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a b s t r a c t

The Casimir force arises when a quantum field is confined between
objects that apply boundary conditions to it. In a recent paper
we used the two-spinor calculus to derive boundary conditions
applicable to fields with arbitrary spin in the presence of perfectly
reflecting surfaces. Here we use these general boundary conditions
to investigate the Casimir force between two parallel perfectly
reflecting plates for fields up to spin-2. We use the two-spinor
calculus formalism to present a unified calculation of well-known
results for spin-1/2 (Dirac) and spin-1 (Maxwell) fields. We then
use our unified framework to derive new results for the spin-3/2
and spin-2 fields, which turn out to be the same as those for spin-
1/2 and spin-1. This is part of a broader conclusion that there are
only two different Casimir forces for perfectly reflecting plates—
one associated with fermions and the other with bosons.

© 2015 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY license
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1. Introduction

In 1948 Casimir and Polder published a long, technically complex paper about the influence of re-
tardation on the van derWaals force [1]. The stated goal of their workwas to account for discrepancies
between experiments and theory concerning colloidal suspensions of large particles [2]. However, the
work took on a whole new significance when, after discussing the results with Bohr, Casimir was in-
spired to try and re-explain his and Polder’s results using the relatively new idea that the quantised
electromagnetic field undergoes vacuum fluctuations. A short time later, Casimir published his now-
famous paper [3] on the force of attraction between two infinite perfectly conducting parallel plates,
whose presencemodifies the quantised electromagnetic vacuum field. This force came to be known as
the Casimir force. The calculation in [3] reproduces the results of the much more involved calculation
in [1], but is remarkable in its simplicity and elegance, while also providing one of the very fewmacro-
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scopic manifestations of quantum field theory. The Casimir force is extremely weak so was initially
nothing more than a theoretical curiosity, but as experimental methods improved the effect became
measurable, and this led to rapidly increasing attention from the 1970s onwards. Since then there
has been a profusion of extensions of Casimir’s original work, which look into imperfectly conducting
plates and different physical geometries [4–8]. There have also been a number of experimental con-
firmations of the effect [9–11]. The existence of the Casimir effect is often cited in standard quantum
field theory textbooks as the primary justification for the reality of vacuum fluctuations, though such
interpretations carry some controversy [12].

A fluctuating vacuum is a general feature of quantum fields, of which the free Maxwell field con-
sidered in [1–12] is but one example. Fermionic fields such as that describing the electron, also un-
dergo vacuum fluctuations, consequently one expects to find Casimir effects associated with such
fields whenever they are confined in some way. Such effects were first investigated in the context
of nuclear physics, within the so-called ‘‘MIT bag model’’ of the nucleon [13]. In the bag-model one
envisages the nucleon as a collection of fermionic fields describing confined quarks. These quarks are
subject to a boundary condition at the surface of the ‘bag’ that represents the nucleon’s surface. Just
as in the electromagnetic case, the bag boundary condition modifies the vacuum fluctuations of the
field, which results in the appearance of a Casimir force [14–18]. This force, although very weak at
a macroscopic scale, can be significant on the small length scales encountered in nuclear physics. It
therefore has important consequences for the physics of the bag-model nucleon [19].

The Maxwell and Dirac fields are both spinor fields, though the former is not usually described as
such. It is possible to write Maxwell’s equations in a form identical to the Dirac–Weyl equation that
describes massless spin-1/2 fermions [20]. This naturally leads one to the question as to whether it is
possible to use a spinor formalism to describe the Casimir effect for the Dirac (spin-1/2) and Maxwell
(spin-1) fields in a unifiedway.We have shown [21] that such a unification can be accomplished using
the two-spinor calculus formalism introduced by van der Waerden [22]. Moreover, this unification
naturally lends itself to a generalisation,which is applicable to confined higher-spin fields. These fields
include the spin-2 field associated with the so-called graviton, which appears in linearised quantum
gravity, and its supersymmetric partner the spin-3/2 gravitino.

In this paper we will present specific results for the Casimir force associated with the fields up to
spin-2.Weorganise ourwork bynoting that calculations of Casimir forces broadly follow the following
three steps:

1. The statement of one or more boundary conditions governing how the considered field behaves
at material surfaces. These can be mathematically convenient (examples include Dirichlet [23],
Neumann [24], Robin [25] and periodic [26,27] BCs) or physically-motivated (those imposed by
electromagnetism [4] or by the bag model [13] for example).

2. The determination of a set of field solutions that obey the boundary conditions specified in step
1. In the simplest cases this can be achieved by direct solution of the equations of motion. How-
ever, this step is usually non-trivial, and has resulted in the development of numerous techniques
including the so-called macroscopic QED [28], worldline numerics [29], the ‘‘proximity-force ap-
proximation’’ [30,31], certain scattering theory based methods [32], and many more.

3. The substitution of the field solutions found in step 2 into an expression for the vacuum energy
of the relevant field. Upon suitable regularisation and the dropping of any boundary-independent
terms, one is left with the Casimir force for some combination of: a field (Maxwell, Dirac, etc.), a
boundary condition, and a physical geometry.

Wewill begin in Section 2 by reviewing the generalised, physically-motivated boundary conditions
presented in [21]. We then find explicit field solutions for the parallel-plate geometry, and hence
accomplish steps 1 and 2 given above. In Section 3wewill carry out the final step above by computing
specific values for the Casimir force associated with the massless fields up to spin-2.

2. Generalised physical boundary conditions

In this section we review our generalisation of the boundary conditions (BCs) employed in the
calculation of the Casimir effect associated with the spin-1/2 and spin-1 fields. To do this we use the
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Fig. 1. Infinite parallel plates located at x3 = 0 and x3 = d > 0. The outward pointing normals to the plates are shown.
Note that since the two normals point in opposite directions their components differ by a minus sign at each plate; −n3(0) =

n3(d) = 1 = n3(0) = −n3(d). The physical constraint that at the plates there is no current normal to the surface is illustrated.

two-spinor calculus formalism presented in Appendix A. Further details of the two-spinor calculus
formalism can be found, for example, in [33–35] and the references therein.

2.1. Unified physical boundary conditions for massless spin-1/2 and spin-1 fields

2.1.1. Spin-1/2
We begin by considering the simplest spin field—the spin-1/2 massless Dirac–Weyl field. We adopt

the two-spinor calculus formalism laid out in Appendix A. The spin-1/2 massless field is described by
a pair of square-root Klein–Gordon equations, which in the massless case are decoupled;

σµ āa∂µψ
a
= 0, σ̃µaā∂µφā = 0 (1)

whereψa and φā are spin-1/2massless quantum fields describing right and left-helicities respectively.
The usual Dirac bispinor can be constructed through a direct sum of fields proportional to ψ and φ.

We wish to calculate the Casimir effect associated with the massless spin-1/2 field due to the pres-
ence of two perfectly reflecting parallel plates orthogonal to the x3-axis. We assume that one plate is
located at x3 = 0 and that the other is located at x3 = d > 0 as shown in Fig. 1. The physical constraint
we impose on the fields is that there be no particle-current normal to the surfaces at x3 = 0, d [17];

nµ(0, d)jµ(0, d) = 0 (2)

where nµ(0, d) = (0, 0, 0,∓1) are components of the outward-pointing unit normals to the surfaces
at 0 and d respectively, and jµ are the components of the spin-1/2 particle-current vector. In terms of
the two-spinors in Eq. (1), Eq. (2) reads [c.f. Eq. (A.13)]

nāa(0, d)jaā(0, d) = nāa(0, d)ψa(0, d)ψ ā(0, d) = 0. (3)

This condition will hold if we impose the BCs [17]

nµ(0, d)σµ āa(0, d)ψa(0, d) ≡ ±σ 3
āaψ

a(0, d) = ψā(0, d), (4)

where the (normalised) Pauli matrices {σµ} are defined in Eq. (A.10). The+ sign in Eq. (4) corresponds
to the case x3 = 0, and the − sign to the case x3 = d. To prove that Eq. (4) implies Eq. (3), one first
multiplies Eq. (4) through byψ ā(0, d). The left-hand-side then equals nµ(0, d)jµ(0, d)while the right-
hand-side equalsψā(0, d)ψ ā(0, d) = ω̄(ψ(0, d), ψ(0, d)) ≡ 0, where ω̄ is the symplectic form on the
spinor-space S̄ [c.f. Appendix A]. This completes the proof. We note that the BCs in Eq. (4) are nothing
but the usually employed BCs in the calculation of the spin-1/2 Casimir effect [13,17].
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We now Fourier-expand the fields ψa and φā in plane-wave superpositions as follows:

ψa(x) =


d3k ua(k)


bR(k)e−ikµxµ + dĎL(k)e

ikµxµ


φā(x) =


d3k uā(k)


dR(k)e−ikµxµ + bĎL(k)e

ikµxµ

. (5)

Here k0 ≡ ω := |k|, and the label R (for right) corresponds to the helicity λ = 1/2 while the label L
corresponds to the helicity λ = −1/2. The function ua(k) and its charge-conjugate uā(k) are (suitably
normalised) momentum-space single-particle right and left-helicity wavefunctions respectively. The
bλ(k) and bĎλ(k) are annihilation and creation operators for particles with momentum k and helicity
λ, and the dλ(k) and dĎλ(k) are the corresponding anti-particle operators. Altogether these operators
satisfy the fermionic anti-commutation relations

{bλ(k), b
Ď
λ′(k′)} = {dλ(k), d

Ď
λ′(k′)} = δλλ′δ(k − k′). (6)

The expansions in Eq. (5) and anti-commutation relations in Eq. (6) allowus to express the total energy
of the spin-1/2 massless field (including both helicities) as

H1/2 =


d3k


λ=±1/2

ω

bĎλ(k)bλ(k)+ dĎλ(k)dλ(k)− 1


. (7)

In order to deduce the values ofmomentumk allowed by the BCs in Eq. (4) it suffices to consider the
following positive-energy single-particle plane-wave solution of the Dirac–Weyl equation (1) forψa;

ψa(x) = e−iωtψa(x), ψa(x) = ua(k)eik·x. (8)

If this solution is to be non-trivial, i.e., such that ua(k) is not identically zero, then it cannot satisfy the
BCs in Eq. (4). In other words the possibility of a completely free solution is negated by the presence
of the plates, which evidently must modify the free solution in someway.Wemake the ansatz [13,17]

ψa(x) =


σ 0aāeik⊥·x⊥ + σ 3aāe−ik3x3


uā(k) (9)

where v⊥ := (v1, v2, 0) denotes the projection of the three-vector v onto the x1–x2 plane. Making
this ansatz constitutes the physically reasonable assumption that the effect of the plates is to flip the
sign of x3 in Eq. (8). The modified solution (9) satisfies the BC in Eq. (4) at x3 = 0 identically. It will
also satisfy the BC corresponding to x3 = d provided that

cos(k3d) = 0. (10)

Thus, given the solution in Eq. (9) the BCs in Eq. (4) restrict the values of k3 and hence k to

k3 =
nπ
2d
, k =


k1, k2,

nπ
2d


, n = 1, 3, 5, . . . . (11)

When used in conjunction with Eqs. (7) and (11), the above restricted values of k yield the usual
Casimir force associated with the spin-1/2 field between two perfectly reflecting parallel plates
(c.f. Section 3.1.1). In Section 2.2 it will be shown that with a straightforward generalisation of the
BCs in Eq. (4), the above values of k turn out to be the same for any fermionic field.

2.1.2. Spin-1
The massless spin-1 field is the familiar field of Maxwell electrodynamics. In the two-spinor

calculus formalism the Maxwell field is described by a pair of symmetric spin-tensors ψab and ψāb̄
corresponding to the right and left-helicity states of the photon respectively. The equations of motion
analogous to those in (1) are the square-root Klein–Gordon equations

σµ āa∂µψ
ab

= 0, σ̃µaā∂µψāb̄ = 0. (12)

The relation of the spin-tensors above to the more conventional electromagnetic three-vectors is
most easily achieved through the complex Riemann–Silberstein vector F := E + iB, where E and
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B are the electric and magnetic fields respectively. The vectors F and F∗ can be viewed as complex
three-vectors corresponding to the right and left-helicity states of the photon [36]. If one replaces
the imaginary unit i in these definitions with the volume form I on Minkowski spacetime E1,3 and
views the fields E and B as bivectors E and B over E1,3, then one obtains the familiar electromagnetic
field tensor F ≡ E + IB and its reverse F Ď ≡ E − IB. Here the juxtaposition IB denotes the Clifford
(geometric) product of I and B [37]. One can also describe the electromagnetic field in terms of the
dual tensor G := ∗F ≡ −IF where ∗ denotes the Hodge-dual. Clearly each of the objects ψab, F and F
(or G) constitutes a different organisation of the six real degrees of freedom (including gauge degrees
of freedom) that describe the physical electromagnetic field.

Relating the Maxwell spin-tensor ψab to the Riemann–Silberstein vector Fwe have [36]

ψab
=


−F 1

+ iF 2 F 3

F 3 F 1
+ iF 2


, (13)

and relating ψab to the electromagnetic bivector Fµν we have [c.f. Eq. (A.13)] [33]

Fµν = σµ āaσ
ν
b̄bF

aābb̄, F aābb̄
= ωāb̄ψab

+ ωabψ āb̄. (14)

Although either of the above relations suffices in order to relate the two-spinor treatment of elec-
trodynamics to the more widely-known approaches, we choose to make use of the former relation
(13). Using Eq. (13) it is straightforward to show that the equations in (12) are equivalent to the free
Maxwell equation

i∂tF = ∇ × F (15)

and its complex-conjugate.
In determining the appropriate BCs to impose for the calculation of the Casimir effect in the spin-1

case, one must contend with the fact that there exists no local particle-current vector for massless
fields with spin greater than 1/2 [38]. Thus, for the Maxwell field in particular, an alternative physical
current jµ must be chosen in order to obtain a condition analogous to Eq. (2). As is well-known, one
of the few local observables associated with photons is their energy–density [39,36]. A natural choice
for jµ in the spin-1 case is therefore the energy–current

jµ := Tµ0 =
1
2


F · F∗, iF × F∗


=


1
2


E2

+ B2 , E × B


(16)

where Tµν are the components of the symmetric energy–momentum tensor of theMaxwell field. The
physical constraint expressed by Eq. (2) with jµ given by Eq. (16) is ensured if one assumes that

n(0, d) · B(0, d) = 0, n(0, d)× E(0, d) = 0 (17)

where as before n(0) and n(d) are normal to the surfaces at x3 = 0 and d respectively. The analogy
between the spin-1/2 and spin-1 cases becomes obvious when Eqs. (16) and (17) are written in terms
of theMaxwell spin-tensorψab. To this endwe note that using Eq. (13) the energy–momentum tensor
Tµν can be written [c.f. Eq. (A.13)]

Tµν = σµ āaσ
ν
b̄bT

aābb̄, T aābb̄
= ψabψ āb̄. (18)

Within the two-spinor calculus formalism there is a clear analogy between the spin-1 energy–mome-
ntum spin-tensor T aābb̄

= ψabψ āb̄, and the spin-1/2 particle-current jaā = ψaψ ā. As such, substituting
the expression for Tµ0 given by Eq. (18) with ν ≡ 0, into Eq. (2) yields

nµ(0, d)jµ(0, d) = nāa(0, d)σ 0
b̄bT

aābb̄(0, d)

≡ nāa(0, d)σ 0
b̄bψ

ab(0, d)ψ āb̄(0, d) = 0, (19)
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which is the spin-1 version of Eq. (3). This condition will necessarily hold if we impose the BCs

nµ(0, d)nν(0, d)σµ āaσ
ν
b̄bψ

ab(0, d) ≡ σ 3
āaσ

3
b̄bψ

ab(0, d)
= ψāb̄(0, d) (20)

which is clearly the spin-1 version of Eq. (4). To see that Eqs. (17) and (20) are equivalent one need
only expand the sums in Eq. (20), which gives

ψ00(0, d) = ψ0̄0̄(0, d), ψ01(0, d) = −ψ0̄1̄(0, d). (21)

Using Eq. (13) it is easy to show that these conditions are equivalent to Eq. (17). The BCs in Eq. (20)
written in terms of ψab, are therefore completely equivalent to the usual BCs [in Eq. (17)] employed
in the calculation of the electromagnetic Casimir effect [3].

There still remains the proof that the BCs in Eq. (20) imply nµ(0, d)Tµ0(0, d) = 0. This proof is
not as straightforward as the proof given in the spin-1/2 case. There we were able to make use of the
anti-symmetry of the symplectic form on the spinor space S̄, but such a strategy will obviously fail if
the field under consideration is bosonic, i.e., is described by an evenly ranked spin-tensor. However,
a more brute force proof involving the use of Eq. (21) is available in the spin-1 case. In Section 2.2 we
specify generalised BCs associated with an arbitrary spin-m/2 field [Eq. (29)], and prove in Appendix B
that they imply the vanishing of the normal component of the relevant local current [Eq. (28)]. In this
context the Maxwell field simply corresponds to the special casem = 2.

Before moving on to determine the allowed values of k for the spin-1 field, we note that a signif-
icant difference between Eqs. (20) and (4), is that Eq. (20) involves an even number of factors of nµ
rather than an odd number. Thus, the boundary condition is the same for both the x3 = 0 and x3 = d
cases, rather than differing by a minus sign as is the case in Eq. (4) for the spin-1/2 field. We will see
quite generally in Section 2.2, that this is the crucial difference between the BCs for fermionic (half
odd-integer spin) and bosonic (integer-spin) fields.

Now, using Eq. (20) the determination of the allowed values of k3 in the spin-1 case exactlymirrors
the procedure used above for the spin-1/2 field. We employ the usual expression for the quantised
energy of the Maxwell field

H1 := T 00
=


d3k


λ=±1

ω


aĎλ(k)aλ(k)+

1
2


(22)

where aλ(k) and aĎλ(k) are bosonic annihilation and creation operators satisfying the commutation
relation

[aλ(k), a
Ď
λ′(k′)] = δλλ′δ(k − k′). (23)

In order to determine the values of k allowed by the BCs in Eq. (20), we consider in exact analogy to
the spin-1/2 case, the following modified positive-energy solutions of the Maxwell equations (12)

ψab(x) = e−iωtψab(x),

ψab(x) =


σ 0aāσ 0bb̄eik⊥·x⊥ + σ 3aāσ 3bb̄e−ik3x3


uāb̄(k) (24)

where uab(k) is a momentum-space right-helicity single-particle spin-tensor, analogous to ua(k) for
the spin-1/2 field. As in the spin-1/2 case the modified solution satisfies the BC in Eq. (20) at x3 = 0
identically. It will also satisfy the BC at x3 = d provided

sin(k3d) = 0, (25)

which is the case if and only if

k3 =
nπ
d
, k =


k1, k2,

nπ
d


, n = 0, 1, 2, . . . . (26)

These values of k are usually found by more conventional means involving the electric and magnetic
fields and the BCs in Eq. (17). Along with Eq. (22) they can be used to obtain the well-known electro-
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Fig. 2. A diagrammatic layout of the irreducible representations (irreps) of Sp(2,C) for massless fields with discrete spin.
Each irrep is labelled by a pair of numbers (i, j) where i, j = 0, 1/2, 1, 3/2, . . . . The spin values corresponding to the (i, j)th-
representation are ±|s| where |s| = i + j. An (i, j)-irrep for which i = 0 or j = 0 is called an ‘‘outer’’ irrep, otherwise it is
an ‘‘inner’’ irrep. Fields belonging to the outer irrep (i, 0) directly describe a spin i particle, whereas those belonging to the
outer irrep (0, i) directly describe a spin−i particle. The number directly below each (i, j)-irrep equals the complex-dimension
d = (2i+ 1)(2j+ 1) of the irrep immediately above it. Directly above the relevant (i, j)-irreps is a list of fields. Under a Lorentz
transformation, each of these fields transforms in some way according to the irrep below it (c.f. Appendix A.2). For example, in
the two-spinor calculus formalism a field belonging to the (i, j)th-irrep is denotedψ (a1 ...a2i)

(ā1 ...ā2j) where (a1...an) denotes total
symmetrisation of the indices a1, . . . , an (c.f. Appendix A.2). Since lower spins have been studied more extensively than higher
spins, lower spin values possess more corresponding fields. This is particularly evident in the electromagnetic case |s| = 1 (c.f.
Section 2.1.2). For s = 0 the only corresponding field is the scalar field ψ . For |s| = 1/2 we have in addition to ψa and φā , the
Dirac–Weyl two-column spinors ψR and ψL , which make up the usual Dirac bispinor. The irreps of the form (i, i) correspond
to totally symmetric traceless rank


2i
2i


-tensors over Minkowski spacetime (c.f. Appendix A.3). Such tensors represent field

potentials. The first of the (i, i) irreps is the (1/2, 1/2) vector irrep occurring for |s| = 1. It has corresponding field potential Aµ ,
which denotes the electromagnetic four-potential. The next is the (1, 1) irrep occurring for |s| = 2, and corresponding towhich
hµν is the field potential describing linearised gravity (c.f. Section 3.2.2).

magnetic Casimir force first found in [3] (c.f. Section 3.1.2). In the following Section 2.2 we generalise
the BCs in Eq. (20) to show that the above values of k turn out to be the allowed values for any bosonic
field.

2.2. Generalised physical boundary conditions for massless fields with higher spin

Given the analogy between the spin-1/2 and spin-1 fields described above, the extension of the
physical BCs in Eqs. (4) and (20) to higher-spin fields now naturally presents itself. Initially for higher
spin fields the identification of a local physical current to use in conjunction with Eq. (2) may seem
problematic, but we have effectively already tackled this problem in adapting the spin-1/2 BCs to the
spin-1 case. The BCs for anymassless higher spins should evidently involve the physical fields directly
involved in the description of the right and left-helicity states. These fields belong to the (carrier spaces
of the) ‘‘outer’’ (rather than the ‘‘inner’’) irreducible representations of the symplectic group Sp(2,C).
This terminology is clarified by Fig. 2. The physical fields belonging to the outer representations are
those that appear explicitly in the square-root (massless) Klein–Gordon equations, which describe the
physical dynamics of the free system. For a spin-m/2 field these equations read

σµ ā1a1∂µψ
a1a2a3...am = 0, σ̃µa1 ā1∂µφā1 ā2 ā3...ām = 0. (27)
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Fig. 3. A schematic representation of the field solutions corresponding to the first few allowed values of k3 from Eq. (32).
Fermionic field solutions corresponding to the three values k3 = nπ/2d, n = 1, 3, 5 are represented by solid orange curves,
while bosonic field solutions corresponding to the three values k3 = nπ/d, n = 1, 2, 3 are represented by dashed blue
curves. The aperiodic orange curves clearly illustrate that periodic BCs cannot be used in conjunction with fermionic fields. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Specifying the appropriate BCs in terms of the outer field ψa1...am clearly avoids any discussion
regarding the use of unphysical inner field potentials, which are often used in the description of higher
spins.

Generalising the local currents encountered in the spin-1/2 and spin-1 cases, we begin by defining
for a spin-m/2 field the local current

jµ(m) := σµ ā1a1σ
0
ā2a2 . . . σ

0
āmamψ

a1...amψ ā1...ām , (28)

which due to the first equation of motion in (27), satisfies the local continuity equation ∂µjµ(m) = 0.
Generalising now the spin-1/2 and spin-1 BCs in Eqs. (4) and (20), we impose for a spin-m/2 field the
BCs

nµ1(0, d) . . . nµm(0, d)σ
µ1

ā1a1 . . . σ
µm

āmamψ
a1...am(0, d) = ψā1...ām(0, d), (29)

which are the same generalised BCs first given in [21]. We prove in Appendix B that these BCs imply
that jµ(m) satisfies the physical constraint given in Eq. (2), i.e., nµ(0, d)jµ(0, d;m) = 0. For fermionic
fieldsm is odd, which implies that the BCs in Eq. (29) contain an odd number of factors of nµ(0, d) =

(0, 0, 0,±1). Thismeans thatwhen x3 = d the BC differs by aminus sign comparedwithwhen x3 = 0.
In contrast, for bosonic fieldsm is even, so the BC is the same for both the x3 = d and x3 = 0 cases.

To determine the allowed values of k3 due to the BCs in Eq. (29), we use in analogy to the spin-1/2
and spin-1 cases, the following modified single-particle positive-energy solution to the first of the
equations in (27)

ψa1...am(x) = e−iωtψa1...am(x),

ψa1...am(x) :=


σ 0a1 ā1 . . . σ 0am āmeik⊥·x⊥ + σ 3a1 ā1 . . . σ 3am āme−ik3x3


uā1...ām(k) (30)

where ua1...am(k) is a momentum-space single-particle positive-energy spin-tensor. In complete
analogy to the spin-1/2 and spin-1 cases, substituting the solution above into Eq. (29) implies

cos(k3d) = 0, m odd

sin(k3d) = 0, m even. (31)

This gives the allowed values of k3 and k as

k3 =
nπ
2d
, k =


k1, k2,

nπ
2d


, n = 1, 3, 5, . . . m odd

k3 =
nπ
d
, k =


k1, k2,

nπ
d


, n = 0, 1, 2, . . . m even. (32)

In Fig. 3 we give a schematic representation of field solutions corresponding to the first few allowed
values of k3 specified above.
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According to the generalised BCs in Eq. (29) the two sets of energy–momentum values in (32) are
the only two possible, and they correspond to fermionic and bosonic fields respectively. A significant
implication of these general results is that periodic BCs cannot be applied to a physically confined
fermionic field between two parallel plates, because for fermionic fields the BCs are necessarily dif-
ferent at the two surfaces as is lucidly illustrated in Fig. 3. This means for example, that the approach
adopted in [26] where periodic BCs were imposed on the spin-3/2 field, is unphysical.

3. The Casimir effect for arbitrary spin fields

Having obtained according to the BCs in Eq. (29), the allowed values of energy–momentum for a
field with arbitrary spin, we now look to calculate the resulting Casimir force.

3.1. The Casimir effect for spin-1/2 and spin-1 fields

Calculating the Casimir forces associated with the spin-1/2 and spin-1 fields is a textbook exercise,
so we review it here only very briefly, with an eye towards extending the calculation to the case of
higher spin fields.

3.1.1. Spin-1/2
The energy associatedwith themassless spin-1/2 field is given in Eq. (7). Our strategy in calculating

the Casimir force is to initially restrict the field to a fictitious cavity upon which we impose periodic
BCs. We will take the continuum limit in the k1 and k2-directions after having employed the allowed
values of k given in Eq. (11). The vacuum energy inside the quantisation cavity is given by

Evac
1/2 = −


k


λ=±1/2

ω (33)

where ω = |k|. Substituting into Eq. (33) the allowed values of k given in Eq. (11) and taking the
continuum limit with respect to the k1 and k2-directions one obtains [17]

Evac
1/2 (d) = −2


n odd


d2k⊥

(2π)2


(k1)2 + (k2)2 +

nπ
2d

2

= −
1
π


n odd


∞

nπ/2d
dx x2. (34)

The integral above is divergent and requires regularisation. We adopt a conventional regularisation,
which yields the finite vacuum energy

Evac
1/2 (d) = −

1
π

lim
α→0

∂2

∂α2


n odd


∞

nπ/2d
dx e−αx

= −
1
π

lim
α→0

∂2

∂α2


πd
α2

−
π

24d
+

7π3α2

5760d3
+ O(α3)


≈ −

7π2

2880d3
. (35)

In the last line above a term linear in d, which gives a constant contribution to ∂Evac
1/2 (d)/∂d has been

ignored. The final result for the Casimir force associated with the massless spin-1/2 field between two
perfectly reflecting parallel plates is therefore

F1/2(d) = −
∂Evac

1/2 (d)

∂d
= −

7π2

960d4
, (36)

which is well-known [13].
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3.1.2. Spin-1
For the massless spin-1 field in a box with periodic BCs, the vacuum energy according to Eq. (22)

is

Evac
1 =

1
2


k


λ=±1

ω. (37)

It must be understood in the above expression that when any of the components ki vanish, there
is only one independent polarisation λ. Substituting into Eq. (37) the allowed values of k given in
Eq. (26), and as in the spin-1/2 case taking the continuum limit with respect to the k1 and k2-directions,
one obtains [17]

Evac
1 (d) =

∞
n=0

′ 
d2k⊥

(2π)2


(k1)2 + (k2)2 +

nπ
d

2

=
1
2π


n∈N

′


∞

nπ/d
dx x2 (38)

where following [17] we use a prime on the summation to indicate that for the value n = 0 a factor
of 1/2 must be inserted. The vacuum energy is as expected divergent, and we adopt the same regular-
isation as in the spin-1/2 case. This yields the finite vacuum energy

Evac
1 (d) =

1
2π

lim
α→0

∂2

∂α2


n∈N

′


∞

nπ/d
dx e−αx

≈ −
π2

720d3
(39)

where as in the spin-1/2 case a term linear in d has been ignored. Thus, the final result for the Casimir
force associated with the massless spin-1 field between two perfectly reflecting parallel plates is

F1(d) = −
∂Evac

1 (d)
∂d

= −
π2

240d4
, (40)

which is well-known [3].
The calculations above pertaining to the spin-1/2 and spin-1 fields reveal that the only ingredients

necessary in order to obtain a value for the Casimir force, are an expression for the vacuum energy of
the field under consideration, and a set of energy–momentum values allowed by the BCs.

3.2. The Casimir effect for spin-3/2 and spin-2 fields

To calculate the Casimir force associated with a higher spin field, one must first obtain an expres-
sion for the associated vacuum energy. This is much more problematic for higher spin fields than it
is for the fields with spin s ≤ 1. Higher spin fields possess additional gauge freedom, and the local
energy–momentum tensors associated with such fields are generally gauge-dependent. Fortunately
the total energy may still be gauge-invariant, and this is the working assumption we will make here.

3.2.1. Spin-3/2
The most common description of massless spin-3/2 particles is through the Rarita–Schwinger

field [40], which consists of four four-component Dirac bispinorsψµwhere the indexµ labels the four
distinct bispinors. The Rarita–Schwinger field belongs to the reducible representationR := (1/2, 1/2)⊗
[(1/2, 0)⊕ (0, 1/2)], which is build from the two outer spin-1/2 irreducible representations and the sin-
gle inner spin-1 irreducible representation of Sp(2,C) [41] (c.f. Fig. 2). The representationR has (com-
plex) dimension sixteen, whereas the two outer irreducible representations (3/2, 0) and (0, 3/2), that
directly correspond to the right and left-helicity states of the physical spin-3/2 field, have dimension
four (c.f. Fig. 2). This gives a total of eight degrees of freedom, but not all of these are dynamically inde-
pendent. Gauge-fixing reduces the total number of physical degrees of freedom to four, which is pre-
cisely the number required to describe the right and left-helicity states of a massless spin-3/2 particle
and its anti-particle. The Rarita–Schwinger field contains some twelve redundant degrees of freedom,
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and accordingly the associated equations of motion are invariant under the gauge transformation

ψ ′

µ = ψµ + ∂µξ . (41)

Although largely redundant the Rarita–Schwinger field is advantageous, because it can be manipu-
lated in much the same way as the familiar Dirac field for spin-1/2 particles. It is for this reason that
we use it to obtain an expression for the energy of the massless spin-3/2 field.

The Rarita–Schwinger Lagrangian can be written

L3/2 = −
1
2
ϵµνρσ ψ̄µγ

5γρ
↔

∂ σψν (42)

where f
↔

∂ µg := f ∂µg − (∂µf )g , the ϵµνρσ are totally anti-symmetric with ϵ0123 = 1, the set {γ µ, γ 5
}

consists of the usual Dirac matrices with γ 5
:= iγ 0γ 1γ 2γ 3, and ψ̄µ := ψĎ

µγ
0 denotes the relativistic

adjoint ofψµ. Under the gauge transformation in Eq. (41) the Lagrangian varies by a total divergence.
The twelve redundant degrees of freedom are eliminated using constraints. In particular, the

generalised Coulomb gauge is obtained by imposing the constraints [42]

γ µψµ = 04, ∂µψµ = 04, ψ0 = 04 (43)

where 04 denotes the four-column with all zero entries. Using the identity

ϵµνρσγ 5γρ ≡ i (gµνγ σ − gµσγ ν − gνσγ µ + γ µγ σγ ν) (44)

it is a straightforward exercise to verify that for the Lagrangian in Eq. (42) along with the constraints
in (43), the Euler–Lagrange equations yield the Dirac equation iγ µ∂µψν = 04 and its adjoint
i(∂µψ̄ν)γ µ = 0T

4 . This in turn ensures that ψµ (and its adjoint) satisfy the correct relativistic wave
equation

�ψµ = 04 (45)

where � := ∂µ∂
µ.

The constraints in (43) reduce the number of (complex) physical degrees of freedom to the four
required in order to describe the right and left-helicity states of a massless spin-3/2 particle and its
anti-particle. As an ansatz forψµ in Eq. (45), we therefore make the following Fourier expansion [42]

ψµ(x) =


d3k


λ=±3/2


bλ(k)uµ(k, λ; x)+ dĎλ(k)vµ(k, λ; x)


(46)

where the bλ(k), b
Ď
λ(k) and dλ(k), d

Ď
λ(k) are annihilation and creation operators for particles and anti-

particles respectively, which as in the spin-1/2 case satisfy the anti-commutation relations in Eq. (6).
It is of course possible to invert Eq. (46) and its Hermitian-conjugate, and this means it is possible to
define the bλ(k), b

Ď
λ(k) and dλ(k), d

Ď
λ(k) in terms ofψµ(x). The single-particle positive and negative-

energy wavefunctions uµ(k, λ; x) and vµ(k, λ; x) are defined by

uµ(k, λ; x) :=
1

2ω(2π)3
uµ(k, λ)e−ikνxν ,

vµ(k, λ; x) :=
1

2ω(2π)3
vµ(k, λ)eikνx

ν
(47)

where uµ(k, λ) and vµ(k, λ) satisfy the momentum-space counterparts of the constraints in (43).
The positive and negative-energy wavefunctions are not linearly-independent and are related by
vµ(k, λ; x) = iγ 2γ 0uĎµ(k, λ; x). The orthonormality requirements for uµ(k, λ) and vµ(k, λ) can
be deduced from the required properties of uµ(k, λ; x) and vµ(k, λ; x) under a Lorentz boost, and
read [42]

ūµ(k, λ)γ νuµ(k, λ′) = v̄µ(k, λ)γ νvµ(k, λ′) = −2kνδλλ′ ,

ūµ(k, λ)γ 0vµ(−k, λ′) = 0. (48)
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Using the Lagrangian in Eq. (42) and the constraints in (43) we obtain the energy–density

H3/2 =
∂L3/2

∂(∂tψν)
∂tψ

ν
− L3/2 = −

i
2
ψ̄νγ

i↔
∂ iψ

ν . (49)

Using this expression together with Eqs. (6), (46) and (48), the total energy can be written as in the
spin-1/2 case as

H3/2 =


d3xH3/2

=


d3k


λ=±3/2

ω

bĎλ(k)bλ(k)+ dĎλ(k)dλ(k)− 1


. (50)

Since the spin-3/2 field is fermionic, according to Eq. (32) the allowed values of k for the calculation
of the Casimir force, are the same as in the spin-1/2 case. Moreover, because the vacuum energies in
Eqs. (7) and (50) are identical, the calculation of the Casimir force from Eq. (50) is also the same as in
the spin-1/2 case, with the final result given by Eq. (36).

3.2.2. Spin-2
The spin-2 field is most commonly described using a symmetric traceless tensor field hµν , which

corresponds to the inner (1, 1) irreducible representation of the symplectic group Sp(2,C) [c.f. Ap-
pendix A.3 and Fig. 2]. This field can also be viewed as the first-order gravitational correction to the
components of the Minkowski inner-product. If we expand the general ‘‘metric’’ tensor of curved
spacetime as gµν(u) = gµν + uhµν + · · · , then Einstein’s vacuum equations yield an equation for
hµν which coincides with the correct relativistic wave equation for a massless spin-2 particle (the so-
called graviton). As expected, gauge-fixing constraints are required to reduce the number of degrees
of freedom present in hµν to those describing the physical right and left-helicities of the graviton.

These helicities are more directly described by symmetric spin-tensorsψabcd andψāb̄c̄d̄, which be-
long to the outer irreducible representations (2, 0) and (0, 2) respectively, andwhich satisfy the usual
equations of motion (27). As in the spin-1 and spin-3/2 cases, it is these fields which belong to outer
representations of Sp(2,C), that are inmanywaysmore physically relevant than the gauge-dependent
inner field potentials such as hµν (c.f. Fig. 2).

A significant property of the field ψabcd is that it can be used to define the so-called Bel–Robinson
tensor Tµνρσ , which is one of many possible gravitational versions of a local energy–momentum ten-
sor [33]. As expected of an energy–momentum tensor, Tµνρσ is totally symmetric, traceless and pos-
sesses certain positivity properties. It is also the natural analog of the energy–momentum tensor Tµν
found in electrodynamics [33]. This last property is most easily seen using the two-spinor calculus
formalism, whereby

Tµνρσ = σµ āaσ
ν
b̄bσ

ρ
c̄cσ

σ
d̄dψ

abcdψ āb̄c̄d̄. (51)

Thus, the local current Tµ000 is the natural analog of the currents encountered in the spin-1/2 and
spin-1 cases, and as such the generalised BCs in Eq. (29) imply that for the spin-2 field, it is the normal
component of Tµ000 that vanishes at each plate.

In order to obtain an expression for the energy associated with the spin-2 field, we build on
the early approach of [43] for the quantisation of linearised gravity. The starting point in [43] is
Schwinger’s action principle [44], which is stated in terms of a Lagrangian of an extremely general
form. This form includes the so-called Platini general-relativistic Lagrangian as a special case. The
use of the Platini–Lagrangian formulation of general relativity turns out to be a crucial feature of the
approach adopted in [43], because it circumvents a number of problems pertaining to the highly non-
linear nature of general relativity.

From here on we will employ the shorthand notation fij,k := ∂k∂ fij and fij,kl := ∂l∂kfij. This allows
us to write the linearised (first-order) approximation to the Platini–Lagrangian as

L2 = hνρ

Γ µ

νρ,µ −
1
2


Γ µ

νµ,ρ + Γ µ
ρµ,ν


− gνρ


Γ µ

σν · Γ σ
ρµ − Γ µ

σµ · Γ σ
νρ


(52)
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where 2f · g := fg + gf , the hµν = hνµ are the first-order corrections to the components gµν of the
Minkowski inner-product, and the Γ µ

νρ = Γ µ
ρν are the components of the Levi-Civita connection

over spacetime. To first-order in hµν the connection coefficients can be written

Γ µ
νρ ≈

1
2
gµσ


hσν,ρ + hσρ,ν − hνρ,σ


. (53)

The (constrained) fields hij and Γ 0
ij serve as canonical fields in the Hamiltonian formulation of

linearised gravity given in [43], which we review presently.
The variational principle used in conjunction with the Lagrangian in Eq. (52) yields the linearised

equations of motion [43]

∂thij = −2Γ 0
ij + h0i,j + h0j,i,

∂thµ0 = −δµi

h00,i − Γ i

00

+ 2δµ0Γ 0

00,

∂tΓ
0
ij = −

1
2


hij,kk + hkk,ij − hki,jk − hkj,ik − k00,ij


(54)

where it is understood that all repeated indices i, j, k are to be summed over 1, 2, 3. The entire theory
is invariant under the coordinate (gauge) transformations [43]

h′

µν = hµν + ξν,µ + ξµ,ν − gµνξρ ,ρ,

Γ ′µ
νρ = Γ µ

νρ + ξµ,νρ (55)

and as such the variational principle also yields the following equations of constraint [43]

Γ i
jk =

1
2


hij,k + hik,j + hjk,i


,

Γ µ
i0 = δµk


−h0k,i + Γ 0

ki

+

1
2
δµ0h00,i,

Γ 0
ik,k = Γ 0

kk,i, hij,ij = hii,jj. (56)

The constraints arise due to the presence of redundant gauge degrees of freedom,whichmust be elim-
inated via gauge fixing. A common choice of gauge in general relativity is the transverse traceless (TT)
gauge, which is analogous to the Coulomb gauge in electrodynamics. In the TT-gauge the field hµν
satisfies

hµν,µ = 0, hµµ = 0, hµ0 = 0, (57)

and the equations of motion (54) take on the following simple harmonic form, which is synonymous
with the free dynamics generated by quadratic Hamiltonians;

∂thij = −2Γ 0
ij ∂tΓ

0
ij = −

1
2
hij,kk. (58)

Together the constraint hµ0 = 0 and the equations of motion (58) ensure the correct relativistic wave
equation

�hµν = 0. (59)

In order to proceed itwill be helpful to count the number of physical degrees of freedomwithwhich
we are dealing. The TT-gauge constraints in (57) reduce the number of physical degrees of freedom in
hµν from ten to two. To see this note that there are nine separate equations in (57), but that only eight
of these are independent, because the first constraint with ν = 0 is implied by the last. Thus, in total,
we are left with four real degrees of freedom, two of which are contained in hij, and two of which are
contained in ∂thij = −2Γ 0

ij. This is precisely the number of physical degrees of freedom required to
describe the two independent helicities of the graviton. As an ansatz for hµν in Eq. (59), we therefore
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make the following Fourier expansion

hµν(x) =


d3k


λ=±2


uµν(k, λ; x)aλ(k)+ ūµν(k, λ; x)a

Ď
λ(k)


(60)

where the single-particle wavefunctions uµν(k, λ; x) are defined by

uµν(k, λ; x) :=
1

2ω(2π)3
eµν(k, λ)e−ikρxρ (61)

in which eµν(k, λ) denotes a transverse traceless polarisation tensor. In Eq. (60) we have used aĎλ(k)
to denote the complex-conjugate of the complex number aλ(k) in anticipation of the quantum
mechanical expression for hµν .

The polarisation tensors eµν(k, λ) in Eq. (61) possess the orthonormality and symmetry properties

eµν(k, λ)ēµν(k, λ′) = 2δλλ′ , gµνeµν(k, λ) = 0,

eij(−k, λ) = eij(k, λ), ei0(−k, λ) = −ei0(k, λ), (62)

which can be deduced from the required properties of uµν under a Lorentz boost. If we now define
the following inner-product over the Hilbert space of solutions to Eq. (59)

⟨h, h′
⟩ :=

i
2


d3x h̄µν(x)

↔

∂ th′

µν(x)

t=0

, (63)

we see that the normalisation of the polarisation tensors eµν(k, λ) has been chosen such that the
wavefunctions uµν(k, λ; x) satisfy the orthonormality conditions

⟨u(k, λ), u(k′, λ′)⟩ = δλλ′δ(k − k′),

⟨ū(k, λ), ū(k′, λ′)⟩ = −δλλ′δ(k − k′). (64)

The mode expansion in Eq. (60) is consistent with the TT-gauge constraints in (57) provided we
impose the following further restrictions on the polarisation tensors

kµeµν(k, λ) = 0, eµµ(k, λ) = 0, eµ0(k, λ) = 0. (65)

The first two constraints above are consistent with the required behaviour of hµν under a Lorentz
boost. The third however, clearly shows that hµν cannot transform in a Lorentz-covariant way. This
situation is analogous to the one encountered in electrodynamics. Like the components Aµ of the elec-
tromagnetic four-potential, the components hµν are to be viewed as the components of a geometric
field that is physically invariant under a larger transformation group including both Lorentz transfor-
mations and gauge transformations. The constraint hµ0 = 0 is consistent with this broader notion of
physical invariance.

Using now Eq. (58), we obtain from hµν in Eq. (60) the following expression for Γ 0
ij, which is the

(negative of the) canonical momentum conjugate to hij

Γ 0
ij(x) =

i
2


d3k


ω

2(2π)3

λ=±2


aλ(k)eij(k, λ)e−ikρxρ − aĎλ(k)ēij(k, λ)e

ikρxρ

. (66)

It is of course possible to invert the expressions for hij [in Eq. (60)] and Γ 0
ij given above. This means

the aλ(k) and aĎλ(k) can be defined in terms of the Fourier transforms of the canonical fields.
The energy–density can be calculated from the Lagrangian in Eq. (52) and after making use of the

constraints (57) can be written (in the TT-gauge) [43]

H2 =
∂L2

∂(∂thµν)
∂thµν − L2 = (Γ 0

ij)
2
+

1
4
(hij,k)

2 (67)



260 A. Stokes, R. Bennett / Annals of Physics 360 (2015) 246–267

where the indices i, j, k are each summed over 1, 2, 3. This yields the total energy [43]

H2 =


d3xH2 =


d3x


(Γ 0

ij)
2
+

1
4
(hij,k)

2

. (68)

When the fields hij andΓ 0
ij are interpreted as operators on some suitably definedHilbert space, the

aboveHamiltonian togetherwith theHeisenberg equation i∂tO = [O,H2] yields the correct equations
of motion (58), provided the canonical fields satisfy the following equal-time commutation relation,
consistent with the TT-gauge constraints [43]

[hij(x),Γ 0
kl(x′)] = −iδTTijkl(x − x′)

:=
i
2


2
3
δijδkl − δikδjl − δilδjk


δ(x − x′)

TT

. (69)

The right-hand-side of the above equality attains meaning when the expression within the brack-
ets is contracted with a suitably chosen three-dimensional symmetric test tensor fkl(x′) and is then
integrated over a fixed time-slice. This procedure will yield some symmetric tensor gij(x), which in
general, will not be transverse or traceless. The notation [·]

TT signifies that the transverse traceless
component of gij(x)must then be taken, and it is this projection onto the TT subspace, which ensures
Eq. (69) is consistent with the TT-gauge constraints in (57). In short, the distribution δTTijkl(x − x′) is
defined by the integration condition

d3x′ δTTijkl(x − x′)fij(x′) = f TTkl (x) (70)

where f TTkl (x) is the transverse traceless component of the symmetric tensor fkl(x). This situation is
of course quite familiar from quantum electrodynamics in the Coulomb gauge whereby the right-
hand-side of the canonical commutation relation that is analogous to Eq. (69), involves the transverse
delta function δTij(x−x′) [45]. In the spin-2 case however, one is dealing with three-dimensional sym-
metric tensors rather than three-dimensional vectors, and the appropriate distribution is therefore
δTTijkl(x − x′). In terms of an integral in momentum-space δTTijkl(x − x′) admits the representation

δTTijkl(x − x′) =


d3k

2(2π)3

λ=±2

eij(k, λ)ēkl(k, λ)eik·(x−x′), (71)

which is also reminiscent of the well-known Fourier transform representation of the transverse delta
function δTij(x − x′) [46].

To verify that the expression on the right-hand-side of Eq. (71) possesses the property specified in
Eq. (70) we first note that any (suitably well-behaved) real transverse traceless symmetric tensor can
be decomposed as

f TTij (x) =


d3k
(2π)3

f̃ TTij (k)e
ik·x

=


d3k
(2π)3


λ=±2

eij(k, λ)f̃λ(k)eik·x (72)

where f̃ TTij denotes the (three-dimensional) Fourier transform of f TTij , and f̃λ(k) denotes a complex
Fourier coefficient labelled by helicity λ and momentum k. We also make use of the following more
complicated scalar–vector–tensor decomposition of a (suitably well-behaved) real symmetric three-
dimensional tensor

fij(x) =


d3k
(2π)3

f̃ij(k)eik·x (73)
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with [47]

f̃ij =
1
3
f̃ δij +


k̂ik̂j −

1
3
δij


f̃ s + k̂i f̃ vj + k̂j f̃ vi + f̃ TTij . (74)

Here k̂ := k/|k| and f̃ denotes the trace of f̃ij. The scalar quantity f̃ s and the vector quantity f̃v are de-
fined in terms of the k̂i, f̃ij and f̃ , but their precise form need not be given in order to prove that Eq. (71)
holds. Now, due to the constraints in (65), we have using Eqs. (72) and (74) that

λ=±2

eij(k, λ)ēkl(k, λ) ¯̃f ij(k) =
¯̃f TTkl (k). (75)

Thus, substituting Eq. (71) and the complex-conjugate of Eq. (73) into the left-hand-side of Eq. (70),
one readily obtains bymaking use of Eq. (75), the complex-conjugate of the right-hand-side of Eq. (72).
This proves that Eq. (71) holds when used in conjunction with any (suitably well-behaved) real
symmetric tensor.

Having established that Eq. (71) holds we can now check that our canonical formulation of lin-
earised gravity is consistent with the mode expansions in Eqs. (60) and (66). Consistency is ensured
if when the mode expansions are substituted into the commutation relation i[hij(x),Γ 0

kl(x′)], one
obtains the right-hand-side of Eq. (71). This will be the case provided the aλ(k) and aĎλ(k) obey the
bosonic commutation relation in Eq. (23). Thus, imposing the bosonic commutation relation between
aλ(k) and aĎλ(k), and substituting Eqs. (60) and (66) into Eq. (68), we obtain using Eq. (62) the expected
expression for the energy of the massless spin-2 field;

H2 =


d3k


λ=±2

ω


aĎλ(k)aλ(k)+

1
2


. (76)

This Hamiltonian together with the Heisenberg equation yields the correct equations of motion (54).
Since the spin-2 field is bosonic, according to Eq. (32) the allowed values of k for the calculation
of the Casimir force, are the same as in the spin-1 case. Moreover, because the vacuum energies in
Eqs. (22) and (76) are identical, the calculation of the Casimir force from Eq. (76) is also the same as
in the spin-1 case, with the final result given by Eq. (40).

Having obtained the Casimir forces associated with both the spin-3/2 and spin-2 fields, we are
in a position to consider what might be called the super-gravitational Casimir force. In supergrav-
ity the graviton is paired with its supersymmetric partner—the spin-3/2 gravitino. The Lagrangian can
be taken as a sumof uncoupled Lagrangians associatedwith the spin-3/2 and spin-2 fields respectively,
plus a term involving additional auxiliary fields. In the case of pure gravitation these auxiliary fields
vanish on the space of solutions to the equations of motion [48]. We can therefore conjecture that
the super-gravitational Casimir force is the sum of the fermionic and bosonic Casimir forces given in
Eqs. (36) and (40) respectively.

4. Conclusions

In this paper we have used general physical BCs to calculate the Casimir force between two per-
fectly reflecting parallel plates for the massless quantum fields up to spin-2. For each spin value
the generalised BCs imply that at the plates the normal component of a physically appropriate
local-current vanishes. For the spin-1/2 (massless Dirac–Weyl) field the appropriate current is the
particle-current. For the spin-1 (Maxwell) field no particle-current exists, so the electromagnetic en-
ergy–current occurs in its place. For the spin-2 (linearised gravitational) field neither a local particle-
current nor a local energy–current exists, so a current defined in terms of the Bel–Robinson tensor
occurs instead.

We have shown that the generalised BCs imply that the allowed values of energy–momentum be-
tween two perfectly reflecting parallel plates are the same for all fermionic fields and the same for all
bosonic fields. We have verified that these allowed values of energy–momentum lead to two distinct
Casimir forces, one associated with fermions and one associated with bosons. This has been achieved
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through the explicit calculation of the Casimir forces associated with the fields ranging from spin-1/2
up to spin-2. A significant implication of these general results is that periodic BCs cannot be applied
to a fermionic field confined between two parallel plates. This renders certain previous investigations
unphysical.

The results we have obtained open up numerous avenues for further investigation into Casimir
forces, both for the more familiar spin-1/2 and spin-1 fields, and for higher-spin fields as well. An ob-
vious extension of the present work lies in the diversification of the surface geometries and reflection
properties assumed in the calculations. We have also already mentioned at the end of Section 3.2.2
a further possible extension of the present work into the arena of supersymmetric field theories. Yet
another extension lies in the consideration of confined interacting massless fields, such as coupled
spin-1/2 and spin-1 fields. In this case, in order to determine the allowed values of energy–momentum,
one would need to find modified single-particle solutions to the coupled equations of motion, which
satisfy the physical constraints of giving no local spin-1/2 or spin-1 current normal to the surfaces.
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Appendix A. Two-spinor calculus

A.1. Elementary symplectic spinor spaces

The two-spinor calculus provides a means by which to build arbitrary irreducible representations
of the (proper orthochronous) Lorentz group L

↑

+. Representations up to a phase of L
↑

+ are in one-to-
one correspondence with representations of its universal covering group SL(2,C), which is identical
to the complex symplectic group Sp(2,C). Spinors are built using the two-dimensional complex
symplectic vector spaces S and S̄ where a bar is used to denote the complex-conjugate space. The
space S is the pair (V , ω), where V is a two-dimensional complex vector space andω : V ×V → C is a
complex symplectic (non-degenerate) form. Choosing a basis {fa} ⊂ V and employing the summation
convention for repeated upper and lower indices we have

ψ = ψafa ∈ S, ψ̄ = ψ āfā ∈ S̄ (A.1)

where we use bars rather than the more commonly used dots to distinguish between a spinor in-
dex and a conjugate-spinor index. Furthermore we rely entirely on the different indices in order to
distinguish between the components of ψ and ψ̄ as well as between the basis vectors {fa} and their
conjugates. With these index conventions matrix operations become particularly simple. If a matrix
v has elements vab, then we have the following representations

v ↔ vab, v̄ ↔ vāb̄, vT ↔ vba, vĎ ↔ vb̄ā (A.2)

where T and Ď denote matrix transposition and Hermitian conjugation respectively. A Hermitian ma-
trix clearly has components vaā (or vāa).

In order to construct arbitrary spinors one also uses the dual spaces S∗, S̄∗. The dual V ∗ of the
(complex) linear space V is defined as the space of linearmaps from V toC. Given a basis {eµ} ⊂ V , the
corresponding dual basis {eµ} ⊂ V ∗ is defined by the orthonormality condition eµ(eν) := δµν . Every
finite-dimensional linear space is isomorphic to its dual, because the two spaces necessarily have the
same dimension. However, the identification of V and V ∗ is not canonical, and one has considerable
freedom in pairing vectors with dual vectors using some form of bilinear mapping. In Minkowski
spacetime E1,3 for example, the map used is a symmetric bilinear inner-product g : E1,3

× E1,3
→ R,

which with respect to some basis {eµ} can be written g = gµνeµ ⊗ eν . For a given vector v = vµeµ ∈

E1,3 one defines the corresponding dual vector v∗
:= vµeµ ∈ E1,3∗ such that vµ := gµνvν . This pairing
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means that the contraction of a vector v with its dual v∗ gives the g-norm of v, i.e., v∗(v) ≡ g(v, v).
In the two-spinor calculus formalism the analogous vector-dual vector pairing is defined with respect
to the symplectic structures on S and S̄. The dual of an element ψ ∈ S is an element ψ∗

: S → C
belonging to S∗ such that

ψ∗(φ) = ω(ψ, φ). (A.3)

Obviously the same relation holds between elements of S̄ and S̄∗. The symplecticmapsω∗
: V ∗

×V ∗
→

C and ω̄∗
: V̄ ∗

× V̄ ∗
→ C associated with the dual spaces are non-degenerate bivectors. To build

spinors one uses distinguished canonical (a.k.a. Darboux, a.k.a. spin) bases {fa}, {fā}, {f a} and {f ā},
which belong in V , V̄ , V ∗ and V̄ ∗ respectively, and which satisfy the relations f a(fb) = fb(f a) = δab
and f ā(fb̄) = fb̄(f

ā) = δā
b̄
. In the canonical bases the symplectic mapsω, ω̄, ω∗ and ω̄∗ can be written

ω = ωabf a ∧ f b, ω̄ = ωāb̄f
ā
∧ f b̄,

ω∗
= ω∗abfa ∧ fb, ω̄∗

= ω∗āb̄fā ∧ fb̄ (A.4)

where ∧ denotes the exterior product. The sets of components ωab, ωāb̄, ω
∗ab and ω̄∗āb̄ each support

the matrix representation

ωab, ωāb̄, ω
∗ab, ω∗āb̄

↔


0 1

−1 0


. (A.5)

As we remarked above Sp(2, V ) is the symmetry group associated with ω, that is, given any T ∈

Sp(2, V ) we have that ω(Tψ, Tφ) = ω(ψ, φ) for all ψ, φ ∈ V . In components this condition along
with the analogous conditions pertaining to ω̄, ω∗ and ω̄∗, can be written

T a
bω

bcT d
c = ωad, T ā

b̄ω
b̄c̄T d̄

c̄ = ωād̄,

T̃ b
a ωbc T̃ c

d = ωad, T̃ b̄
ā ωb̄c̄ T̃

c̄
d̄ = ωād̄ (A.6)

where a tilde has been used to denote the matrix contragradient T̃ := (T T )−1.

A.2. Lorentz transformations and spinor index gymnastics

Wehavenowall of the ingredients necessary in order to define arbitrary higher order spinors (spin-
tensors) and to be able to perform spinor index gymnastics. Denoting the r-times Cartesian product
of a set S with itself by Sr , we define a spin-tensor of type-

 p q
r s


as a multilinear map ψ : S∗p

× S̄∗q
×

Sr × S̄s → C, which in the canonical bases can be written

ψ = ψa1...ap
b1...br

ā1...āq
b̄1...b̄s

fa1 ⊗ · · · ⊗ fap

⊗ f b1 ⊗ · · · ⊗ f br ⊗ fā1 ⊗ · · · ⊗ fāq ⊗ f b̄1 ⊗ · · · ⊗ f b̄s . (A.7)

When viewed as a spin-tensor field overMinkowski spacetime, the components ofψ are to be viewed
as functions of x ∈ E1,3.

A Lorentz transformation Λ ∈ L
↑

+ has two elementary two-dimensional nonequivalent com-
plex representations, one on S, which is denoted T (Λ), and the complex-conjugate representation
on S̄, which is denoted T̄ (Λ). These representations correspond to right-helicity and left-helicity two-
spinors respectively. The representation T̃ (Λ) on S∗ is equivalent to T (Λ) on S, while the representa-
tion ˜̄T (Λ) on S̄∗ is equivalent to T̄ (Λ) on S̄. The carrier space of the (i, j)th irreducible representation
of Sp(2,C) can be taken as the collection of spin-tensors with components ψ (a1...ai)(ā1...āj), where the
notation ψ (a1...an) means that ψ is totally-symmetric in the indices a1, . . . , an. In this case the carrier
space of the (i, j)th representation has clearly been built out of the spaces S and S̄. Alternatively we
could, in the obvious way, take any one of the three elementary combinations S∗ and S̄∗, or S and S̄∗,
or S̄ and S∗, as the building blocks for the carrier spaces of the various (i, j) representations. In this
paper we choose the pair (S, S̄∗), which means that right-helicity spinors are labelled by unbarred
upper indices while left-helicity spinors are labelled by barred lower indices.
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Under a Lorentz transformation Λ ∈ L
↑

+ each unbarred upper index of the components of a
spin-tensorψa...

...
...
... transforms throughmultiplication by amatrix T b

a(Λ). An unbarred lower index
ψ ...

a...
...
... transforms through multiplication by T̃ b

a (Λ). Obviously the barred indices transform in the
sameway throughmatrices T b̄

ā(Λ) and T̃ b̄
ā (Λ). In the case of a spin-tensor field the argument x ∈ E1,3

transforms to Λ−1x. More generally under a Poincaré transformation (Λ, a) with (Λ, a)x = Λx + a,
the argument x transforms as (Λ, a)−1x = Λ−1x −Λ−1a.

To carry out spinor index gymnastics the symplectic maps are used, because these are the maps
we have used to define the dual spaces. We useω to denote the components of these maps in keeping
with the common convention in symplectic geometry. The symbol ϵ is more commonly found in the
two-spinor calculus literature. Because the components of the symplectic maps are anti-symmetric
one must be careful in raising and lowering indices, for example ωabψa = −ψb ≠ ψb. We adopt the
convention that ωab can only be used to lower an index when the repeated index is in the first slot.
Similarlyωab only raises the indexwhen the repeated index is in the second slot. The same rules apply
for barred indices, so altogether

ωabψ
a
= ψb, ωabψb = ψa, ωāb̄ψ

ā
= ψb̄, ωāb̄ψb̄ = ψ ā. (A.8)

In what follows we will specify how spinor index gymnastics relates to the usual spacetime index
gymnastics.

A.3. Spinor indices and spacetime indices

Minkowski spacetime E1,3 will be viewed as a pair (R, g) where R is a real four-dimensional vec-
tor space and g : R × R → R is a symmetric indefinite inner-product. In an orthonormal basis {eµ}
of R with dual basis {eµ} ⊂ R∗ (s.t eµ(eν) = δµν ) the inner-product g can be written g = gµνeµeν ,
where the juxtaposition eµeν denotes the symmetric tensor product of eµ and eν . Similarly one de-
fines the inner-product g∗

= gµνeµeν on R∗. The components gµν and gµν have the matrix represen-
tation diag(1,−1,−1,−1) and can be used to raise and lower spacetime indices in the usual way;
gµνvν = vµ etc.

To relate spinor and spacetime indices we use a representation [ ] : E1,3(E1,3∗) → H(2,C) of
vectors (dual-vectors) v ∈ E1,3 (v∗

∈ E1,3∗) as two-dimensional Hermitian matrices [v] ([v∗
]) ∈

H(2,C). The representation [·] is defined by

[v] := σ̃µvµ = σ̃µv
µ, [v∗

] := σµvµ = σµv
µ (A.9)

where σµ and σ̃µ denote the following normalised Pauli spin-matrices

σ 0
= σ̃ 0

=
1

√
2


1 0
0 1


, σ 1

= −σ̃ 1
=

1
√
2


0 1
1 0


,

σ 2
= −σ̃ 2

=
1

√
2


0 −i
i 0


, σ 3

= −σ̃ 3
=

1
√
2


1 0
0 −1


. (A.10)

The components of theMinkowski inner-product have numerous representations in terms of the nor-
malised Pauli spin-matrices;

tr(σµσ̃ν) = tr(σ̃µσν) = gµν, tr(σµσ̃ ν) = tr(σ̃µσ ν) = gµν, (A.11)

which enable one to define the Minkowski inner-product on H(2,C) as

g(v,w) = gµνvµwν = tr(σµσ̃ν)vµwν

= tr([v∗
][w]) =: [v] · [w]. (A.12)

With the elements of the matrices [v] and [v∗
] we can associate components of spin-tensors via

vāa = σµ āavµ = σµāav
µ, vaā = σ̃µaāvµ = σ̃ aā

µ vµ

vµ = σµ āav
aā

= σ̃µaāvāa, vµ = σµāav
aā

= σ̃ aā
µ vāa. (A.13)
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The Minkowski inner-product can be written in terms of spin-tensor components in numerous ways,
for example g(v,w) = vaāwāa. The hybrid so-called van der Waerden symbols are defined as

gµaā
:= σµ

aā, gµaā
:= σµ

aā
,

gµ āa := (σ̃µ)Tāa, gµāa := (σ̃µ)
T
āa. (A.14)

These symbols can be consistently manipulated according to the rules of both spinor and spacetime
index gymnastics. In order to obtain the numerical values of the van derWaerden symbols, and when
translating expressions into expressions involving matrix operations the identifications in Eq. (A.14)
must be used. Given this recipe for converting spinor indices to spacetime indices and vice versa, we
obtain the following useful relations

gµν = gµaāgνbb̄ωabωāb̄ = gµaāgνaā,

gµν = gµ āag
ν
b̄bω

abωāb̄
= gµ āag

ν āa,

gāab̄b := gµ āagµb̄b = ωabωāb̄,

gaābb̄
:= gµaāgµbb̄

= ωabωāb̄ (A.15)

where the above expressions involving the symbols gāab̄b and gaābb̄ can be viewed as definitions.
In general a spacetime index µ will correspond to a composite spinor pair of indices aā or āa. It

should therefore be evident how spacetime tensors can be constructed from spin-tensors. Regarding
the representation theory of the Lorentz group L

↑

+, the carrier space of the (i, i)th representation of
Sp(2,C) can be viewed as the space of totally symmetric tensors over spacetime with components
h(µ1...µ2i) or h(µ1...µ2i). Given the above translation scheme it is clear that this is consistent with the
specification given previously for the general (i, j) representations of Sp(2,C) in terms of spin-tensors.

Appendix B. Proof that the generalised BC implies there is no current normal to the plates

We wish to prove that for an arbitrary spin-n/2 field there exists a BC, which implies
nµ(0, d)jµ(0, d; n) = 0 where the local current jµ(n) is defined in Eq. (28). We consider the plate
at x3 = 0 for simplicity. The outward pointing normal to the surface x3 = 0 has components
nµ = (0, 0, 0,−1). The generalised BC we choose (for x3 = 0) is according to Eq. (29)

σ 3
ā1a1 . . . σ

3
ānanψ

a1...an = ψā1...ān , (B.1)

and we wish to show that this implies

nµ(0)jµ(0) = σ 3
ā1a1σ

0
ā2a2 . . . σ

0
ānanψ

a1...anψ ā1...ān = 0. (B.2)

Now, Eq. (B.1) holds if and only if

ωā1 ā′1σ 3
ā′1a1

. . . ωān ā′nσ 3
ā′nanψ

a1...an = ψ ā1...ān . (B.3)

Substituting in place of the factorψ ā1...ān contained in jµ(0) the left-hand-side of Eq. (B.3), we obtain

nµ(0)jµ(0) = σ 3
ā1a1σ

0
ā2a2 . . . σ

0
ānan(ωσ

3)ā1 a′1
. . . (ωσ 3)ān a′nψ

a′1...a
′
nψa1...an

= (σ 3ωσ 3)a1a′1
(ωσ 3)a2a′2

. . . (ωσ 3)ana′nψ
a′1...a

′
nψa1...an (B.4)

where σ 3
= (σ 3)T and σ 0

= (σ 0)T = I have been used. Using 2σ 3ωσ 3
= −ω and ωσ 3

= −σ 1,
Eq. (B.4) gives

2nµ(0)jµ(0) = ∓ωa1a′1
σ 1

a2a′2
. . . σ 1

ana′nψ
a′1...a

′
nψa1...an

= ∓σ 1
a2a′2

. . . σ 1
ana′nψ

a′1...a
′
nψa′1

a2...an

= ±σ 1
a2a′2

. . . σ 1
ana′nψa′1

a′2...a
′
nψa′1a2...an (B.5)
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where the − sign on the top line corresponds to n-odd (fermions) and the + sign to n-even (bosons).
Relabelling the indices ai ↔ a′

i, i = 2, . . . , n and using σ 1
= (σ 1)T the last line above gives

2nµ(0)jµ(0) = ±σ 1
a2a′2

. . . σ 1
ana′nψ

a′1...a
′
nψa′1

a2...an , (B.6)

which is the negative of the second line in Eq. (B.5). This proves that the generalised BC in Eq. (B.1)
implies nµ(0)jµ(0) = 0.
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