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Abstract
In this paper, we study the computational method for solving the variational
inequality problem with the separable structure and linear constraints. We propose a
new relaxed inexact criterion and a prediction-correction approach in the inexact
splitting parallel augmented Lagrangian methods, which make it easier to solve the
resulting subproblems. Under a mild condition, we prove the global convergence and
establish a worst-case convergence rate for the new inexact algorithm. Some
numerical experiments show the effectiveness and feasibility of the new inexact
method.
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1 Introduction
In this paper, we consider the following variational inequality problem (VI) with the sep-
arable structure:

(
v – v∗)T Q

(
v∗)≥ , ∀v ∈ �, ()

with

v =

(
x
y

)

, Q(v) =

(
f (x)
g(y)

)

, and

� :=
{

v = (x, y) | Ax + By = b, x ∈X , y ∈ Y
}

,

()

where X ⊆ R
n and Y ⊆ R

n are nonempty, closed, and convex sets; A ∈ R
m×n and B ∈

R
m×n are given matrices; f : X → R

n and g : Y → R
n are given monotone mappings;

b ∈R
m is a given vector and n + n = n.

The variational inequality problems with separable structures and linear constraints ()-
() have wide applications in some fields; see [–]. For solving the VIP, Glowinski and
Marrocco [] first proposed a Douglas-Rachford alternating direction method of mul-
tiplies (ADMM), which can decompose the original problems into subproblems with a
smaller scale. The ADMM and its variants have been shown to be good efficient methods
for many problems. However, the ADMM may fail since it is very difficult to solve the sub-
problems exactly in many practical applications. So, some strategies have been proposed
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to overcome this drawback of the methods mentioned above, such as adding a proximal
regularization term and transforming the nonlinear equation. For more details, one can
refer to [, ].

In [], He proposed a parallel splitting augmented Lagrangian method (PSALM) for
solving the VI ()-(). The iterative process of the PSALM can be described to solve the
following subproblems:

x̃ ∈X ,
〈
x – x̃, f (̃x) – AT[λk – H

(
Ãx + Byk – b

)]〉≥ , ∀x ∈X , ()

ỹ ∈ Y ,
〈
y – ỹ, g (̃y) – BT[λk – H

(
Axk + B̃y – b

)]〉≥ , ∀y ∈ Y , ()

where λk ∈ R
m is the Lagrange multiplier associated with the constraint in () and H ∈

R
m×m is a positive definite matrix which plays the role of the penalty parameter for the

violation of the linear constraint in (). The PSALM differs from other splitting methods,
since the subproblems () and () can be computed in parallel. The advantage of paral-
lel computation is easy implementation and attractive efficiency when the problems have
a large scale. However, it is also very difficult to solve the subproblems () and () un-
less f (x) and g(y) have very particular structures. In [], an inexact splitting parallel aug-
mented Lagrangian method (IPSALM) was proposed to solve the subproblems () and ()
approximately so that their solutions satisfy a certain inexact criterion and are closed form
ones. The prediction step is generated, for ν > , by

x̂k = PX

{
xk –


rk

[
f
(
xk) – AT(λk – Axk + Byk – b

)]
}

, ()

ŷk = PY

{
yk –


sk

[
g
(
yk) – BT(λk – Axk + Byk – b

)]
}

, ()

where rk , sk are chosen to satisfy the following conditions:

∥
∥ξ k

x + AT HA
(
xk – x̂k)∥∥≤ νrk

∥
∥xk – x̂k∥∥ with ξ k

x := f
(
xk) – f

(
x̂k), ()

∥∥ξ k
y + BT HB

(
yk – ŷk)∥∥≤ νsk

∥∥yk – ŷk∥∥ with ξ k
y := g

(
yk) – g

(
ŷk). ()

In [], Zhang et al. proposed another inexact criterion for generating the prediction step,
that is,

〈
xk – x̂k , ξ k

x
〉
+
∥
∥A
(
xk – x̂k)∥∥

H ≤ νrk
∥
∥xk – x̂k∥∥, ()

〈
yk – ŷk , ξ k

y
〉
+
∥
∥B
(
yk – ŷk)∥∥

H ≤ νsk
∥
∥yk – ŷk∥∥. ()

These inexact methods have the common feature that the subproblems or relevant prob-
lems are solved approximately at each iteration. Therefore, the effectiveness of the inexact
methods depends greatly on the involved inexact criteria used to solve the subproblem.

Motivated and inspired by the inexact criteria in [, ], in this paper, we present a
new inexact criterion (see () and ()) to solve the subproblems under a very relaxed
restriction. The new criterion improves the upper bound of 〈xk – x̂k , ξ k

x 〉 + ‖A(xk – x̂k)‖
H

and 〈yk – ŷk , ξ k
y 〉 + ‖B(yk – ŷk)‖

H . Thus, it reduces the computational load of the method
considerably. Simultaneously, we also propose a prediction-correction approach in our al-
gorithm analogous to [–]. Numerical applications to the multiple-sets split feasibility
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problem (MSFP) and traffic equilibrium demonstrate that the proposed algorithm with
the new criterion is very effective and feasible.

The rest of the paper is organized as follows. In Section , we summarize some concepts
and properties, which are useful for further convergence analysis. In Sections  and , we
present the inexact PSALM algorithm with the new criteria, and its global convergence
and worst-case convergence rate, respectively. Preliminary numerical results of solving the
multiple-sets split feasibility problem and the traffic equilibrium problem are presented
in Section . Finally, we present a summary for our paper in Section .

2 Preliminaries
In this section, we summarize some basic properties and concepts, which will be used in
the coming convergence analysis. Let G be a positive definite matrix. The G matrix norm
of v ∈R

n is defined by ‖v‖G :=
√

vT Gv. In particular, ‖v‖ :=
√

vT v is the Euclidean norm of
v ∈R

n. 〈·, ·〉 denotes the inner product in Euclidean spaces.
The following results are the well-known properties of the projection operator which

will be used in the following analysis.

Lemma . Let � ⊂R
n be nonempty, closed, and convex set, and let P�[·] be a projection

operator onto the set � under the Euclidean norm. Then, for any u, v ∈ R
n and w ∈ �, we

have
() 〈u – P�[u], P�[u] – w〉 ≥ ;
() ‖P�[u] – P�[v]‖ ≤ 〈u – v, P�[u] – P�[v]〉;
() ‖P�[u] – w‖ ≤ ‖u – w‖ – ‖u – P�[u]‖.

Lemma . [] Let � ⊂R
n be a nonempty, closed, and convex set. Let P�(·) be the projec-

tion operator onto � under the Euclidean norm. Then u∗ is a solution of VI (�, F) if and
only if it satisfies

u∗ = P�

[
u∗ – βF

(
u∗)], ∀β > . ()

We recall the definition of monotone and strongly monotone mappings.

Definition . Let F be a mapping defined on the closed convex set � ⊂R
n. Then

(a) F is called monotone on � if

〈
u – v, F(u) – F(v)

〉≥ , ∀u, v ∈ �;

(b) F is called strongly monotone with the modulus μ >  on � if

〈
u – v, F(u) – F(v)

〉≥ μ‖u – v‖, ∀u, v ∈ �;

(c) F is called Lipschitz continuous on � if there exists a constant L >  such that

∥
∥F(u) – F(v)

∥
∥≤ L‖u – v‖, ∀u, v ∈ �.
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In this paper, by attaching a Lagrange multiplier λ ∈ R
m to the linear constraint

Ax + By = b, one obtains a compact form of the problem ()-():

〈
w′ – w, F(w)

〉≥ , ∀w′ ∈W , ()

where

W := X ×Y ×Rm and F(w) :=

⎛

⎜
⎝

f (x) – ATλ

g(y) – BTλ

Ax + By – b

⎞

⎟
⎠ . ()

Note that the mapping F is monotone whenever f and g are monotone. In the sequel, the
problem ()-() will be denoted by MVI (W , F).

Remark . Because of attaching the Lagrange multiplier λ ∈ R
m to the linear constraints

Ax + By = b, the VI ()-() amounts to finding (x, y,λ) ∈X ×Y ×R
m such that we have

⎧
⎪⎨

⎪⎩

(x′ – x)T [f (x) – ATλ] ≥ ,
(y′ – y)T [g(y) – BTλ] ≥ ,
Ax + By – b = ,

∀(x′, y′) ∈X ×Y .

So, the above formula is equivalent to the MVI (W , F) ()-().

Throughout the paper, we make the following assumptions:
(A) It has a closed form solution to compute the projection onto the convex sets X

and Y under Euclidean norm.
(A) The mappings f (x) and g(y) are Lipschitz continuous on X and Y , respectively.

However, the Lipschitz constants are not necessarily known.
(A) The solution set W∗ of the MVI (W , F) is nonempty.

3 The inexact PSALM with new inexact criterion for MVI
In this section, we propose the inexact method for solving MVI (W , F). To simplify our
coming analysis, we denote some matrices

Rk = rkIn , Sk = skIn , and Gk =

⎛

⎜
⎝

Rk

Sk

–A –B H–

⎞

⎟
⎠ , ()

where rk >  and sk > .
Now, we mention our algorithm.
The inexact PSALM with new inexact criterion for MVI

Step  Given ν ∈ (, ), μ > , γ ∈ (, ), ‖AT HA‖/ν ≥ r > , ‖BT HB‖/ν ≥ s > , ε > .
Let H ∈ R

m×m be positive definite, w = (x, y,λ) ∈R
n ×R

n ×R
m, and k = .

Step  Prediction step: For a given wk = (xk , yk , zk), Generate the trial iterate x̂k , ŷk via S.
and S., simultaneously.

S.
λ̂k = λk – H

(
Axk + Byk – b

)
. ()
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S. Find the smallest nonnegative integer ik such that rk = μik r and

x̂k = PX

[
xk –


rk

[
f
(
xk) – AT λ̂k]

]
()

which satisfies

〈
xk – x̂k , ξ k

x
〉
+
∥∥A
(
xk – x̂k)∥∥

H

≤ ν

(
rk
∥
∥xk – x̂k∥∥ +

∥∥
∥∥Axk – Ax̂k –




H–(λk – λ̂k)
∥∥
∥∥



H

)
. ()

S. Find the smallest nonnegative integer jk such that sk = μjk s and

ŷk = PY

[
yk –


sk

[
g
(
yk) – BT λ̂k]

]
()

which satisfies

〈
yk – ŷk , ξ k

y
〉
+
∥∥B
(
yk – ŷk)∥∥

H

≤ ν

(
sk
∥
∥yk – ŷk∥∥ +

∥∥
∥∥Byk – Bŷk –




H–(λk – λ̂k)
∥∥
∥∥



H

)
. ()

Step  Convergence verification: if ‖wk – ŵk‖ ≤ ε, then stop. ŵk = (x̂k , ŷk , λ̂k) is an accept-
able approximate solution.

Step  Correction step: generate the new iterate wk+ via

Form I:
wk+

I = wk – γα∗
k d
(
wk , ŵk , ξ k), ()

where

d
(
wk , ŵk , ξ k) = Gk

(
wk – ŵk) – ξ k with ξ k =

⎛

⎜
⎝

ξ k
x

ξ k
y



⎞

⎟
⎠ ()

or

Form II:
wk+

II = PW
[
wk – γα∗

k F
(
ŵk)]. ()

Here, the set W , the mapping F(w) and Gk are defined in () and (), respectively,
the step size αk is determined by

α∗
k =

φ(wk , ŵk , ξ k)
‖d(wk , ŵk , ξ k)‖ ()

and

φ
(
wk , ŵk , ξ k) :=

〈
wk – ŵk , d

(
wk , ŵk , ξ k)〉. ()

Set k := k +  and go to Step .
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Remark . The prediction step of the proposed algorithm differs from both that of the
method in [] and that of the method in [] in that we adopt a new criterion. Since f (x)
and g(y) are Lipschitz continuous with constant Lf and Lg , respectively, we have ‖ξ k

x ‖ ≤
Lf ‖xk – x̂k‖ and ‖ξ k

y ‖ ≤ Lg‖yk – ŷk‖. Using the Cauchy-Schwarz inequality, we have

〈
xk – x̂k , ξ k

x
〉
+
∥∥A
(
xk – x̂k)∥∥

H ≤ (
Lf +

∥∥AT HA
∥∥)∥∥xk – x̂k∥∥.

Thus, the inequality () holds as long as

rk ≥ Lf + ‖AT HA‖
ν

.

Analogously, the inequality () holds when sk satisfies

sk ≥ Lg + ‖BT HB‖
ν

.

Thus, in the implementation of the our algorithm, we choose, respectively, the values of
rk and sk to satisfy the following conditions:

r ≤ rk ≤ rmax :=
Lf + ‖AT HA‖

ν and s ≤ sk ≤ smax =:
Lg + ‖BT HB‖

ν . ()

Remark . We note that x̂k and ŷk obtained by () and () are actually solutions of the
following VIs, respectively:

〈
x – x̂k , f

(
xk) – AT λ̂k + Rk

(
x̂k – xk)〉≥ , ∀x ∈X , ()

〈
y – ŷk , g

(
yk) – BT λ̂k + Sk

(
ŷk – yk)〉≥ , ∀y ∈ Y . ()

Combing ()-() and ()-(), we have

〈
w – ŵk , F

(
ŵk) – d

(
wk , ŵk , ξ k)〉≥ , ∀w ∈W . ()

4 Convergence
4.1 The global convergence
In this section, we establish the convergence of our algorithm.

Lemma . Let the sequences ŵk = (x̂k , ŷk , λ̂k) be generated by the prediction step from the
given point wk = (xk , yk ,λk). If ‖ŵk – wk‖ = , then ŵk is a solution of MVI (W , F).

Proof Since ‖ŵk – wk‖ = , it means that x̂k = xk , ŷk = yk , and λ̂k = λk . So, from () and
()-(), we obtain Ax̂k + Bŷk – b =  and

〈x′ – x̂k , f (x̂k) – AT λ̂k〉 ≥ , ∀x′ ∈X ,

〈y′ – ŷk , g(ŷk) – BT λ̂k〉 ≥ , ∀y′ ∈ Y ,

from which it follows that ()-() hold for ŵk . The proof is completed. �

From Lemma ., we terminate the algorithm if ‖wk – ŵk‖ ≤ ε holds for some k.
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Lemma . Let φ(wk , ŵk) be the metrical function defined in (). Then, for any k ≥ , we
have

φ
(
wk , ŵk , ξ k)≥ δ( – ν)


(∥∥wk – ŵk∥∥ +

∥∥Ax̂k + Bŷk – b
∥∥), ()

where δ := min{r, s,λm(H–),λm(H)}, and λm(H–) and λm(H) denote the smallest eigen-
value of H– and H , respectively.

Proof By the definition of φ(wk , ŵk , ξ k), we get

φ
(
wk , ŵk , ξ k) =

〈
wk – ŵk , d

(
wk , ŵk , ξ k)〉

=
∥∥xk – x̂k∥∥

Rk
–
〈
Axk – Ax̂k , ξ k

x
〉
+
∥∥yk – ŷk∥∥

Sk
–
〈
Byk – Bŷk , ξ k

y
〉

–
〈
Axk – Ax̂k ,λk – λ̂k 〉 –

〈
Byk – Bŷk ,λk – λ̂k 〉 +

∥∥λk – λ̂k∥∥
H–

=
∥∥xk – x̂k∥∥

Rk
+
∥
∥∥
∥Axk – Ax̂k –




H–(λk – λ̂k)
∥
∥∥
∥



H

–
(〈

Axk – Ax̂k , ξ k
x
〉
+
∥
∥Axk – Ax̂k∥∥

H

)

+
∥
∥yk – ŷk∥∥

Sk
+
∥∥
∥∥Byk – Bŷk –




H–(λk – λ̂k)
∥∥
∥∥



H

–
(〈

Byk – Bŷk , ξ k
y
〉
+
∥∥Byk – Bŷk∥∥

H

)
+



∥∥λk – λ̂k∥∥

H– .

Using the inexact criteria ()-(), (‖a‖
H + ‖b‖

H ) ≥ ‖a + b‖
H , and the definition of δ, we

have

φ
(
wk , ŵk , ξ k) ≥ ( – ν)

(∥∥xk – x̂k∥∥
Rk

+
∥
∥∥
∥Axk – Ax̂k –




H–(λk – λ̂k)
∥
∥∥
∥



H

)

+ ( – ν)
(∥∥yk – ŷk∥∥

Sk
+
∥
∥∥
∥Byk – Bŷk –




H–(λk – λ̂k)
∥
∥∥
∥



H

)

+


∥∥λk – λ̂k∥∥

H–

≥ ( – ν)
(∥∥xk – x̂k∥∥

Rk
+
∥∥yk – ŷk∥∥

Sk

)
+



∥∥λk – λ̂k∥∥

H–

+
 – ν


∥
∥Axk – Ax̂k + Byk – Bŷk – H–(λk – λ̂k)∥∥

H

≥  – ν


(∥∥xk – x̂k∥∥

Rk
+
∥
∥yk – ŷk∥∥

Sk
+
∥
∥λk – λ̂k∥∥

H– +
∥
∥Ax̂k + Bŷk – b

∥
∥

H

)

≥ δ( – ν)


(∥∥ŵk – wk∥∥ +
∥
∥Ax̂k + Bŷk – b

∥
∥).

The proof is completed. �

Lemma . Let α∗
k be defined in (). Then, for any k ≥ , we get α∗

k ≥ c > .

Proof By the analysis in Remark ., we have

∥∥ξ k
x
∥∥≤ Lf

∥∥xk – x̂k∥∥ and
∥∥ξ k

y
∥∥≤ Lg

∥∥yk – ŷk∥∥.
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Moreover, it follows from () that ∀k ≥ 

∥
∥Gk

(
wk – ŵk)∥∥ = rk

∥
∥xk – x̂k∥∥ + sk

∥
∥yk – ŷk∥∥

+
∥
∥Axk – Ax̂k + Byk – Bŷk – H–(λk – λ̂k)∥∥

≤ rmax

∥∥xk – x̂k∥∥ + smax

∥∥yk – ŷk∥∥ +
∥∥Ax̂k + Bŷk – b

∥∥.

Thus, there exists a positive constant C such that

∥∥d
(
wk , ŵk)∥∥ =

∥∥Gk
(
wk – ŵk) – ξ k∥∥

≤ ∥
∥Gk

(
wk , ŵk)∥∥ +

∥
∥ξ k∥∥

≤ C
(∥∥xk – x̂k∥∥ +

∥
∥yk – ŷk∥∥ +

∥
∥Ax̂k + Bŷk – b

∥
∥)

≤ C
(∥∥wk – ŵk∥∥ +

∥∥Ax̂k + Bŷk – b
∥∥), ()

where C := max{rmax, smax, Lf , Lg , }. So, according to () and () and the Cauchy-
Schwarz inequality, we obtain

α∗
k =

φ(wk , ŵk , ξ k)
‖d(wk , ŵk , ξ k)‖ ≥ c :=

δ( – ν)
C > . �

Before proving the convergence of our algorithm, we explain why we choose the inexact
criterion and the step size αk given in (). Let w∗ = (x∗, y∗,λ∗) be a solution of MVI ()-
(). In order to find the proper step size αk for correct step, by wk+

I (α) and wk+
II (α) we

denote the correction form I and II with the undetermined step size, respectively, i.e.

wk+
I (α) := wk – αd

(
wk , ŵk , ξ k) ()

and

wk+
II (α) := PW

[
wk – αF

(
ŵk)]. ()

Moreover, we measure the improvement obtained by the correction step as follows:

ψ(α) =
∥∥wk – w∗∥∥ –

∥∥wk+(α) – w∗∥∥. ()

Naturally, we choose the αk , which maximizes the function ψ(α), as the step size of the
correct step.

Theorem . Let wk+(α) be the correction step () or () with an undetermined step
size, and ψ(α) be defined in (). Then

ψ(α) ≥ αφ
(
wk , ŵk , ξ k) – α∥∥d

(
wk , ŵk , ξ k)∥∥, ()

where d(wk , ŵk , ξ k) and φ(wk , ŵk , ξ k) are defined in () and (), respectively.
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Proof We break our proof into two cases for the correct form I and II, respectively.
(I) First, we prove the assertion for the first correction form I. Since

ψ(α) =
∥
∥wk – w∗∥∥ –

∥
∥wk+(α) – w∗∥∥

=
∥∥wk – w∗∥∥ –

∥∥wk – αd
(
wk , ŵk , ξ k) – w∗∥∥

= α
〈
wk – w∗, d

(
wk , ŵk , ξ k)〉 – α∥∥d

(
wk , ŵk , ξ k)∥∥,

we only need to prove the following inequality:

〈
wk – w∗, d

(
wk , ŵk , ξ k)〉≥ φ

(
wk , ŵk , ξ k) =

〈
wk – ŵk , d

(
wk , ŵk , ξ k)〉.

In fact, by using Lemma ., we can change the inequality () into an equality:

ŵk = PW
[
ŵk –

[
F
(
ŵk) – d

(
wk , ŵk , ξ k)]].

Setting u = ŵk – [F(ŵk) – d(wk , ŵk , ξ k)] and w = w∗ in Lemma .(), we get

〈
ŵk – w∗, ŵk –

[
F
(
ŵk) – d

(
wk , ŵk , ξ k)] – ŵk 〉≥ ,

that is,

〈
ŵk – w∗, d

(
wk , ŵk , ξ k)〉≥ 〈

ŵk – w∗, F
(
ŵk)〉. ()

Note that w∗ ∈W∗ and the mapping F(w) is monotone onW . So, by () and the definition
of φ(wk , ŵk , ξ k), we obtain

〈
wk – w∗, d

(
wk , ŵk , ξ k)〉 ≥ 〈

wk – ŵk , d
(
wk , ŵk , ξ k)〉 +

〈
ŵk – w∗, F

(
ŵk)〉

≥ φ
(
wk , ŵk , ξ k),

which indicates that () holds for the correction form I.
(II) Now, we prove the assertion for the second correction form II. From (), we obtain

〈
w – ŵk , F

(
ŵk)〉≥ 〈

w – ŵk , d
(
wk , ŵk , ξ k)〉.

Then it follows from w∗ ∈W , the correction form II and Lemma .() that

∥∥wk+(α) – w∗∥∥ ≤ ∥∥wk – αF
(
ŵk) – w∗∥∥ –

∥∥wk – αF
(
ŵk) – wk+(α)

∥∥.

Consequently, we have

ψ(α) =
∥∥wk – w∗∥∥ –

∥∥wk+(α) – w∗∥∥

≥ ∥
∥wk – w∗∥∥ +

∥
∥wk – αF

(
ŵk) – wk+(α)

∥
∥ –

∥
∥wk – αF

(
ŵk) – w∗∥∥

=
∥∥wk – wk+(α)

∥∥ + α
〈
wk+(α) – w∗, F

(
ŵk)〉

≥ ∥∥wk – wk+(α)
∥∥ + α

〈
wk+(α) – ŵk , F

(
ŵk)〉
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≥ ∥∥wk – wk+(α)
∥∥ + α

〈
wk+(α) – ŵk , d

(
wk , ŵk , ξ k)〉

=
∥∥wk – αd

(
wk , ŵk , ξ k) – wk+(α)

∥∥ + αφ
(
wk , ŵk , ξ k) – α∥∥d

(
wk , ŵk , ξ k)∥∥,

which implies that () holds for the correction form II. The proof is completed. �

From Theorem ., we may use the value of the maximum point α∗
k of the lower bound

function h(α) = αφ(wk , ŵk , ξ k) – α‖d(wk , ŵk , ξ k)‖ as the approximate solution of α.
Since h(α) is a quadratic function, it reaches its maximum at

α∗
k =

φ(wk , ŵk , ξ k)
‖d(wk , ŵk , ξ k)‖ .

Furthermore, we introduce a relaxation factor γ to the step size, and then set αk = γα∗
k in

the correction step () or (). We obtain

ψ(αk) = ψ
(
γα∗

k
)

= γα∗
k φ
(
wk , ŵk , ξ k) – γ (α∗

k
)∥∥d

(
wk , ŵk , ξ k)∥∥

= γ ( – γ )α∗
k φ
(
wk , ŵk , ξ k).

From Lemma ., we have φ(wk , ŵk , ξ k) >  if wk �= ŵk . Naturally, the step size αk > . So,
the relaxation factor must satisfy γ ∈ (, ) at each iteration. Based on the above analysis,
we obtain the following corollary of Theorem ..

Corollary . Let w∗ ∈W∗ and the sequence {wk} be generated by the proposed algorithm.
Then the following inequality holds:

∥∥wk+ – w∗∥∥ ≤ ∥∥wk – w∗∥∥ – γ ( – γ )α∗
k φ
(
wk , ŵk , ξ k)

≤ ∥∥wk – w∗∥∥ –
cδγ ( – γ )( – v)


∥∥wk – ŵk∥∥.

From Corollary ., we note that {wk} is Fejér monotone. Using a similar proof procedure
to [] and [], we can easily derive the following result.

Theorem . The sequence {wk} as generated by the proposed algorithm converges to a
solution of MVI (W , F).

4.2 Convergence rate
Now, we show the worst-case O(/t) convergence rate for the proposed algorithm.

Lemma . For the given wk ∈ W , let ŵk be generated by the proposed algorithm and the
new iterate is updated by correction form I or II with γ > . Then

(
w – ŵk)T

γα∗
k F
(
ŵk) +



(∥∥w – wk∥∥ –

∥∥w – wk+∥∥)

≥ 

γ ( – γ )φ

(
wk , ŵk , ξ k), ∀w ∈W , ()

where φ(wk , ŵk , ξ k) is defined in ().
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Proof We divide our proof into two parts for correction form I and II, respectively.
(I) Due to ()

(
w – ŵk)T F

(
ŵk)≥ (

w – ŵk)T d
(
wk , ŵk , ξ k), ∀w ∈W , ()

and the correction form I

wk – wk+ = γα∗
k d
(
wk , ŵk , ξ k).

Using the identity

(a – b)T (c – d) =


(‖a – d‖ – ‖a – c‖) +



(‖b – c‖ – ‖b – d‖),

we have

(
w – ŵk)T

γα∗
k F
(
ŵk) ≥ (

w – ŵk)T(wk – wk+)

=


(∥∥w – wk+∥∥ –

∥∥w – wk∥∥)

+


(∥∥wk – ŵk∥∥ –

∥∥wk+ – ŵk∥∥). ()

By the correction form I () and the definition of φ(wk , ŵk , ξ k), we obtain

∥
∥wk – ŵk∥∥ –

∥
∥wk+ – ŵk∥∥

=
∥
∥wk – ŵk∥∥ –

∥
∥wk – ŵk – γα∗

k d
(
wk , ŵk , ξ k)∥∥

= γα∗
k
(
wk – ŵk)T d

(
wk , ŵk , ξ k) – γ (α∗

k
)∥∥d

(
wk , ŵk , ξ k)∥∥

= γ ( – γ )
(
α∗

k
)∥∥d

(
wk , ŵk , ξ k)∥∥

= γ ( – γ )φ
(
wk , ŵk , ξ k). ()

It follows from () and () that () holds for the correction form I.
(II) For the correction form II, we divide firstly (w – ŵk)Tγα∗

k F(ŵk) in the terms

(
wk+ – ŵk)T

γα∗
k F
(
ŵk) and

(
w – wk+)T

γα∗
k F
(
ŵk). ()

First, we deal with the term (wk+ – ŵk)Tγα∗
k F(ŵk). Since the new iterate wk+ ∈ W , sub-

stituting w = wk+ into (), we have

(
wk+ – ŵk)T

γα∗
k F
(
ŵk) ≥ γα∗

k
(
wk+ – ŵk)T d

(
wk , ŵk , ξ k)

= γα∗
k
(
wk – ŵk)T d

(
wk , ŵk , ξ k)

– γα∗
k
(
wk – wk+)T d

(
wk , ŵk , ξ k). ()

Using the definition of step size α, we get

γα∗
k
(
wk – ŵk)T d

(
wk , ŵk , ξ k) = γ

(
α∗

k
)∥∥d

(
wk , ŵk , ξ k)∥∥.
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Naturally, we have

–γα∗
k
(
wk – wk+)T d

(
wk , ŵk , ξ k) = –



(∥∥wk – wk+∥∥ + γ (α∗

k
)∥∥d

(
wk , ŵk , ξ k)∥∥)

+


∥
∥wk – wk+ – γα∗

k d
(
wk , ŵk , ξ k)∥∥.

So, we get

(
wk+ – ŵk)T

γα∗
k F
(
ŵk) ≥ 


γ ( – γ )

(
α∗

k
)∥∥d

(
wk , ŵk , ξ k)∥∥ –



∥
∥wk – wk+∥∥

=


γ ( – γ )φ

(
wk , ŵk , ξ k) –



∥
∥wk – wk+∥∥. ()

Now, we turn to treat the second term (w–wk+)Tγα∗
k F(ŵk) in (). Since wk+ is corrected

by the correction form II (), wk+ is the projection of wk – γα∗
k F(ŵk) on W , it follows

from Lemma .() that

(
w – wk+)T(wk+ – wk + γα∗

k F
(
ŵk))≥ , ∀w ∈W ,

and consequently, using the identity aT b = 
 (‖a‖ + ‖b‖ – ‖a – b‖), we obtain

(
w – wk+)T

γα∗
k F
(
ŵk) ≥ (

w – wk+)T(wk – wk+)

=


(∥∥w – wk+∥∥ –

∥∥w – wk∥∥) +


∥∥wk – wk+∥∥. ()

Adding () and (), we get (). The proof is completed. �

Theorem . For an integer t > , there is a ŵt ∈W , which is a convex combination of the
prediction iterates ŵ, ŵ, . . . , ŵn, satisfying

(ŵt – w)T F(w) ≤ 
γ�t

∥∥w – w
∥∥, ∀w ∈W ,

where

�t :=
t∑

k=

α∗
k and ŵt :=


�t

t∑

k=

α∗
k ŵk .

Proof It follows from () and () that

〈
w – ŵk ,α∗

k F
(
ŵk)〉 +


γ

∥∥w – wk∥∥ ≥ 
γ

∥∥w – wk+∥∥, ∀w ∈W .

By the monotonicity of F(w) and the above inequality, we have

〈
w – ŵk ,α∗

k F(w)
〉
+


γ

∥∥w – wk∥∥ ≥ 
γ

∥∥w – wk+∥∥, ∀w ∈W . ()

Summing the inequality () over k = , , . . . , t, we get

[( t∑

k=

α∗
k

)

w –

( t∑

k=

α∗
k ŵk

)]T

F(w) +


γ

∥∥w – w∥∥ ≥ 
γ

∥∥w – wk+∥∥ ≥ , ∀w ∈W .
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Since
∑t

k= α∗
k /�t = , ŵt is a convex combination of ŵ, ŵ, . . . , ŵt and thus ŵt ∈W . By the

definitions of �t and ŵt , we derive

(w – ŵt)T F(w) +


γ�t

∥
∥w – w∥∥ ≥ .

The assertion follows from the above inequality immediately. �

So, we have gotten a worst-case O(/t) convergence rate of the proposed algorithm in
the ergodic sense.

5 Numerical results
In this section, we illustrate the effectiveness of our algorithm by comparing with some
existing algorithms. We denote the proposed method in this paper as ‘NEW’, the alternat-
ing projection-based prediction-correction method in [] as ‘HLQ’, the inexact parallel
splitting augmented Lagrangian method in [] as ‘TY’ and the simultaneous method in
[] as ‘ZHY’. All codes are written in Matlab and run on i- CPU .GHZ and GB
memory.

5.1 Multiple-sets split feasibility problem
The multiple-sets split feasibility problem (MSFP) is to find a point in the intersection of a
family of closed convex sets in one space such that its image under a certain operator is in
the intersection of another family of a closed convex sets in image space. The MSFP plays
a significant role in diversified areas, such as image restoration, signal processing, and
medical care; see [–]. In the paper, we consider the constrained MSFP in the following
form:

x∗ ∈X ∩
( t⋂

i=

Ci

)

and Ax∗ ∈ Y ∩
( t⋂

j=

Qj

)

. ()

Censor et al. [] proposed the proximity function to measure the aggregate distance to
the involved sets Ci’s and Qj ’s as

p(x) :=



t∑

i=

ai
∥∥x – PCi (x)

∥∥ +



t∑

j=

bj
∥∥Ax – PQj (Ax)

∥∥, ()

where ai >  (i = , . . . , t) and bj >  (j = , . . . , t) are coefficients which can be defined
as weights of important attached to sets. Note that the condition

∑t
i= ai +

∑t
j= bj =  is

usually assumed in practice. With the proximity function (), Censor et al. [] proposed
the optimization model

min
{

p(x) | x ∈X
}

()

to approximate the constrained MSFP and used the following projection gradient method
to solve this model:

xk+ = PX
[
xk – s∇P

(
xk)],
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where the gradient of p(x) is as follows:

∇p(x) =
t∑

i=

ai
(
x – PCi (x)

)
+

t∑

j=

biAT(Ax – PQj (Ax)
)
,

where PCi and PQj is projection mapping onto set Ci and Qj, respectively. Zhang et al.
changed () into the following optimization model with separable structure:

min
{
θ(x) + θ(y) | Ax – y = , x ∈X , y ∈ Y

}
, ()

where

θ(x) =:



t∑

i=

ai
∥
∥x – PCi (x)

∥
∥ and θ(y) =:




t∑

j=

bj
∥
∥y – PQj (y)

∥
∥.

According to the first order optimality condition, the constrained MSFP is equivalent to
finding w∗ = (x∗, y∗,λ∗) ∈W := X ×Y ×R

m such that, for all w̃ = (x̃, ỹ, λ̃) ∈W ,

⎧
⎪⎨

⎪⎩

〈x̃ – x∗, f (x∗) – ATλ∗〉 ≥ ,
〈ỹ – y∗, g(y∗) – λ∗〉 ≥ ,
〈λ̃ – λ∗, Ax∗ – y∗〉 ≥ ,

()

where

f (x) := ∇θ(x) =
t∑

i=

ai
(
x – PCi (x)

)
and g(y) := ∇θ(x) =

t∑

j=

bj
(
y – PQj (y)

)
.

From [], Lemma , f (x) and g(y) are Lipschitz continuous on X and Y , the Lipschitz
constant is L =

∑t
i= ai and L =

∑t
j= bj, respectively.

Now, we consider the special MSFP problem () tested in [] with the sets

Ci =
{

x ∈R
n | ‖x – Di‖ ≤ Ri

}
, i = , . . . , t,

Qj = {y ∈R
n | Lj ≤ y ≤ Uj}, j = , . . . , t,

where Di ∈ R
n is the center of the ball Ci and is randomly generated in (, ); Ri ∈R

n is the
radius of the ball Ci and is randomly generated in (, ); Lj and Uj are lower and upper
bounds of the box set Qj and are randomly generated in (, ) and (, ), respectively.
The components of the linear operator A ∈R

n×n are generated randomly with eigenvalues
in (, ). The constraints X and Y in () are the sets Rn

+ and R
n, respectively.

We set also the same initial iterate x =  and y = λ =  for HLQ, TY, ZHY, and NEW
where  and  are vectors whose elements are all  and , respectively. The choice of the
involved parameters for the tested methods is as follows: ν = ., H = βI with β = .,
γ = ., μ = ., r = s = , and the stopping criterion ‖ŵk – wk‖ ≤ ε for HLQ, TY, ZHY,
and NEW.

We report the numerical performance of various methods for the MSFP problem with
different scenarios of t and t in Table . The data in Table  exhibits the effectiveness of
the proposed method and its superiority to HLQ, TY, and ZHY when the dimensionality
of the MSFP or the number of set components is large.
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Table 1 Numerical performance for MSFP

Method n

20 30 40 50 60 70 80 90 100

t1 = 500
t2 = 500

HLQ Iter. 10 22 13 28 18 31 26 23 30
Tim. 0.06 0.11 0.07 0.16 0.13 0.24 0.16 0.16 0.18

TY Iter. 30 31 28 26 27 28 27 26 27
Tim. 0.15 0.17 0.17 0.24 0.22 0.24 0.21 0.20 0.18

ZHY Iter. 26 28 30 26 29 24 25 27 20
Tim. 0.11 0.23 0.25 0.33 0.16 0.31 0.18 0.27 0.27

NEW Iter. 11 17 21 24 18 21 21 19 19
Tim. 0.05 0.10 0.10 0.14 0.10 0.17 0.14 0.13 0.11

t1 = 1,000
t2 = 1,000

HLQ Iter. 34 35 33 24 30 33 25 29 25
Tim. 0.33 0.41 0.36 0.25 0.32 0.40 0.33 0.33 0.43

TY Iter. 32 33 31 24 28 30 24 24 28
Tim. 0.33 0.40 0.35 0.24 0.32 0.37 0.30 0.33 0.41

ZHY Iter. 30 33 31 22 25 16 22 22 31
Tim. 0.34 0.42 0.35 0.27 0.36 0.27 0.31 0.33 0.44

NEW Iter. 26 10 22 15 20 12 18 22 21
Tim. 0.22 0.11 0.21 0.15 0.21 0.14 0.19 0.27 0.25

t1 = 5,000
t2 = 5,000

HLQ Iter. 29 32 33 27 28 27 28 29 25
Tim. 1.55 1.53 1.66 1.40 1.80 1.64 1.6 1.82 1.6

TY Iter. 27 28 31 28 27 28 27 28 21
Tim. 0.97 0.96 0.99 0.89 1.03 1.09 1.01 1.02 1.04

ZHY Iter. 24 27 30 16 33 33 22 23 21
Tim. 0.88 0.85 0.94 0.58 1.3 1.12 0.93 0.85 1.17

NEW Iter. 11 12 22 16 18 22 18 18 18
Tim. 0.84 0.36 0.66 0.49 0.55 0.77 0.72 0.65 0.65

t1 = 10,000
t2 = 10,000

HLQ Iter. 36 36 34 26 30 33 26 23 33
Tim. 3.30 3.50 3.20 2.60 2.23 3.24 3.28 2.83 3.10

TY Iter. 29 30 32 25 32 31 27 26 24
Tim. 1.52 1.82 2.1 1.61 2.01 2.09 1.77 1.97 1.81

ZHY Iter. 23 30 33 25 32 30 26 25 22
Tim. 1.35 1.90 2.20 1.55 2.21 2.11 1.86 1.94 1.66

NEW Iter. 28 29 19 23 23 14 21 23 22
Tim. 1.50 1.70 1.30 1.34 1.38 1.02 1.34 1.48 1.53

5.2 Traffic equilibrium problems
In this subsection, we apply the proposed method to solve the traffic equilibrium problems
with link capacity bounds, which have been well studied in the literature of transportation.
Since both the travel cost and the travel disutility are functions of the path flow x, the traffic
network equilibrium problem with link capacity is to seek the path flow x∗:

〈
x – x∗, f

(
x∗)〉≥ , ∀x ∈ �, ()

with

� =
{

x ∈ R
n : AT x ≤ b

}
, ()

where x ∈ R
n represents the traffic flow on paths, b is the vector indicating the capacities

on the links, A ∈R
n×m is the path-link indicating matrix, and f is the vector indicating the

traffic flows on the links. By introducing the slack variable y ≥ , the traffic equilibrium
problem () is equivalent to

〈
x – x∗, f

(
x∗)〉≥ , ∀x ∈ �, ()
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Table 2 Numerical performance for traffic equilibrium problems

Level Method No. of iter. No. of f eval. s CPU

HLQ TY NEW HLQ TY NEW HLQ TY NEW

b = 30 Ex 7.4 291 509 305 624 1,046 859 0.119 0.094 0.033
Ex 7.5 234 664 239 492 1,358 550 0.093 0.188 0.030

b = 40 Ex 7.4 387 397 303 1,146 1,118 808 0.172 0.188 0.031
Ex 7.5 294 512 278 653 1,048 607 0.141 0.188 0.031

Table 3 The optimal link flow and toll for Example 7.4 in [7] with b = 40

Link Flow Charge

1 0 0
2 2.6941 0
3 40 –27.078
4 14.1527 0
5 12.1658 0
6 40 –134.009
7 33.0224 0
8 31.9328 0
9 0 0
10 0 0

Link Flow Charge

11 1.1631 0
12 33.8285 0
13 25.8473 0
14 1.987 0
15 36.1428 0
16 6.9776 0
17 1.0895 0
18 31.9328 0
19 0 0
20 0 0

Link Flow Charge

21 1.1631 0
22 34.9916 0
23 1.8702 0
24 3.85072 0
25 40 –118.4
26 30.9547 0
27 32.0442 0
28 0 0

Table 4 The optimal link flow and toll for Example 7.5 in [7] with b = 40

Link Flow Charge

1 40 –34.1851
2 40 0
3 40 –70.1851
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0
9 0 0
10 40 –13.3271
11 0 0
12 7.5587 0
13 40 –70.6569

Link Flow Charge

14 0 0
15 0 0
16 0 0
17 0 0
18 0 0
19 0 0
20 40 –9.7608
21 40 –12.9483
22 40 –124.363
23 40 –51.6045
24 0 0
25 0 0
26 0 0

Link Flow Charge

27 0 0
28 0 0
29 32.4413 0
30 0 0
31 7.5587 0
32 40 –134.445
33 40 –51.6542
34 32.4413 0
35 32.4413 0
36 40 –275.088
37 0 0

with

� =
{

x ∈R
n : AT x + y = b, x ≥ , y ≥ 

}
, ()

which is a special case of VIP with g(y) ≡ , B = I , X = R
n
+, and Y = R

m
+ . We test partic-

ularly Examples . and . in [] to compare the new method with HLQ [] and TY
[]. For Example ., n = , m = , and A ∈ R

×. For Example ., n = , m = ,
and A ∈ R

×. As recommended in [], we choose the parameters in HLQ and TY as
ν = ., H = βI with β = ., γ = ., μ = ., r = , s = .. In our algorithm, we choose
the parameter r = s = .. The different parameters were selected to make the related
methods to achieve better results. Simultaneously, we choose the same initial iterative
points x = , y = λ = , and the stopping criterion ‖ŵk – wk‖ ≤ ε in all methods.

For Examples . and ., the numerical results of HLQ, TM, and NEW are reported in
Table . By No. of iter., No. of f eval. and CPU we denote the number of iterations, the
number of function evaluations, and the CPU time in seconds, respectively.
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From Table , we can see that the proposed method with the new criterion is comparable
to HLQ and superior to TY when the capacity b = . For the capacity b = , Table 
shows that our method is more effective than HLQ and TY in terms of the number of
iterations, number of function evaluations, and the CPU time.

Moreover, we report the optimal link flow generated by the proposed method. As illus-
trated in [], the absolute value of the Lagrange multiplier λ∗ actually means the toll that
should be charged on the links to avoid congestion. The numerical results of Examples .
and . [] with the capacity b =  are reported in Tables  and , respectively. We can
see that no toll is charged on the links whose flows are lower than their capacities.

6 Conclusions
In this paper, we study an inexact criterion for solving the convex problems and variational
inequalities with separable structures. Based on the prediction-correction approach, two
correction forms were derived. Preliminary numerical results with MSFP and traffic equi-
librium problems indicate that our method is efficient in practice. In addition, the reported
numerical experiments for MSFP are confined to artificial randomly generated data. In the
future, we shall test the real world split inversion problems with the inexact criterion.
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