constant A(y)(b(y)} > 1) such
that the condition A is satisfied if {J <b(y).

To prove Theorem 2.1, we need the following lemmas.

LeMMA 2.3. Suppose that the classical solution of (1.1), (2.19), (2.20)
exists in R(T), then it holds along x = x () that

v =077
— )2 —
(revns )
L17 _LV

% [’,;rl (v_ —v)+(v 7"—0v ") ] “*7‘”‘}5,
! 2\/}*(v —v)v VT —02") *

=2\/(v, -l v T —v ") — [\/}_; p (L2

Y e —p Yy _p Y .
.{~1+[” (b vt v )]-v”“"z}r_\ (2.38)
2 \/y(v,, —v) v '—=0v77)

and along x = x,(t) that

(e )

A{1+[}“l s *UH‘(U T=v] v“””}r
2\/, (v 7"—v.7) '

:2\/(l‘+—1')(1"/'_u+)')_l: y.p— (12 \/E__EL]
L,‘+ —r

_ [}'v e, )+(U7Y‘—U7“’Y)].U(1+;m'z P (2.39)
2/ Mo, —ode 7 —vyY) '
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Proof. Differentiate (2.19), with respect to 7, we obtain (2.38) with the
help of (2.19), (2.5), and the knowledge about (u_ (£ x,(£}), v _(¢t, x,(1))).
Similarly, we obtain (2.39).

Let
J+D)
f: Tle4 U" - 34
’ 4
¢= 41 LB ( zz_ﬂ)
3-» 3—-y
‘ 1
S o
W=, 2g
12 !
V=u "s\.+§g.

We denote the following statement by (H,) and (H,) respectively.

(H)) (rns)eC'onx=x,), x,(NeC?(i=1,2), (+=0).
(H,) Along x=x,(#)(¢>=0), it holds that

=¥, x,(a)) > \/gg(v(o(, xy(a))) glmax{v—, v} ) (x=0)

2v 2
T € < m: ot
_/L() +3_/ 35 ax{v vt}
[(=lie_—eh] (dv_ —v)/drye[A,, A,]. for positive constants 4> A ,>0.

Along x = x,(7)(r = 0), it holds that

wo=w(f, x2(f)) > / v( B, xo(B) - gmaxfe ot 1) (B=0)

2 2 2
3‘ Loy +3 ! 3_ mdx{L “oet)
[(=1v, —ov)]-(dlv, —v)dtye[A,, A,]. for positive constants 4, > A,>0.
In R. it holds that vy <v<max{v ,v"*}

Remark 2.4. (H,)implies the entropy condition
(s—r)a x{a)) >y  —r_Na, x,{a))

(s =r) (B xo( ) > (s, —r B x2( ).

LEMMA 2.5, Under the condition A4, the classical solution defined in
R(T) satisfies the estimates cited in (2.24), (2.25), (2.26), (2.30), and (2.31)
if (H,) and (H,) hold for te [0, T].
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Proof. The approach to obtain (r,s)-estimation, used in [HT]
for the case of y=1, does not depend on y, so it is still valid here. It is
similar to that case one obtains the r-esiimation as well, by following
5.~ (and/or r.-) estimate. The detail is omitted.

Now we give the r -estimation by upper-lower solution method. For any
given (¢, x) e R(T), it is not difficult to know that

1 —1
w' = —f(tv—ig)(w—%ﬁg),

along x=x(n;f,x) <1<,

(2.40)
. 1 y—1
et b5
along x=ux,(1;t x),a<<t<L,
where x,(f; 1, x) = x,(f), xXala; ¢, x) = x ().
With the help of v-bounds in (H,), condition A4, means that
inf g>./20 sup g. (2.41)
R(T) R(T)
Denote
F*= max f, F,= min f;
Ni(Ty N NUTLLL XD
L ESE Y I ES LS

let z be the solution of

C agc
= —F*(z— z——1, <t
< 2F*>< F*> fst

with initial data z=w, at 7=/f. Due to (H,),

ag o B 4 ‘ O'C2
Wo > /Eg(v(/f--\:(ﬂ)))~g<de{v T })>\/2F*F*, (2.42)

This, with (2.41) together, implies that

< }g:gmax{wo,——c—}. (2.43)

min {WO, ﬁ‘: SF*

Since (2.40), can be written as

e fo5)o%)
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it turns out that
w<max{w,, 5 max g} (2.44)

N({t; f.x)
LS £

in view of (2.41) and (2.42).
Denote =z —w. It holds then that
ot

1
' _ﬁ(5+“‘)+<—+a> ci+(f—F*) <:2—————>
2 2E%f (2.45)

1;:

iy =f{o, x(a))=0.
With the fact 6 (0, 1) and (2.43), it is easy to show that

ac?
— —*ZF*f> 0

2

and hence i <0 as the solution of {2.45), namely
(2.46)

<w.
The r -estimate (2.26) follows then from (2.44) and (2.46). It is similar to

get (2.25).
By using Lemma 2.3, it is not difficult to claim the next Lemma.

LEMMA 2.6.  Suppose that the classical solution of (1.1), (2.19), (2.20)

exists in R(T). Then it holds that
W=D +(1=¢ ) H
)

~1  dv_—v) { . [
- = -1 1+
(v_—v) dt \/; i 2. /({1 =77

(07 r,
- >5+ (C-l)(l—C")J

[(‘[_ =1 /v

along x = x (1), where { =v~/v; and it holds that
—1_dw, v , e
i )={\/;(€_“{l+m EY g_)H

2 /ME=)(1=¢7)

(v, —v) dt
1—877\ s, RV Y
[(Vim5 aviEi=e

along x = x,(1t), where E=v ™" /v.
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LEMMA 2.7, There exists a small constant 8, such that the solution of
(1.1}, (2.19), (2.20) exists in R(d,) for which (H,) and (H,) hold under con-
dition A, Ay and A,.

Proof. The existence follows from the local existence as mentioned
before ([LY]) and it 1s obvious for (H;) to hold. Moreover, it can be
shown, with the help of the continuity of the local solution and Lemma 2.3,
that

lim <s +i> (. x,(1)
I =0 3—

Thus, condition A, guarantees that

: 2v 2v,
’111% <5,\.+ 3 ,> (t, x, () > 3o,

On the other hand, due to (2.33), in condition 4, (as { - &), (2.47) leads
to that

t—0 _),'

2«
lim <S'\+3le>(l, x,(t))<3—2*max{v‘, vt}

It is similar to obtain the formular on r,, namely

. 2
lim (rx + —) (¢, x5(1))
r—0 3 -7
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Thus, it follows by using condition 4, and A,{(2.34),), that

2v 2 2
Uy < lim (rx+§%) (1, xz(t))<v3~_~ymax{u", vt}

-7 t—>0 !

Since v is quite close to v, for small ¢, the estimates on s, and r,
obtained in the previous discussion in Lemma 2.5, certainly still hold for
small 7. Then, it follows that there exists a small constant J, such that
vo<v<max{t~,v*} in R(J,) by the same argument as mentioned in
Lemma 2.5.

Due to (247), (248), and (2.37), it is not difficult to show that
r.z0, 5,20 in R(J,) as d, small enough. In view of this fact, with
the boundedness of v and the boundedness of r, on x=x(¢) and s,
on x=.x,{t) together, the diminution of the discontinuities can be
casily obtained from Lemma 2.6. At last, it can be shown, by using the
formulae _in Lemma 23 and the condition A4,, that y(x, x(x))>
\/(a,/’Q)g(v(a, xa)))-gimax{v—,v*}) for 0<a<d, and w(f, xo(f)) >
S(6/2) g(e(B. xo(f)) -glmax{v—,v*}) for 0<KB<Iy, if J, is small
enough. The Lemma 2.7 follows now from the above discussion.

LeMMA 2.8. The solution constructed by extension preserves (H,) and
(H,) in each step under condition A, — A,. Namely, if (H,) and (H5) hold
in R(Tg) where the classical solution of (1.1}, (2.19), (220} is defined, then
the solution defined in R(Ty+ 6) still satisfies (H,) and (H,), provided ¢
small enough.

Proof. Denote T*=T,+ 4. It 1s not difficult to see that (H,) holds and
there 1s a constant O<gy<] such that velrvg(l—g), (1 +¢):
max{v~,t*}] in R(T*), since J is small enough and (H,) holds in R(T,).
Because of the same reason, the strength of discontinuity along x =x,(¢)
(i=1, 2) still diminishes exponentially for e (T,, T*], though might be in
a slightly changed rate. This implies that ve[vy, v7) on x=x,{¢) and
vefvg, v*) on x=x,(t) for te(T,, T*]. The step of t can be chosen so
small that for any (¢,,x,(#;)) with ¢, e(T,, T*], the corresponding
{t,, x\(1,)), determined by x,(7,; t5, x,{t,)) = x,{¢,), satisfies that

tz é T(),

Yolta, x,(1,)) = /%g(v(’z« x,(15))) 'g(mame‘) )

min g >./20 max g.
)

R(T™ RT*)
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It follows then, by the similar argument as used in Lemma 2.5, that

) 2v 2 .
min {{ 5.+ (ty, xy(t3)), = min v
3—",' 3'—}’ xalzin xaA0h

n<E<rLn

<<S.\-+ _”U)(’l’xz(tx))

2 , 2

<max<{s,+-——(f,, x(1,)),—— max vo. (2.48)
s 3— ¥ 3-—- Y oxatzi, i)
Nt
It can be shown by (2.4) and (2.7) that

2v 2v
S=1{s, — . 2.49
l <b"+3—y> 3—y 24)

where (s, +20/(3 —y)) can be estimated similarly to (2.48), namely

. 2 2 .
min {(SX‘F’—U (a, x;(2)), —— min v}
3— Vi 3 — Y xirin N

XALTES

<<Sx+32 v)(t, X)

2
v> (e, .\'l(a)),3—_; ‘r‘nva'x}v}. (2.50)

2L TEY

< max {(s,\. +
3~y

here (¢, x)e R(T*), t<T*, a<T,.
Then, it turns out that maxg 7« v <max{v ,v"} and ming ., v > vg,
due to (2.49), (2.50), and the fact that

2
L‘) (£, x1(13)) <3——max{v*, vt}

2 <
Vo< | 8, +
Y -y

—7

3~y

Therefore, one obtains

v) (tl,xz(tl))<3 2 max{v-,v*}. (2.51)

vy < <sx +

3—y 3—y

Lemma 2.3 reads that

2 2v s,\.+20/(3—y))
K Rt SN
< T 20/(3—7y)
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at (#,,x,(t,)), where { =v_ /v. Thus, condition 4, with {(2.51) show that

2 2 2
3—“_—;l*0< (r\+§~_~;v) (ty, x5(t,)) <3—_—ymax{v’ R l‘+} (2.52)
and

wo=w(t,, xs(1,)) >\/a-g(v(tl, X)) - g(max{v—,v*})/2 (2.53)

Similarly, we get the s -estimation along x =x (1) for te(7T,, T*]. There-
fore, all of the estimates in Lemma 2.5 hold in R(T*) under the condition
A;. We will conclude this lemma with a uniform estimation about the
discontinuity diminishness next.

Let { =v /v along x = x,(1). Lemma 2.6, condition 4, and the bounds of
v lead to that

2

¢
gl e |
(3—}'){ max{{q . (g}
and henceforth there exists a positive constant A4, such that

-1 dwv, —v)

- > A,.
(t,—1v) dt B

The upper bound for the diminish is obvious and the discussion for
x=x{t) is the same as above.
The main theorem 2.1 follows then from all of the lemmas.

3. PERTURBATED RIEMANN PROBLEM

We consider certain perturbated initial data (1.2) in this section, namely

(u_(x), v_(x)), x<0
(U {x), v (X)), x>0

(u(0, x), (0, x)) = {
or in (r, s)-variables (3.1)

o o (r_(x),s_(x)), x<0
(r(o"\)’5(0"\))_{(r+(.\‘),s+(x)). >0
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The functions u(x), v+{x), rz(x) and s (x) are smooth with

im (u(x) ve(x))=(u¥,v7)

x—0*
or

lim (ro(x), s:(x)=0T,s7)

N0

where (7,57 ) and (r™,s ™) satisfy the condition (2.16). Without loss of
generality, we assume that 0 <v_(x) <l,uz(x)>0.

We will construct the global discontinuous solution for (1.1} (3.1) under
the following restriction on the perturbation in (3.1), expressed as condi-
tion B which plays the same role as condition A for Riemann initial data
in Section 2.

Denote

— (X (X 2
Q' =max { sup (r;(.\')+2; *_(L)> sup <s’+(,\')+21 +('\')>. sup - v+(.\‘)}-

¥ x=0

Condition B. For some positive constant ¢, it holds that

1.

20, 2 — 2
1;. ,‘té i:< ig 1 e y
3_y<( é)3_}_l Q ( +“)3_},‘

Denote {; and {; by {, =v /v, and {J =v"/v, respectively, where

(T =(" >1. Denote w={(1+¢)/(l—¢)
2. Forany (e(l.{, w],

“+ I (3-8 o+
K(C.?’—(u,l>~max{\/20<%vow> %.11 }>0

L
5o w 5o o 1—¢

1 ((F o
< ST (1)) _Eévo - <0,
‘:0“""9) So

>~
[T
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For any (e(1.{; w],

K<g,w 7) max{\/2—a(c )T ,; ! }
(o 1—¢

_ 1
Kli{,——— w) —lw < 0.
< Q(T(l'*'g)

For any (e(l,{J] w],

—1)( E

( " Lo ¢

-1 | GLLRELE T——CT'
1——{;{(\/}7@ +\/C_l >

23 -

5. {fl+e)y<(2a) -
6.




498 HSIAO AND TANG

,[—mf LD
2\;2“?) ]_g

Kl o)=[K (O] ' [ =K pe+ Kx(¢ )(u—K4 Yw] -
Ks(1,¢) =C1K(gv [K(g. — K]

— KK — Ki(85)]
Ko(&y. 82) = KGR ) + Kl ] — Ko ODEKA(E) — Kol 82) ]

Remark 3.1. When ¢ tends to zero, the condition B, holds automati-
cally if r'-(x) =0 and s';(x) =0 and the others become the corresponding
items in condition A. This means that the condition B is a direct
generalization of condition A. Moreover, it can be claimed, by a careful
calculation, that for any fixed number b,

0<b<b(y)

where b(y) is defined in Remark 2.2, there exists a positive constant &(b)
such that all of inequalities in condition B hold for this ¢ if

..
0 Sb
and

osc U (X)) + [P (X)) + |52 (x)] < g (for x <0 or x = 0 respectively),

where ¢, depends on e(b).

Similar to Section 2, by using the initial data on x 20 and x <0 we solve
the corresponding initial value problem for (1.1). Taking the similar discus-
sion as for the case y =1 (see [HT]), one obtains the estimates cited in the
following theorem except the r. (and/or s,-) estimates which are given by
condition Bs through the same procedure as in proving (2.25) and (2.26)
in Lemma 2.5.

THEOREM 3.2.  Under condition Bs, there exists a unique classical solu-
tion (r_(£,x), s_(t.xNeC! and a unique classical solution (r (1, x),
s (t.x)eC"in the region R and R* respectively such that in R S5 <
SESUP, o8 _(X), o <,

2v - A=< 2v ~ A 2v e
;5020 r+g—ele 0] tyopelenen)

In IQ+28: <SESUP, 508 (X)) ry <,

2 — 20 — 2 —
e[ 0] rti—elQ7. Q7). sibi--e[Q'.07]
) 3 ¥ 3 Y
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Where the subscript with the solution (r, s) is omitted, (s, ry ) and (s],r})

are defined by

_ 2y A 712 2\/;

Se = " (Qf)'l BELEN ry =— — (g)Hf;')s‘:’
7 3
2 Yot 2 2 ' "y
~"1=%(Q*>””r ’I=——~”\_/i(Q_*)""":
7 ¥

It is the same as in Section 2 that the discontinuous initial value problem
(1.1}, (3.1) admits a unique discontinuous solution at least on a local
domain R(J) in a class of piecewise smooth functions and this solution
contains only a backward shock x=x,(7) and a forwand shock x = x,(r)
passing through the origin. Moreover, the solution on the left side of
x = x,(t) and on the right side of x = x,(¢) is furnished by (r _(¢, x), s _(z, X))
and (r, (1, x), 5 (1, X)) respectively, and one is required to solve the same
free boundary problem (FBP) on the angular domain R as in Section 2 in
order to construct the globally defined discontinuous solution for (1.1), (3.1)
which contains only two shocks.

LEMMA 3.3, Suppose that the classical solution of (1.1), (2.19), (2.20)
exists in R(T), then along x = x (1) it holds that

. 2
K1(5)<s,+§:>

. v . 2v_
=—K:(g)~<"\-+3 q,>+K3('s)[(3‘)_\+3 }
_) —,J

K¢ 2v
- 4(g)|:(r)\+3_;':|s

—2 /71 +Ge 7 A+ B2 /yAB) - v ) de . —v)
(v_—v) dt

i+ 5012 \/E+2 (\/;'vﬂlﬂ””\/g/i/?)
=2r e = .
A

= r.
A k

X

_[\/;_w(v,)’”*"'”2+\/l-§/"—A7][(lL)”+”“‘32——v”+;"”‘2+\/ﬁé‘/z]A(s )
= _

RN

Ll — e ) AN ) 0 - /3B -
A
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)

where (=v /v, A=v_—v, B=v7—(v } 7, v =v (&, x{O)),r =
ro (6L x(0), s_=s (1 x (1)), etc; and along x = x,(t) it holds that

% 2% 2w,
- —Ka(i)v<s,\+—L—>+Kx(i) [mm—‘*} —K4(<>-[(.v+)\+ : }
¥ 3y 3—y

(v, —v) dt
= 2plt+ 2 \/E'FZ (\/;'U ‘]+WJ__\/EZZ)‘
= L . A . A .,‘X
[V ) 92 e SBiAl e ) R — e R 4 S4B (
- ) A B RN

[~ o) O Al )07 4! *"““2—\/;’AB/2](
+ : s
A

+ /x

where S=v_ /v, A=v, —v, B=v""— (v )77 v,=0v,{6,x,(t)), r.=
r (6L xs(0), 5. =5,(1. x5{(1)), etc.

THeEOREM 3.4. Under condition B, the free boundary problem (1.1),
(2.19). (2.20) admits a global classical solution (r,s)e C' in R with
X {(1)e C? (i=1,2) on which (2.21), (2.22) hold respectively. Furthermore,
this solution possesses the following properties. For any (1, x)e R,

— )

min{s; ., s, } <s<sups_(x), r, <r<r* L*0<Lv<Tmax{Q+, o1,

A<0
(3.2)
in i 2v < N 2v> o)
m min | Sy o, X (o
) 3— X 3y (o, x4
ASTS!
2
<S8, + ! (33)
3—
2v 2
Smaxg mex s Sv ) (& ()
Nalrinxy 3 —Yy 3_0,

LT
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min | min <r,\v+32_l‘”)(/)),-\'z(ﬁ))}

xpfreo Ny 3 —y’
st

2
3—y

<ro+

>(ﬁ, x,(/m}.

where the notation of x{t;t, x), (B, xo( f)) and (a, x\(2)) is defined in the
same way as in Theorem 2.1, r, = — (2 ﬂ/’( y— el ~7 = —(sg—re)/2,
r* is determined by s* —r* = (4\/}'/( y—10 el "7 and ho(s g r g s*, %)

=0 with sg=sup, o5, (x). rg=sup x:;()S«L(-‘")_(4\/?/’("/"‘ N3 =7)/2)

Q+ )11 ;*)\2.

Moreover, for any point (t, x,(1))(1 2 0), it holds that

2v
max max
3—y

v N
¥,
»\|1r;l..\')3—}" *
Bt

(™ —vg)e V< —v<(vT —vy)e (3.5)
and for any point (t, x,(1))(t 2 0), it holds that
(tt—vg)e V<, —e< (vt —uy) e (3.6)

where v =v (6, x,(1)), v, =v  (f,x5(t)), A;(i=1,2,3,4) is a positive con-
stant with A;>A,>0, 4,> A4,>0.

Let us denote the following statement by HY
{H',) Along x = x (1), it holds that

—1 dicr —v)
= {A4,, 4
(r_—r) dt €[ 4s 4y]

2v, 2v —_—
<5+ *
3—y 3—y

<max{Q*, Q" }

and along x = x,(¢) it holds that

-1 dlv, —v1)
(L‘+—L') d’ G[AbAl]

3y R
“'():W(,[))s-\':(ﬁ”>\/%g(l‘([))h\'z(/ﬂ))'g< zjmax{Q', +}>

2v 2 —_—
iq}jgrv\.+§~£;<max{Q+, 0.
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Moreover, it holds in R that vo<v<(3—y)/2-max{Q*, Q }. We prove
the Theorem 3.4 next by the same framework as used in Section 2.

First, 1t can be shown by the same argument as in Lemma 2.5 (with the
only change of (3—1y)/2- Q" and (3—y)/2-Q% in place of v~ and ¢*
respectively) that under condition Bs, the classical solution defined in R(T)
satisfies all of the estimates cited in (3.2)-(3.6) if (H,) and (H%) hold in
R(T).

It is also similar to Section 2 to prove that (H,) and (H%) hold locally
in ¢. In fact, it can be found out that

. 2v
lim <er + *) (1, x5(1))
=0 3 -7

_ KUK ) R — Kyl ) ST T = KGRy ) S ™ — Kyl )R]
( )+) (L.,() )_Kz(‘:(] )KZ(C() )
where
.+ s
RE=r )+, Sty 42
= 3—y 3—yp

200 < lim <,.>‘+i>(/, Xo(1) <z——max{v*, v }.
3 3— ¥

_;v =0

Similarly, it can be obtained that

2v 2v 2
3 fo < lim <s +~wL>(t. .\‘|(t))<~3~—max{v+, v
—

—Y i=0 3—

The other in the discussion for (H,), (H%) being hold locally in 1 is the
same as in Section 2. At last, to show that the solution constructed by
extension reserves (/) and (H5) in each step under condition B,, B;, and
B,. we take the same frame as in Lemma 2.8.
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