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Expurgated Bounds, Bhattacharyya Distance, 
and Rate Distortion Functions* 

JIM K .  OMURA 

System Science Department, University of California, Los Angeles, California 

We examine new low rate error upper bounds for M equally likely code 
words used over discrete input channels. When optimized over the code 
ensemble probability distribution, these bounds coincide with the optimized 
expurgated bounds and the error exponents satisfy rate distortion equations 
for natural Bhattacharyya distances. Proofs for these error bounds do not 
require expurgation of code words, and for certain "modular" channels in- 
cluding all binary input memoryless channels, the bounds extend to con- 
volutional codes. 

1. INTRODUCTION 

Consider a code of blocklength n and rate R ~ ( l /n)  In M for transmission 
over a channel with input  and output  alphabets {0, 1,..., K - - 1 }  and 
{0, 1,..., J - 1}, respectively. Let  code words be represented by x l ,  x~ ,..., XM, 
the channel output  sequence by y, and the channel conditional probabi l i ty  
for blocklength n by p (y  l x). This  is illustrated in Fig. 1. 

x_ 1 

I p(yIx) 

Fro. 1. General discrete channel. 

Gallager (1965) has shown that  there exist codes of blocklength n and rate 
R whose probabil i ty of error, P , ,  is uniformly bounded by  the expurgated 
bound given by  

Pe < exp(--n[--pR + E~(p, Q) - (p/n) In 4]}, p ~ 1, 
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where 

n , y 

Here Q(x) is the probability distribution over the ensemble of independently 
chosen code words. Achievement of the tightest bound minimization with 
respect to p and Q(x) must be performed under the restrictions 

p ~ l ,  

QCx)>0, EQ(x)=I.  
X 

Jelinek (1968) investigated the problem of minimizing the expurgated bound 
for discrete memoryless channels and found quite general sufficient conditions 
under which, for a given p, the optimizing distribution Q(x) satisfies 

Q(x) = lel Q(xi). 
i=1 

This condition is stated in the following theorem due to Jelinek. 

THEOREM. For a given p ~ [l, oo), 

F n ] 

f(p, Q) = exp [ -  7 E.(p, Q)J 

is a convex function of Q(') if and only if the symmetric K × K matrix 

(P(Jl i) p(j  I k)) 1/~ (1) 
j=O 

is nonnegative definite. In that case, 

Ez(p) A max Em(p, Q) 
0 

is given by 

d--1 

E+(p) ~- --p In 1~ Q*(i)Q*(k) [ ~  (p(j  l i) p(j  l k))I/'~]I/°I, 
+tic 
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where 
n 

Q*(x) = 17 Q*(x,) 
/=1  

and Q*(i) is any distribution over inputs {0, 1,..., K - -  1} that satisfies 

• j=0 ( P ( j l i ) p ( j l  

J--1 

. ~ ,~  Q*(i)Q*(k) [~_~ 1 (p ( j l i )p ( j l k ) ) l / 2 ]  1/0 

for all k ~ {0, 1,..., K --  1}, with equality whenever Q*(k) > O. 

Jelinek also derived a necessary and sufficient condition for the matrix given 
in (1) to be nonnegative definite for all p /> 1. He then examined a class of 
equidistant channels that includes all binary input channels and showed 
that for this class the optimal expurgated exponent is attained by the uniform 
distribution over the inputs. For this case he obtained closed form expressions 
for the expurgated error exponents. 

In this paper we derive low rate error upper hounds that do not require 
expurgation of code words from a code and for a certain class of channels 
which includes all memoryless binary input channels they extend to con- 
volutional codes. When minimized with respect to the code ensemble 
probability distribution, these bounds are the same as the optimized 
expurgated bounds. At first, we will treat general discrete input channels. 
For extensions to convolutional codes, we restrict ourselves to memoryless 
modular channels. 

This paper is partly tutorial in that we explore how the natural 
Bhattacharyya distance associated with a channel is related to our upper 
bounds and in some cases to lower bounds of the error probability. Gallager 
(1965), Shannon, Gallager, and Berlekamp (1967), Berlekamp (1969), and 
Kailath (1967) have discussed the Bhattacharyya distance and its relation 
to error bounds. We present an interpretation from a rate distortion theory 
viewpoint and show that our error exponent in general satisfies a lower bound 
to the rate distortion function which is defined by the code ensemble prob- 
ability distribution and the Bhattacharyya distance. The code distribution 
that minimizes our error bound (optimized expurgated bound) satisfies some 
rate distortion function equation exactly and the optimum probability 
distribution yields an upper bound to the natural rate distortion function 
for each value of distortion. 
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2. ERROR BOUNDS AND BHATTACHARYYA DISTANCE 

We now present the error upper  bound for a given code x l ,  x~ ,..., xM • 
Following the notation associated with the general discrete channel of 
Fig. 1, we define the natural Bhattacharyya distance between code words x 
and x '  as 

d(x, x ' )  = - -  1 In ~ (p(y  l x ) p ( y  Ix ' ) )  ~,~ (2) 
Y 

= d(x', x). 

Throughout  this paper, we assume that d(x, x ' )  < ~ for all x, x '  ~ A n, where 
A = {0, 1,..., K - -  1}. This  means that the zero-error capacity defined by 
Shannon (1956) is equal to zero. Letting Y~ = {y : p (y  j x~) > p(y  ] xm,) 
all m'  ~: m} and Ym e be its complement, the probability of error when x~ 
is the transmitted code word is bounded by 

Pe,m : ~ p(ylx.~)  
y~ Ym e 

= Z Z p ( y l x ~ )  
m ' # ~  y ~  Y~n" 

z z ,/yJxm)[P/Yfx"')]l" 
~ , ~  y~r~, p(y ] x~) 

~ ~ (p(y J x,~)p(y I x,,,,)) ~/z 
qT~," ~fft, y 

: E e-nd(Xm'Xm') 
fP," @-'m, 

For any s ~ [ - -  l, 0], we have Holder 's  inequality 

p -s  dna(x,~.xm,) [ ,,,,~] ~ ~ - (3) 
qTbP @Z/?, 

for m = 1, 2,..., M. 
We now consider an ensemble of codes where each code word is chosen 

independently with probability distribution {Q(x) : x ~ A~}. T o  derive the 
expurgated bound, Gallager (1965) averaged (3) with respect to all M code 
words to obtain 

P -~ M f . ( s ,  [ ..~] ~ Q), (4) 
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f(s, 9) = E ~ 9(x') 9(x) esna(x'x')" 
X X 

We take a slightly different approach by averaging [Pe,m] -~ over the ensemble 
of the ruth code word only to get 

Now define 

Then  

P[e .~] -*~  E ZQ(x) e~n*( . . . .  '~" 

7n(s' Q ) =  !tmaXx'eX ~Q(x) eSna(x 'x ' ) l l /n 'x  
O(x') >o 

EP,.~] -sin ~ ME~(s, Q)] n 
~ .  en[g+ln v~(s, 0)]. 

Hence, given any set of M - -  1 code words {xm,, m' va m}, there exists a 
code word x~ ~ -/1 s such that 

Pe,m ~ e-nO~(O), (5) 

where 

D~(Q) = (1/s)[R + In 7,~(s, Q)], 

sE [ - -1 ,0] .  

We next prove our upper  bound on the error probability 

P~ = ~ r  P~,~ 

without expurgation of code words from a code. 

THEOREM. There exists a code with probability of error satisfying the bound 

P~ ~< 2e-nD~ (°). 

Proof. We consider a sequence of M codes where each code is the same 
as the previous code except for one code word. In  particular, let us begin 
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with any code in our ensemble B 0 = {xl,  x2 .... , XM} and consider a sequence 
of M codes B 1 , B ,  ,..., B M given by 

B 1 = {Xl 1, X21 .. . . .  XM 1} 

B 2 = {Xl 2, X22,..., XM 2} 

B k = {xl k, X27:,..., XM k} 

where 

B M = {xl M, x2M,..., XMM}, 

{xm k < m, 
X m  k 

xm m k ~ m. 

Here, only one code word, x J  ~, is changed in converting B1~-1 to B k . The  
error probability of the kth code word in B~ is bounded by 

P~,k(Bk) ~ ~ e-~a(:~l°,"~ ",. 
k" ~lc 

Given B~_I, the arguments leading to (5) demonstrated that there exists 
an x ~  A n such that 

Pe.~(Bk) ~ e -~'~(°).  (6) 

Here x~ k is chosen to satisfy this bound. We do this for each selection of 
xl 1, x22,..., XM M and form the code sequence in this manner. For m < k, 
define 

g~,~(Bk) = ~ e - 'a(x2 ' '~ ' )  
m ' ~ : m  

which is the upper bound to the error probability of the ruth code word in 
the code B k . Except for the kth code word, xk ~, in B~, all the code words in 
B k are the same as those in Bk_ 1 so that 

gm(Bk) = ~_~ e-~a(x~-l,x~ -5 _}_ e-~a(,,,,~,x~ ~) 
qn " ~:m 
,r;cJ#k 

<~ g~n(Bk-1) + e -Èa(x'2~'*2) 

le 

<~g~(Bm) + ~ e-~(~,~',x~*). 
~=m+l 
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We are primarily interested in the last code in the sequence, BM, so let 
k = M, 

g~(Bv) <~ g~(B,n) 4- 
M 

e-nd(xmZ,xlz). 
l=m+l  

M (6) givesgm(B,,) ~< e -nD"(°) so that gm(Bm) ~ e -nD~°) 4- ~--~z=m+l e-na(xmZ'xzZ). 
Consider 

1 ~ 1 M--1 M 
- y~ Y~ ~-~,~o',~,. M ~=1 gm(BM) ~ e-nO'#D) 4- _~ m = l  l=m+l 

Interchanging orders of summation,  

1 M--1 M 

m=l l=m+l 

l M Z-1 

e-nd(xmZ'x~Z) < M 1~=2 E e-nd(Xm~'X'Z) 
= m=l 

1 M 

= ~ &(B~) 
/=2 

~.~ e-nD,, (0). 

Hence for the code BM = {Xl 1, x22,..., XMM}, we have 

1 M 
P~ = -M ~ ~ 1  P~ '~ 

1 M 
~ l g ~ ( B M )  

2e -n"~(°). | 

Although this theorem does not require expurgation of code words f rom a 
code for an arbitrary probability distribution, this bound is generally weaker 
than the well-known expurgated bound. To  see this, recall f rom (4) that if we 
average [Pe.m] -~ over all code words, we have 

p -8 Mf~(s, [~,d  < 9), 
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while averaging only over the ruth code word, we have from (5) 

[P,,~]-~'~ ~ M[y~(s, Q)]n, 

where in general for any s ~ [-- 1, 0], 

fn(s, Q) --- ~ ~ Q(x') Q(x) e "Èa(~,x'' 
x t x 

< x'~a"max ~xQ(X) esna(x,~'~ 
OCx') > 0 

= Ey~(s, 9 ) ]  ~, 

We have equality, however, for any optimizing probability distribution. 

THEOaEM. For fixed s ~ [--1, 0], a probability distribution {Qs*(x ) : x ~ A n) 
that minimizes f~(s, Q) also minimizes y,(s, Q) and satisfies 

rn~nf,~Cs, Q) = f~Cs, Q+*) = [y,Cs, Q~*)]% 

Necessary conditions for (Q~*(x) : x ~ A"} are 

*X C ~< ~ Q~ ( ) e ~"'~X,x'~ (7) 
g 

for some constant C with equality for all x' ~ A n such that Q~*(x') > 0. 

Proof. Let 2C be a lagrange multiplier for the constraint ~x Q(x) = 1, 
and let 

J(Q) = f~(s, Q) - 2 c  Z Q(x). 
x 

The probability distribution that minimizes f~(s, Q) must satisfy 

~J(Q) [ = 2 E Q * ( x l e * n a ( x , x ~ _ 2 C > O  
ag(x') o=o,* 

with equality t:or x' such that Q**(x') > O. We now have for any distribution 
{O(x) : x ~ A-} ,  

f.(s, Q~*) ~< f.(s, Q) ~< [rn(s, Q)]". 



366 JIM K. OMURA 

But 
[y+(s,Q+*)] + = max ~Q+*(x) e +na(~,x') 

x'EA r~ 
0s*tX)'>0 x 

----C 

= f . C s ,  Qs*). 
Hence, Q+* also minimizes y+(s, Q). | 

In general, there may be several local minima of f(s,  Q) with respect to 
the distribution {Q(x) : x e An}. Each of these would satisfy the necessary 
conditions given above and yield f(s,Q*)= [y~(s,Q*)] ~. Jelinek (1968) 
pointed out that when the K ~ × K ~ matrix I ena{x'x') I is nonnegative definite, 
then the minimizing distribution is unique and the above conditions for Q*(x) 
are both necessary and sufficient. He examined this problem in more detail 
for memoryless channels. 

Suppose we have two probability distributions that satisfy the necessary 
conditions of (7). In particular, let 

Q~l(x) satisfy 

X~ 0 1/X~ eSna(x,x ") f(s,  Qsl) .= [y(s, Osi)] n ~./ . .  ~ s t  , 
x 

with equality when Q,~(x') > 0, and Q,2(x) satisfy 

2 X f(s,  Q+~) = [y(s, Q+2)],+ ~ Z O, ( ) e+na(x'x') 

with equality when Q+m(x') > 0. 
Defining B 1 = {x : Qsl(x) > 0} and B z = {x : Qs~(x) > 0}, we have 

LEMMA. / f  a 1 C 3 2 ,  then f ( s ,  Qs 1) ~ f ( s ,  Qs2). 

Proof. 

f(s,  Q.,+-) E* Q,I(x) e+'+a(x"e) 
f(s,  Qs +) < fCs, Q++) 

Averaging this with respect to distribution Q,Z(x), we have 

$ 1 f(s,  Q81) x ~ to 2r~'~ f (  ' 9+, ) 
- , + - ,  f - - g ,  

f($, Q?) 
~< Xx O)(x)  Xx' Os2(x') eS'~a<x'x') 

f($, Q?) 
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But when Q,l(x) > O, x e B 1 C B~ and 

)-~ 9,2(X ') e sna{x,x9 = f (s ,  9s2). 
X" 

Hence 

f(s, G 1) ~ 5~ Gl(x) 
f (s, 9_,, 2) "7 

=1.  | 

We conclude this section by noting that all the results in this section apply 
to discrete input continuous output channels when defining the Bhattacharyya 
distance for code words x, x' ~ d n as 

1 In f (P(Yl x)p(y I x')) ~/= dy, a(x, x') = --  

where p(y ] x) is the conditional probability density of the channel output 
given the input vector x ~ An. A common example is the additive gaussian 
noise channel with discrete amplitude modulated input pulses. 

3. RATE DISTORTION FUNCTIONS 

We next present some relationships between our error exponent D~(Q) 
and rate distortion functions. For any code ensemble probability distribution 
{Q(x) : x E An}, define B(~) = {x : Q(x) > 0}. For this given probability 
distribution, choose B(Q) as our source and representation alphabet and 
d(x, x') given by (2) as a distortion measure between x, x ' e  B(Q). This 
source, (B(~),  ~), and Bhattacharyya distance yield a natural rate distortion 
function originally defined by Shannon (1960), 

Rn(D; Q) = In min ~,,,, ~,, O(x)Q(x'[ x) In [[Q(X'p(x['X)) .] 

where 

p(x')  = y~ Q(x' I x) Q(x) 
x 

643]24]4-5 
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and the minimization is over all conditional probabilities that satisfy the 
constraint 

Z Q(x' [ x) Q(x) d(x, x') <~ D 
X r X 

A well-known (Gallager (1968), Berger (1971)) convenient form for deriving 
bounds to R~(D; Q) is 

R.(D; Q) = srn<a~ lsD + 1 x n ~ Q ( ) I n A ( x )  I, 
A ~ A  s 

where 

= 'la; a(x) ~> 0, EQ(x) Z(x) e,.,(x,x., ~< 1 Vx' E B(Q)I. As 
X 

Let us now reexamine our upper bound to the error probability. Recall 
that there exists a code of bloeklength n and rate R satisfying the bound 

P~ ~< 2e -"°"(°), (8) 

THEOREM. 

Proof. 

where 

Letting 

we get 

D.(Q) : (1/s)[R + In ~.(s, Q)], 

yn(s,Q) = t max ~Q(x) eS"a(x,x"llm, 
x r ~ A ~  X 

Otx')>O 

s ~  [ - 1 ,  0]. 

R~(D; Q) ~ maxs< 0 {sD -- In 7n(s, Q)} = RL(D; Q). 

Here we have 

[y.(s,Q)] n = max ~Q(x)  e*na(x'x'k 
x%B(O) x 

a(x) = 1/b,.(s, Q)]", 

X~ Q(x) eS"+(x, ='' 
y~ Q(x) ~(x) eS.~cx,~') = [r.(s, Q)]" 

X 

< 1 ,  

and hence A ~ A s . This choice of A E As gives the lower bound. | 
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T h i s  b o u n d  applies to source  and  representat ion alphabets  restricted to 
B(Q)  C A ~. I n  most  cases of interest ,  we will have B(Q)  ~ An.  T h e  lower 

b o u n d  to the rate dis tor t ion func t ion  can be expressed in parametr ic  form 
in  te rms of s ~ [ - -0% 0], 1 

RL(Ds , Q) = sD 8 - -  In 7.(s, Q), 

3 8 -~ (1/7~(s, Q))(O/~s) yn(s, Q). 

For  parameter  values s ~ [ - -  1, 0], we see that  our  error exponent  Dn(Q) in  (8) 

satisfies 

R ~ RL(Dn ;Q) .  (9) 

Hence  the error exponent  satisfies a lower b o u n d  to the natura l  rate dis tor t ion 
func t ion  for low rates cor responding  to parameter  values s ~ [ - -  1, 0]. Th i s  
is i l lustrated in  Fig. 2 where for s = - -1  we define R *  -~ RL(D_I ,  Q) and  

RLID; Q) = M A X  { sD - I n ')'n($. Q) } 
= < 0  

D*  DMA x 

R* 

D 
0 

Fie. 2. Lower bound rate distortion function. 

D*  = D_ 1 . For  R ~ R*, D,,(Q) satisfies (9) where the exponent  is already 
maximized  with some s E [ - -1 ,  0]. 

We  next  examine how an  o p t i m u m  probabi l i ty  d is t r ibut ion  is related to 
our  discussion above. Recall that  for each s ~ [ - -  1, 0], a probabi l i ty  distri-  

1 ~%(s, Q) is defined for s ~ [-- 0% 0]. It is an upper bound to error probabilities only 
for s ~ [-- 1, 0]. 
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bution that minimizes the error bound satisfies the necessary condition (7), 

s • n (7) [ y , ( , Q ,  )1 ~ Y, Qs*(X) e +"a(*'*'' 
X 

with equality when Qs*(x') > 0. Since an optimum distribution {Qs*(x) : 
x ~ A ~} depends on s, in the following discussion we consider source and 
representation alphabet given by A n and let {Q(x) : x  ~ .//n} be any source 
probability distribution. With the Bhattacharyya distance, we then have the 
rate distortion function Rn(D; Q). Note that this rate distortion function 
differs from the previous one since in general B(Q)C An. 

THEOREM. 

Rn(O; Q) <~ max {sD -- In yn(S, Q,,,*)}, 
s < 0  

where for each s ~ [-- 0% 0], {Qs*(x) : x 6 A ~} satisfies (7). 

Proof. Consider 

y~ Q(x) in ~,(x) + ln[yn(S, Q+*)]- = 
X 

~] Q(x) ln{A(x)[y,~(s, Q+*)] n} 
X 

~ Q(x){,h(x)[yn(s, Os*)] n - -  1} 
X 

= y ,  Q ( x )  a ( x l [ r . ( , ,  Q+*)] + - 1 
X 

~< Z Q(x) a(x) Z Q+*(x') e *"a{x',X' _ 1 
X x 

-~ ~ Qs*(x') ~ Q(x) A(x) e +na(x,x'' - 1 
X r X 

< ~,Qs*(x')  - 1 
X" 

~---0. 

Here we used the inequalities 

l n x < ~ x - -  1, 

[yn(S, Q**)]- ~ Q+*(x') e'++++ '+<'+''x' 
X s 

VX E A n, 
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and 

~Q(x)A(x)e ~na(X,x') ~ 1 Yx' eAn. 
X 

Hence 

-ln~ Q(x) In a(x) ~ - l n  r.(s, Q**) 

for any AeAs .  II 

This theorem applies to any distribution that satisfies the necessary 
condition of (7). Each such probability distribution yields a local minimum 
of fn(s,Q) and the condition f~(s, Qs*)= [7~(s, Qs*)] n. We now have a 
useful corollary which helps us in evaluating error exponents that may or 
may not be maximized. 

COROLLARY. 

where D satisfies 

There exists a code of blocklength n and rate R such that 

P, ~ 2e -no, 

R : R~(D), 

and R~(D) is any rate distortion function with source and representation alphabet 
A s, Bhattacharyya distortion d(x, x'), and D corresponding to parameter 
values s ~ [--1, 0]. In particular, D satisfies 

R : max Rn(O; Q) 
O 

where the maximization is over all source probability distributions on A% 

Proof. This follows from the previous theorem and the fact that if (D1, Q1) 
and (32, Q2) satisfy 

and at D 1 

then 

R = R~(D~ ;Q~) = R.(D~ ; Q2) 

Rn(D1 ;Q1) ~ Rn(D1 ;Qe), 

DI >/ D~" I 
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and 

where 

We now present a few examples of memoryless channels where 

n 

p(y  [ x) = 1-I P(Yk [ xk) 
k=l 

d(x, x ' )  = _1 d(xk, xk ), 
//" k=l  

d(x~ , xk') = - - ln  ~ (p(y~ I xk) p(y~ I x~t)) 1/2. 
Yk 

For this case, we restrict ourselves to choosing code word components 
independently, i.e., we assume 

Q(x) = ~ Q(x~). 
k=l 

This  is not necessary for any opt imum distribution (see Jelinek (1968)) but 
generally simplifies our evaluation of Dn(Q) and the corresponding Rn(D; Q). 

For the above assumptions, we now seek rate distortion functions for 
sources with alphabet A = {0, 1 .... , K - -  1} and distortion 

J--1 
d(i, k) = --ln ~ (p(j  ] i) p( j  l k)) 1/2 

j=0 

for each i, k e A. 

EXAMPLE. Binary Input  Channels. 
When A = {0, 1}, we have 

where 

i ~=k, 

J-1  

= - - ln  ~ (p( j]O)p(j]  1)) 1/2. 

For the choice Q(0) = Q(1) = 1/2, we get the well-known rate distortion 
function (Berger (1971)) 

R,~(D; Q) = R(D) = In 2 - -  ~(D/o  O, 
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where 

~ ( x )  = - -x  In x - -  (1 - -  x) ln(1 - -  x). 

For all binary input memoryless channels, it turns out that Qs*(x) = I/2" is 
the optimum distribution. Hence, the tightest error exponent for such 
channels is D where D satisfies 

R = In 2 - -  ,g'(D/o~) 

for R ~ l n 2 - - ~ ( 1 / ( 1  + e ) ) .  This is also the optimum expurgated 
exponent. 

EXAMPLE. Equidistant Channels. 
Jelinek (1968) defined equidistant channels as channels where 

a(i, k) = l °'  
i k, 

% i @ k .  

For this channel, we also have the optimum probability distribution given 
by the uniform distribution Qff(x) = I / K  ~. The rate distortion function is 

R , ( D ;  Q*) = R(D)  = In K --  ~ ( D / o  0 - -  (D/o 0 ln(K - -  1). 

Again the tightest error exponent satisfies 

R = In K --  Wf(D/~) - -  (D/o~) ln(K - -  1) 

for low rates. 

EXAMPLE. Balanced Channel. 
We define a balanced channel as a channel with balanced Bhattacharyya 

distortion measure; i.e., d(i, k) satisfies 

{d(i, k) : k E A}  ~ {d(i, k) : i ~ A}  

= {do, a l ,  as ,..., dK_I) 

for all i, k E A. For such channels, the uniform distribution Qs*(x) = 1 / K  n 
gives a local minimum off(s ,  Q). For  this choice, our error exponent D,(Qs* ) 
coincides with the expurgated exponent for this distribution. Here 

1 /2--1 

r(s,Q*) = ~  Z e~ 
k=0 
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and the parametric equations for the rate distortion function are 

R(D~)  = sDs - -  In e 8a~ 

D.  --  Z~-~'-~ d S ~  
~'~K--1 esdk " 

k=0 

Our error  exponent satisfies R -= R ( D )  for rates corresponding to parameters  
s ~ [ - -  1, 0]. In  this example, we only know that the resulting exponent is a 
lower bound to the largest error exponent. 

4. MODULAR CHANNELS AND CONVOLUTIONAL CODES 

Berger and Yu (1972) recently defined modular  distortion measures for 
context-dependent  fidelity criteria. For  a class of channels that  includes all 
binary input  memoryless channels, the natural Bhattacharyya distances are 
modular  and we present a simple proof  of our error bound for linear codes 
t ransmit ted over these channels. For  this class of modular  channels where 
the channel is also memoryless, the error bounds extend to convolutional 
codes. 

We now assume that the channel input  letters A = {0, 1 . . . . .  q - -  1} 2 form 
a finite field with addition @ and multiplication ". A s then forms a field of 
sequences of n letters from A. When we restrict ourselves to the binary input  
channel, @ is the usual modulo - - 2  addition. Following Berger and Yu, we 
now define a mocular channel. 

DEFINITION. A channel is modular  if the Bhattacharyya distance between 
any two elements x, x '  ~ A ~ is a function only of x @ x '  ~ A n. Tha t  is 

d(x,  x')  ---- - -  1 In y '  ( p ( y  I x ) p ( y  Ix') )  ~/2 
n y 

= d(x @ x ' )  Vx, x '  e A ~. 

We see that the set {d(x, x ' )  = d(x @ x ' )  : x ~ A n} is the same for all x '  ~ A n, 
and hence modular  channels are also balanced channels. This  means that  
the distr ibution Q*(x) = 1/q ~ yields a local min imum o f f , ( s ,  Q)  and that 

2 In this section, we use K = q which is more common when discussing linear codes. 
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f~(s, Q*) = [y,~(s, Q.)]n. Hence, D~(Q*) is also the expurgated exponent for 
this probability distribution. 

Throughout  the rest of this section, we assume that the channel under 
consideration is modular. Suppose we pick p elements b l ,  b~ ,..., b~ ~ d ~ 
and denote c~ as the set of all linear combinations of these p basic elements. 
ga is a linear code with M = e nR ~ q~) code words. We now have 

LEMMA. ~-~x'e~ x'~x esnalx'x') is independent of x ~ ~.  

Proof. By the linearity of qY, we have 

{d(x, x') = d(x ® x') : x ~ ~ }  = {d(x, x") = d(x ® x") : x ~ ~f} 

for any x' ,  x " e  ~ .  Eliminating d(x', x') = d(x", x") = 0 from both sides 
does not change the equality of the two sets. | 

Next consider an ensemble of linear codes of the above form where the 
basis elements are independently chosen according to the probability 
distribution Q * ( b ) =  1/q ~. This results in code words being pairwise 
independent and each nonzero code word having marginal probability 
distribution Q*(x) = 1/q'L 

THEOREM. For modular channels there exist linear codes that satisfy 

P~ ~ e -nD'~(O*), 

where Q*(x) = l/q n. 

Proof. Let c~ be any linear code. Then  recall that for the ruth code word 
being transmitted, we have from (3) 

p -s  esna(x~,x~,), [ ~,~] ~< E s~[ - -1 ,0 ] .  

By our lemma, the upper bound is independent of x~ ~ cg so 

M 
p - s  eSnd(xt, xm,) 

for all m = 1, 2,..., M = e nR = q~. Hence, 

M 

m P -6 eSna(xl,xm ,) m a x [  e ,d  ~ T, 
m'=2  
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Here we take xl ~ O as the zero code word. Averaging this over the ensemble 
of codes gives 

M 

max P ~ ] - ~  ~ y, m [ , m,=2~x-'~ esnd(xl'x) 

M[7~(s, Q*)] ~ 

esnDn (0.). 

This means there exists a linear code where 

o r  

for m ---- 1, 2,..., M. Thus 

max [P, ~]-~ ~ e sng.(°*)  

Pe,m ~ e-nD~(°*) 

Pe ~ e-~D~(O*). | 

This proof does not require expurgation of code words in a code or 
sequential selection of each code word as in our earlier proof in Section 2. 
It  only requires ensemble pairwise independence of code words in a code. 
Thus we can use this bound for convolutional codes just as Viterbi and 
Odenwalder (1969) did for symmetric binary input memoryless channels. 
Following their approach, we now derive error bounds for convolutional 
codes used over a memoryless modular channel at low rates. 

Let us assume a terminated L-branch tree generated by a v-stage con- 
volutional encoder whose input consists o fL  q-ary data symbols followed by 
v - -  1 zeros. Assuming the maximum likelihood Viterbi decoding algorithm 
(Viterbi (1967), Forney (1967), Omura (1969), Viterbi (1971)), we consider 
the probability of error, P~,,~, when the ruth sequence of L data symbols is 
transmitted. Letting P~(j) be the probability of eliminating the correct 
path at the j th  step in the Viterbi algorithm, we get the union bound, 

L 

P~.~ ~ ~ P.,(j). (10) 
j = l  

Eliminating the correct path at the j th step occurs if and only if some path 
that diverged from the correct path earlier and remerged again for the 
first time at the ith step has greater likelihood during the diverged interval. 
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Defining Am (j,  l) as the error probability caused by some path that diverged 
from the correct path v + l branches earlier and remerged for the first time 
after at step j, we have the union bound 

J -1  

Pro(j) <~ ~ Am (J, 1). (11) 
/=0 

We now show that there exists a convolutional code for which Am (j,  l) is 
upper bounded by our error bound for all choices of the transmitted sequence. 

Assume a linear convolutional code where for each q-ary data input to the 
encoder there are b q-ary output symbols so that each branch of the tree of 
our code has b q-ary symbols. Hence, for the v + l branches considered 
above, we have 

n~ = (v + l)b 

channel input symbols. Here we assume that there are q channel input 
alphabet symbols. Let xm represent the n~ channel symbols corresponding 
to the correct path and Xm' the channel symbols that correspond to a path 
that diverged only during the interval of v + l branches. Following our 
earlier arguments leading to (3), we have 

[Am (J'/)]-~ ~ Z esnea(x~'x"'), 
frb' ~m 

se[-1,O]. 

Since our channel is memoryless and modular, we have 

d(x~,  xm') = d(xm @ xm') 

nZ 

1 Z ® xmc). 
n l  k = l  

The set {Xm @ x~, : m' va m} is the set of all possible difference sequences 
between the transmitted sequence and those sequences that diverge over the 
v + l branches. Since the convolutional encoder is linear, this set is the set 
of all possible error sequences for paths that diverge over v + l branches 
and it is independent of the particular sequence xra. Assuming that 
{x°m, : m' :~ 1} correspond to those paths that diverge from the all-zero path 
for v -{- l branches, we have 

max [A (j,/)]-* ~ ~ e ~na'°,x°') (12) 
xm m ' = l  
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where xl  ° = 0 is assumed. There are at most qt distinct paths that diverge 
from the correct path for v + I branches. We now consider an ensemble of 
time-varying convolutional encoders where the difference sequence x m,° has 
probability distribution 

Q * ( x ° , )  = 1/q",. 

Averaging (12) over this ensemble, we get 

moxE (;,')l ' . < x .  r x, 

1 nl 

= m,~l, Zx ~ x  /c=ll~ eSa(°'xk) 

_ esd(O,lc) 

k=O q 

eSn~ D(~). 

We know there exists a convolutional encoder such that for any transmitted 
data sequence we have 

A~ (j, l) ~ e -~D(~), 

where 

l)~ In q + in -q e'a(°, k) . 

Note that D(l) is the expurgated exponent for p = --1/s  and Q = Q* at 
rate R~ = (l/(v + l)b) In q. Recalling (10) and (11), we have 

Pe ~< max Pe,m 
m 

L J--1 

j = l  5=0 

Letting 

s k=o q ! 
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we have 

(v + l)bD(1) = l(lnq/s) -~ (v + l)bE~(s) 

= l{(lnq/s) ~- b E~(s)} + vbE~(s). 

For the terminated tree code where L >~ v, the actual rate is given by 
R ~ In q/b nats per channel symbol. Hence, as long as 

ln q/s + b E~(s) > O, 

or equivalently, 
E~(s) -[- (I Is) R > O, 

the error probability satisfies 

L J-1 
Re ~< ~ ~ e -l{(ln q/s)+b~(s)I--,,bE~(s) 

j=l  l=O 

~< ( L / ( 1  - -  e-(E~(~)+(1/s)R)))  e -"bE~(~). 

E~(s) is a monotonically decreasing function of s ~ [ - -  1, 0]. For E > O, choose 
s to satisfy 

= E~(s) + (1/s)R, 

and let 

Then  

E~(R) = E~(s). 

Pe ~ (L/(1 - -  e-*)) e -'bedR), 

where 

and 

R = - - s [ E ~ ( , )  - -  ~] 

zq--1 1 
R <Ro = --ln ( Z  

/c=0 q 

For binary input memoryless channels, this gives the same error exponent 
obtained by Viterbi and Odenwalder (1969). 

We conclude this section with several examples of memoryless modular 
channels. 
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Binary Input Channels 

For binary input channels, we have 

d(i, k) = ~l °' i k, 
% i @ k, 

where 

J--1 
o~ = - - ln  ~ (P(jIO)p(j[ 1)) 1/2. 

j=O 

For continuous output channels, a is simply 

= - - In  f (p(y [ O)p(y ] 1)) 1/e dy. 

Clearly, over the binary field we have 

d(i, k) = ~(i @ k), 

and all binary input channels are modular and the exponent is 

Ex(s) = (l /s) ln((l  -[- eS~)/2). 

Equidistant Channels 

For equidistant channels we have 

iO i =  k, d(i, k) = {~ i =# k, 

Letting 

we have 

i, k e A  = { 0 , 1  ..... q - -  1}. 

~0 i Q k  = 0 ,  
8(i@k) = tl i @ k  ~O,  

d(i, h) = ~ ( i  ® k) 

which is modular. The  error exponent is 

E~(s) = (I/s) ln[(I -~- (q - -  1) e*~)lq]. 

q orthogonal or simplex pulses over a white gaussian noise channel is a 
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typical example of an equidistant channel. For orthogonal pulses of energy 
E and a white gaussian noise channel of spectral density No~2 , we have 

= E / 2 N  o . 

The fading channels examined by Kennedy (1969) are also equidistant and 
hence modular. 

Uniform Phase Modulation 

Suppose q inputs to a white gaussian noise channel are represented by 
phase-modulated pulses where the phase angles are equally spaced on a unit 
circle. Let  the pulses be sk(t), k = 0, 1,..., q - -  1. Then  

d(i, h) = II si - -  sk [L2/4No 

1 l"  
- -  4 N  ° J I sdt ) - -  sl~(t)l 2 dr. 

Since f] s i -  sk [I 2 depends only on i @ k, this channel is also modular. In  
particular, let 

s~(t) = %/E- cos k(2rrlq) $1(t) + ~/E- sin k(2rrlq) ¢2(t), 

where ¢1(t) and ¢2(t) are orthonormal carriers. Then  

N s~ - -  s~ [I 2 = 2E(1 - -  eos[(k @ i)(27rlq)]) 

and 

,q-1 1 1~(2,~/q)1) 1 [ ~  s(EI2No)[1-eos 
E~(s) = 7 in ,~o~e 

5.  DISCUSSION 

For low rates we have shown a close relationship between expurgated 
bounds and the natural Bhattacharyya distances defined by the channel. 
These upper bounds were then extended to convolutional codes for the class 
of modular channels. 

The  Bhattacharyya distance is a special case of a more general distance 
measure between code words. For the pair-wise reversible channels, this 
general distance measure coincides with the Bhattacharyya distance which 
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becomes the Hamming  distance measure for the binary symmetric  channel. 
We have recently shown (Omura (1973)) that for memoryless channels, this 
general distance measure is related to upper  and lower bounds on the low 
rate error probabil i ty  in the same way as with Hamming  distance for binary 
block codes used over the binary symmetric channel. We then proved a 
general Gilbert  bound for block codes using this  distance measure. We hope 
that the relationships between these distances, error bounds at low rates, and 
rate distortion functions will give new insights into the performance of codes 
for memoryless channels. We  conjecture that for the pair-wise reversible 
memoryless channel the expurgated bounds discussed in this paper  are 
exponentially tight. 
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