ON POWERS AND CENTERS OF CHORDAL GRAPHS

Renu LASKAR* and Douglas SHIER*

Department of Mathematical Sciences, Clemson University, Clemson, SC 29631, USA

Received 3 March 1981
Revised 4 May 1982

A graph is chordal if every cycle of length strictly greater than three has a chord. A necessary and sufficient condition is given for all powers of a chordal graph to be chordal. In addition, it is shown that for connected chordal graphs the center (the set of all vertices with minimum eccentricity) always induces a connected subgraph. A relationship between the radius and diameter of chordal graphs is also established.

1. Introduction

Consider an undirected graph $G = (V, E)$ with vertex set V and edge set E. It will be assumed that G has no loops or multiple edges. A graph G is chordal if every cycle in G of length ≥ 3 possesses a chord: namely, an edge joining two non-consecutive vertices on the cycle.

The class of chordal graphs includes trees, k-trees, complete graphs and interval graphs. Chordal graphs are known to be perfect [8] and they play an important role in elimination schemes for sparse systems of linear equations [13]. Certain problems that are known to be NP-hard for general graphs can be solved in polynomial time for chordal graphs [7].

This paper studies certain properties of the powers of chordal graphs as well as the centers of chordal graphs. Previous investigations into these and related topics can be found in [1, 2, 5, 6, 10, 11, 12].

2. Powers of chordal graphs

For any graph $G = (V, E)$ and integer $k \geq 1$, the graph G^k has vertex set V and edges joining vertices $x, y \in V$ whenever $d(x, y) \leq k$, where $d(x, y)$ is the shortest distance in G between x and y.

In an earlier paper, the authors [11] noted that the square of a chordal graph is not necessarily chordal. The graph of Fig. 1 furnishes the smallest such example, where the dotted lines indicate a chordless cycle in G^2. In the same paper the authors established that if G is chordal, so are G^3 and G^5. It was also conjectured

* The authors were supported in part by National Science Foundation Grant #ISP-8011451 (EPSCOR).
that any odd power of a chordal graph is again chordal. This conjecture has recently been shown to be true by Balakrishnan and Paulraja [2].

Theorem 1 (Balakrishnan and Paulraja [2]). *If G is chordal, then so is \(G^{2k+1} \) for any \(k \geq 1 \).*

However, Duchet gives a stronger result.

Theorem 2 (Duchet [5]). *If \(G^k \) is chordal, then so is \(G^{k+2} \) for any \(k \geq 1 \).*

Thus, from the above result, it follows that if \(G \) and \(G^2 \) are both chordal, then all powers of \(G \) are chordal. Now, the question arises when is \(G^2 \) chordal?

Balakrishnan and Paulraja give a sufficient condition for \(G^2 \) to be chordal for any graph \(G \).

Theorem 3 ([1]). *If \(G \) is any graph having no induced subgraphs isomorphic to \(K_{1,3} \) or \(C_5 \), then \(G^2 \) is chordal.*

In this section, we give a necessary and sufficient condition for the square of a chordal graph to be chordal. This then provides a necessary and sufficient condition for all powers of a chordal graph to be chordal.

Before proving the main theorem, we list a well-known property of chordal graphs, introduce certain definitions, and state a lemma that derives from theorem 2.1 of [11].

Property 1. *Let \(C \) be a cycle of a chordal graph \(G \). Then for each edge \(uv \in C \), there

![Fig. 1. A chordal graph whose square is not chordal.](image-url)
exists a w of C, such that wuv is a triangle: that is, uw, vw and wu are distinct edges of G.

Definition 1. A cycle $C_n = (v_1, v_2, ..., v_n)$ is a **chordal cycle** if the induced subgraph (C_n) is chordal.

Definition 2. A subgraph S_n of G is a **sunflower** if it consists of a chordal cycle $C_n = (v_1, v_2, ..., v_n)$ together with a set of n independent vertices $\{u_1, u_2, ..., u_n\}$ such that for each i, u_i is adjacent to only v_i and v_j, where $j = i - 1 \mod n$.

Definition 3. A sunflower S_n of G is called a **suspended sunflower** in G if there exists a vertex $w \in S_n$, such that w is adjacent to at least one pair of vertices u_j and u_k, where $j \neq k \pm 1 \mod n$. Fig. 2 provides an example of a suspended sunflower S_7.

![Fig. 2. A suspended sunflower S_7.](image)
Lemma 1 ([11]). Suppose G is chordal but G^2 is not chordal, and let $C_n = (u_1, u_2, \ldots, u_n)$, $n \geq 4$, be a chordless cycle in G^2. Then no edge of C_n is an edge of G.

Theorem 4. If G is chordal and G^2 is not chordal, then G has at least one sunflower S_n, $n \geq 4$, which is not suspended in G.

Proof. Let $C_n = (u_1, u_2, \ldots, u_n)$, $n \geq 4$, be a chordless cycle in G^2. By the above lemma no edge of C_n is an edge of G, i.e., every edge u_iu_{i+1} in C_n is an edge of G^2 and thus can be extended to a two-step path $u_iu_1u_{i+1}$ in G. Extending in this way all the edges of C_n in G^2, we get a cycle $C_n' = (u_1, u_2, u_3, \ldots, u_n)$. All the v_i's are distinct, and disjoint from the u_j's, otherwise C_n will have a chord in G^2. Note that no u_i is adjacent to u_j in G. Also v_i is adjacent in G to u_i and u_{i+1} (mod n) and to no other u's, otherwise we get a chord of C_n in G^2. Consider the edge u_iu_j; by Property I, there must exist a vertex in C_n' joined in G to u_i and v_j. The only such possible vertex then is u_{i-1} (mod n). Hence, $v_1v_2v_3\ldots v_nv_1 \in E$ and so $Z = (u_1, u_2, \ldots, u_n)$ is a cycle in G. Since G is chordal, Z must be a chordal cycle. Thus Z together with $\{u_1, u_2, \ldots, u_n\}$ forms a sunflower S_n, $n \geq 4$. Also, since (u_1, u_2, \ldots, u_n) is a chordless cycle in G^2, no pair u_j, u_k of vertices with $j \neq k \pm 1$ (mod n) can be adjacent in G^2. Hence, no such pair u_j and u_k is adjacent in G to any vertex w in G. Thus, the sunflower S_n is not suspended. The following converse of Theorem 4 is readily verified also.

Theorem 5. If G contains a sunflower S_n, $n \geq 4$, which is not suspended, then G^2 is not chordal.

Combining the above results, we state

Theorem 6. The square of a chordal graph G is chordal iff every sunflower S_n, $n \geq 4$, of G is suspended.

Certain corollaries follow immediately from Theorems 2 and 6.

Corollary 1. If G is chordal with no sunflower, then G^k is chordal for all $k \geq 1$.

Corollary 2. If G is a tree, then G^k is chordal for all $k \geq 1$.

G is called a block graph if each block of G induces a complete subgraph. Since a block graph G is chordal and does not contain a sunflower, we have the following result, obtained independently by Jamison [10].

Corollary 3. If G is a block graph, then G^k is chordal for all $k \geq 1$.

3. Centers of chordal graphs

In this section we establish properties of the center of a chordal graph \(G = (V, E) \) and demonstrate a relationship between the radius and diameter of chordal graphs. First, some appropriate terminology is established. The eccentricity \(e(u) \) of any vertex \(u \in V \) is given by

\[
e(u) = \max\{d(x, u) : x \in V\}.
\]

The radius \(r(G) \) of graph \(G \) is the minimum eccentricity of any vertex in \(G \), and the center \(C(G) \) is the set of all vertices \(u \) such that \(e(u) = r(G) \). The diameter \(d(G) \) is the maximum eccentricity of any vertex in \(G \).

A set \(S \subseteq V \) is an \(x-y \) separator for distinct nonadjacent vertices \(x, y \notin S \) if \(x \) and \(y \) are in different connected components of the subgraph induced by \(V - S \). In other words, every path between \(x \) and \(y \) contains a vertex of \(S \). It has been shown that in a chordal graph every minimal \(x-y \) separator induces a complete subgraph [4, 13].

Theorem 7. If \(G \) is a connected chordal graph, then the induced subgraph \(\langle C(G) \rangle \) is connected.

Proof. We may assume that \(C(G) \neq V \), since otherwise the result holds trivially. Suppose that \(\langle C(G) \rangle \) is not connected, so there exist distinct vertices \(c_1, c_2 \in C(G) \) that are not connected by a path in \(C(G) \). Thus \(Z = V - C(G) \neq \emptyset \) is a \(c_1-c_2 \) separator, and let \(Z_0 \subseteq Z \) be a minimal \(c_1-c_2 \) separator. By the result cited above \(\langle Z_0 \rangle \) is complete.

Since \(G \) is connected, there is a path in \(G \) joining \(c_1 \) and \(c_2 \), and it must contain some \(z_0 \in Z_0 \). Let \(v \in V \) be such that \(e(z_0) = d(v, z_0) \), and let \(P(v, z_0) \) denote a shortest path between \(v \) and \(z_0 \), of length \(e(z_0) \). Similarly, let \(P(v, c_1) \) and \(P(v, c_2) \) denote shortest paths from \(v \) to \(c_1 \), and \(v \) to \(c_2 \), respectively. Suppose \(a \) is the last common vertex on paths \(P(v, z_0) \) and \(P(v, c_1) \), and \(b \) is the last common vertex on paths \(P(v, z_0) \) and \(P(v, c_2) \).

Thus, \(P(c_1, a) \cup P(a, b) \cup P(b, c_2) \) is a path joining \(c_1 \) and \(c_2 \), and hence must contain some vertex \(z_1 \in Z_0 \) (possibly \(z_1 = z_0 \)). In any event, since \(\langle Z_0 \rangle \) is complete, \(d(z_1, z_0) \leq 1 \). Now either \(z_1 \in P(v, c_1) \) or \(z_1 \in P(v, c_2) \). In the former case then using the triangle inequality and the fact that \(z_1 \neq c_1 \) \([Z_0 \cap C(G) = \emptyset] \) gives

\[
e(z_0) = d(v, z_0) \leq d(v, z_1) + d(z_1, z_0) \leq d(v, z_1) + 1
\]

Now since \(c_1 \in C(G) \) is a vertex of minimum eccentricity, then also \(z_0 \in C(G) \). This however is impossible because \(z_0 \in Z_0 \subseteq Z = V - C(G) \). In a similar way, the case \(z_1 \in P(v, c_2) \) leads to a contradiction, whence the theorem is proved.

It is well known that the center of any graph lies in a block [3]. In general, though,
the induced subgraph of the center need not necessarily be connected. Fig. 3 exhibits
a graph G where $C(G) = \{v_3, v_4\}$ and $\langle C(G) \rangle$ is not connected. Theorem 7 asserts
that if G is chordal and connected, this situation cannot occur. In the special case
of a tree, the center consists of either a single vertex or two adjacent vertices [9] and
so is connected, as predicted by the above theorem.

Define sets $C^0(G) = V$ and $C^k(G) = C(\langle C^{k-1}(G) \rangle)$ for $k \geq 1$. Then by Theorem 7,
$\langle C^k(G) \rangle$ is chordal and connected for all $k \geq 1$ if G is chordal and connected. Because
$V \supseteq C(G) \supseteq C^2(G) \supseteq \cdots$, the following corollary to Theorem 7 is immediate.

Corollary 4. If G is chordal and connected, then there exists a smallest $k \geq 1$ such
that $\langle C^k(G) \rangle = \langle C^{k-1}(G) \rangle$ is chordal and connected.

A (connected chordal) graph G is said to be self-centered if $k = 1$ in the above cor-
ollary: that is, $G = \langle C(G) \rangle$. Clearly, K_n is self-centered for all $n > 1$ since every
vertex has eccentricity 1. Fig. 4 illustrates a self-centered graph where every vertex
has eccentricity 2. Equivalently, $r(G) = d(G) = 2$ for this graph.

It is well known [3] that $r(G) \leq d(G) \leq 2r(G)$ holds for any connected graph G.
It will be shown (in Theorem 8) that for connected chordal graphs, $2r(G) - 3 \leq
d(G) \leq 2r(G)$. First, it will be useful to make the following observation.

Lemma 2. Suppose $\langle S \rangle$ is a complete induced subgraph of $G = (V, E)$. Given
$s_1, s_2 \in S$, then $|d(t, s_1) - d(t, s_2)| \leq 1$ for all $t \in V$, and $|e(s_1) - e(s_2)| \leq 1$.

Proof. Since $\langle S \rangle$ is complete, $d(s_1, s_2) \leq 1$, and the stated results follow immediate-
ly from the triangle inequality.

Theorem 8. If G is chordal and connected, then
\[
\frac{1}{2} d(G) \leq r(G) \leq \left\{\frac{1}{2} d(G)\right\} + 1.
\]

Fig. 3. Graph G with $\langle C(G) \rangle$ not connected.
Proof. Inasmuch as the first inequality holds for all graphs [3], we need only demonstrate the second inequality. Since this inequality holds when G is complete $[r(G) = d(G) = 1]$, it will be supposed that G is not complete.

Let a and b be a pair of diametrical vertices: i.e., $d(a, b) = d(G) = D$. Suppose v is a ‘midpoint’ of some shortest path $P(a, b)$ between a and b: namely, $v \in P(a, b)$ and

$$d(v, a) \geq \frac{1}{2} D, \quad d(v, b) \geq \frac{1}{2} D.$$ \hspace{1cm} (1)

Since a and b are not adjacent (G is not complete) and the removal of v separates a and b along $P(a, b)$, there exists a minimal a-b separator set S containing v. Let A and B be distinct connected components of $(V - S)$ with $a \in A$ and $b \in B$. Since G is chordal then $\langle S \rangle$ is complete. We claim that

$$d(x, v) \leq \frac{1}{2} D + 1, \quad x \in V. \hspace{1cm} (2)$$

If $x \in S$, then since $\langle S \rangle$ is complete $d(x, v) \leq 1 \leq \frac{1}{2} D + 1$ and so (2) holds. Assume without loss of generality that $x \in B$. Because x and b are in different connected components of $\langle V - S \rangle$, the shortest path $P(x, b)$ must contain some vertex $w \in S$.

Case I: $d(v, b) \leq d(w, b)$.
Since $d(x, v) \leq d(x, w) + d(w, v) \leq d(x, w) + 1$, then using the triangle inequality, the fact that $\langle S \rangle$ is complete and relation (1) give

$$d(x, v) + d(v, b) \leq d(x, w) + d(w, b) + 1 = d(x, b) + 1 \leq D + 1,$$

$$d(x, v) \leq D + 1 - d(v, b) \leq D + 1 - \frac{1}{2} D = \left\lfloor \frac{1}{2} D \right\rfloor + 1.$$

Case II: $d(x, v) \leq d(x, w)$.
A similar argument gives $d(v, b) \leq d(w, b)$, and $d(x, v) + d(v, b) \leq d(x, b) + 1 \leq D + 1$. This again implies as in Case I that $d(x, v) \leq \left\lfloor \frac{1}{2} D \right\rfloor + 1$.

Case III: $d(v, b) = d(w, b) + 1$, $d(x, v) = d(x, w) + 1$. Notice that by Lemma 2 either $d(v, b) \leq d(w, b)$ or $d(v, b) = d(w, b) + 1$ holds since $v, w \in S$; likewise, either $d(x, v) \leq d(x, w)$ or $d(x, v) = d(x, w) + 1$. As a result, Case III is the only remaining case to check.

Fig. 4. A self-centered graph G with $r(G) = d(G) = 2$.
Now let e denote the last common vertex on shortest paths $P(a, x)$ and $P(a, u)$, and let f denote the last common vertex on shortest paths $P(x, a)$ and $P(x, w)$.

Subcase III(a). $v \in P(a, x)$.

Since $v \in P(a, x)$, $d(x, v) + d(v, a) = d(x, a) \leq D$. Thus by (1), $d(x, v) \leq D - d(v, a) \leq D - \lfloor \frac{1}{2}D \rfloor = \{ \frac{1}{2}D \}$, and so assertion (2) holds.

Subcase III(b). Vertices e, f, u, w form a triangle of edges in G. In view of the assumption $d(x, v) = d(x, w) + 1$, the only possibility is that $f = w$. Hence

\[d(x, w) + d(w, e) + d(e, a) = d(x, a) \leq D, \]
\[d(x, w) + 1 \leq D - d(e, a) \]
\[= D - (d(v, a) - 1) \leq D - \lfloor \frac{1}{2}D \rfloor + 1 = \lfloor \frac{1}{2}D \rfloor + 1. \]

Subcase III(c). Vertices e, f, u, w induce a cycle of length ≥ 3. More precisely, the union of shortest path segments $P(e, u) \cup P(u, w) \cup P(w, f) \cup P(f, e)$ defines a (simple) cycle C of length ≥ 3. Since edge $uw \in C$, Property I of chordal graphs implies that there must be some vertex $u \neq u, w$ such that $uw \in E, uw \in E$. Let r, s denote vertices on $P(e, u)$ and $P(f, w)$ adjacent to vertices u, w, respectively.

Because $P(e, u)$ and $P(f, w)$ are shortest paths, the only possibilities for vertex u are: $u = s, u = r$ or $u \notin P(e, f)$. The first possibility is precluded by the assumption $d(x, v) = d(x, w) + 1$. In the second possibility

\[d(a, w) \leq d(a, r) + d(r, w) = d(a, r) + 1 = d(a, v), \]
\[d(w, b) = d(v, b) - 1, \]

and using the fact that $v \in P(a, b)$ yields

\[d(a, b) \leq d(a, w) + d(w, b) \leq d(a, v) + d(v, b) - 1 = d(a, b) - 1, \]
a contradiction. The remaining possibility $u \in P(e, f)$ is then the only feasible one. Now we must have either (i) or (ii):

(i) $d(x, u) \leq \lfloor \frac{1}{2}D \rfloor$.

Here, $d(x, u) \leq d(x, u) + d(u, v) = d(x, u) + 1 \leq \lfloor \frac{1}{2}D \rfloor + 1$, and assertion (2) is verified.

(ii) $d(x, u) \geq \lfloor \frac{1}{2}D \rfloor + 1$.

Since $d(a, x) \leq D$ and $u \in P(a, x)$, then $d(a, u) \leq \lfloor \frac{1}{2}D \rfloor - 1$. Thus

\[d(a, w) \leq d(a, u) + d(u, w) = d(a, u) + 1 = \lfloor \frac{1}{2}D \rfloor \leq d(a, u), \]
\[d(w, b) = d(v, b) - 1, \]

whence $d(a, b) \leq d(a, w) + d(w, b) \leq d(a, v) + d(v, b) - 1 = d(a, b) - 1$, a contradiction. So this case cannot occur.

In all possible cases, then, we have shown that relation (2) obtains: $d(x, v) \leq \lfloor \frac{1}{2}D \rfloor + 1$, for all $x \in V$. Therefore, $e(v) \leq \lfloor \frac{1}{2}D \rfloor + 1$ and also $r(G) \leq e(v) \leq \lfloor \frac{1}{2}D \rfloor + 1$ holds, whence the theorem is proved.

Corollary 5. If a chordal graph G is self-centered, then $r(G) = d(G) \leq 3$.
Proof. A self-centered graph G has $r(G) = d(G)$. If $r(G)$ is even, then Theorem 8 gives $r(G) \leq \frac{1}{2}r(G) + 1$ so $r(G) = 2$. If $r(G)$ is odd, Theorem 8 gives $r(G) = 1$ or $r(G) = 3$.

References