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Abstract

This paper characterizes several classes of conditionally positive definite kernels on a flomain
of eitherR! or C!. Among the classes is that composed of strictly conditionally positive definite
kernels. These kernels are known to be useful in the solution of variational interpolation problems
on £2. Our study covers the case in whighis the spheres’—1 of R! or a similar manifold. Among
other things, our results imply that the characterization of (strict) conditional positive definiteness on
£2 can be obtained from a characterization of (strict) positive definitenegxs dihe bi-zonal strictly
conditionally positive definite kernels afi—1, / > 3, are described.
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1. Introduction

Positive definite and related kernels are encountered in many problems involving the
numerical treatment of functions of several variables. Usually, the function one has to deal
with has the form
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n

s()=) cjf(d(x.x)). cjeC, (1.1)

j=1

where the points; belong to a certain domaif? of R or C!, d is some sort of metric
structure of the domain an@, y) € 22— f(d(x, y)) is an at least continuous, positive
definite or related kernel [4]. A potentially important example we have in mind is that in
which 2 is the unit spheré’~! of R/ andd is either the geodesic distancestr? or the
inner product ofR’.

Conditionally positive definite kernels come into play when low-degree polynomials are
added tos. To understand that, one needs to rketted most common notion of conditional
positive definiteness. It does not involve either the structur® afr the space where it is
sitting but it depends on a subspdeef 1, the space of polynomials ihvariables with
complex coefficients in the cage c R’ and the space of polynomials in the variabies
andz, z € C!, otherwise. As it will become cleathead, we will need in fact the space
obtained fromP by restricting its elements t&. We will not distinguish between these
two versions of the same space.

A Hermitian kernelf: 2 x £ — C is conditionally positive definite with respect®
ong ifforall {x1,...,x,} C 2, and{cs, ..., c,} C C satisfying

n

Y cup(xu)=0, peP, (1.2)
n=1

the associated quadratic form

D el f (e x0) (1.3)

=1

is nonnegative. If the quadratic form is positive whentheare distinct, the, satisfy(1.2)
andZZ=l lc,.| > 0, then the kernef is calledstrictly conditionally positive definite with
respect tdP on £2. A (strictly) positive definité&ernel ons2 is then a (strictly) conditionally
positive definite kernel with respect to the trivial subspgijeon 2.

If a kernelf is strictly conditionally positive definite with respect to a finite-dimensional
subspacé of I7, then the interpolation problem

n
chf(xﬂvxv)—i_q(x,u):)"ﬂs ,lL:].,...,}’l, qepv (14)
v=1

under the condition
n
Y () =0, peP. (1.5)
v=1

is always uniquely soluble as long @s= 0 is the only element of vanishing at the
interpolation points. In@plications, the most common setting where conditionally posi-
tive definite kernels appear is the real one while the sgatealways finite dimensional.
The usual choice fo is the space of polynomials of degree at mastfor somem.
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Conditional positive definiteness with respectRaon 2 is then termed conditional pos-
itive definiteness of orden on £2. We refer to [4,12] and references therein for general
information on conditionally positive definite kernels on subsef&/of

The purpose of this paper is to introduce ahéracterize two classes of conditionally
positive definite kernels, including the strict cases. To better explain that, we first introduce
the basic setting adopted in the whole paper.

Let £2 be a quite general subset of eitfror C! anddw a positive measure af? not
concentrated on a subset@fof measure zero. We will not list any additional hypothesis
on either§2 or o but our intention is to avoid singular cases. We will assume that the
spaceL?(£2, dw) possesses an ordered countable basis orthonormal with respect to
the inner product., -) of L2(£2, dw), that is,

/wj(x)wk(x)dw(x)=8,,'k, J.k=0,1,.... (1.6)
2

For the cases we are specially interested, the asjcan be assumed to be in the space
| :={ple: pell}. (1.7)

Thus, in addition to the above, we will assume that every member of the family is a con-
tinuous function, even knowing that such assumption may be not needed in many places in
the paper.

We will deal with kernels having an absolutely and uniformly convergent series repre-
sentation in the form

) =) aNe@)ee(y),  x,y € L. (1.8)
k=0
The Fourier coefficients of in (1.8) are given by
ax(f) = / / F&, @) o () do(x) dw (). (1.9)
Q2 Q

One class of kernels is th&@PDp (£2), the set of kernels that are both, representable as in
(1.8) and conditionally positive definite with respecR@n £2. Its subclasSCPDp (£2) is
that comprising the elements©PDp (£2) which are strictly conditionally positive definite
kernels with respect t® on £2.

To proceed, we make use of the orthogonal complement of a subspatePoécisely,
given a subspacP of IT we write

PLi={q e L?(2,dw): (g, p)=0, peP}. (1.10)

A kernel f is integrally conditionally positive definite with respect ® on 2 if the
following condition holds:

//f(x,vax)h(y)dw(x)dw(y)>0, heC2)nP, (1.12)
2 2

whereC(§2) stands for the space of continuous functionssanlt is strictly integrally
conditionally positive definite with respect  on 2 if the inequality in(1.11) is strict
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whenh € (C(£2) NP1\ {0}. These two classes of kernels will be denoted, respectively, by
ICPDp(£2) andSICPDp(£2). In our context, it will becomelear that these two concepts
of integral conditional positive definitenes®aasier to handle than the previous ones. As
expected, in most caséSPDp (£2) C CPDp(£2) andSICPDp (£2) € SCPDp(£2).

The paper is laid out as follows. In Segti@ we fully characterize the classeBDp (£2)
andICPDp(£2). In the case? is a real sphere, this result generalizes a famous theorem
of Schoenberg [15] concerning zonal pogitidefinite functions on spheres. One of the
inclusions mentioned in the previous paragraph is plainly justified. The rest of the section
investigates conditions under which the reverse inclusion holds. Section 3 investigates the
classeSCPDp(£2) andSICPDp(£2), including a characterization of the latter. It contains
another major result of the paper which asserts that the 8iaB» (£2) can be described
as long as a description 8CPQq (£2) is available. In Section 4, we specialize the results
in Sections 2 and 3 to the case in whieh= 5'~1. The classe€; NCPDp(S'~1) andZ; N
SCPDp(S'~1), whereZz; denotes the class of bi-zonal kernels®n?, are identified for all
values ofl, but one, and for many choices of the sp@tdn Section 5, we go one step fur-
ther, extending the results in Section 4 to the case in witich 2y, the unit sphere it’.

2. Conditional positive definiteness

In many interesting cases, including the case in whizhs a sphere or a spherical
surface, the orthonormal bagig,} can be taken polynomial. When this is not the case, we
will require the basis to contain a basis of the polynomial spac€he reason why this is
an aspect that should not be ignored is the following

Lemma 2.1. Let P be a subspace dfl. The following assertions hald

(i) If gx € P+ theny ¢ P;
(i) If {¢} contains a basis foP ande; ¢ P for somej theng; € PL.

A first relationship among the classes we have introduced so far is formalized below.

Theorem 2.2. Let’P be a subspace df. If {¢;} contains a basis foP then ICPD-(£2) C
CPDp(£2).

Proof. If f e ICPDp(£2), thenai(f) > 0 wheng; € P+, If, in addition, {¢;} contains a
basis forP then Lemma 2.1 reveals that the previous conclusion correspoagés/tp> 0,
ox ¢ P. That f € CPDp(£2) now follows by calculating the quadratic form (1.3)0

Next, we present conditions under which the converse of Theorem 2.2 is true. The
converse itself appears in Theorem 2.@eafve recall some basics about the concept of
Lagrange-type bases and state two auxiliary results.

Let P be a finite-dimensional subspaceléf m its dimension andlys, ..., y,,} a subset
of 2. A Lagrange-type basifor P with respect to{ys, ..., yn} is a basidqi, ..., gm}
of P such thay; (y;) = §;;. The construction of a Lagrandgpe basis usually begins with
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the choice of a basiéps, ..., pm} for P. Then one chooses a subget= {y1, ..., ym}
of £2 such that the linear functionals

pePHplyj), Jj=1....m, (2.1)

form a linearly independent set. This can be done by induction seleftisg that the
matrix P (y1, ..., ym) := (p; (y;)) and its principal minors have nonzero determinant. Such
a set is called gundamental sedf P. Finally, the se{q, ..., g} in which

_ detP()’l: ey yiflv-xv yl+lv ceey )’m)
detP (Y1, .- -\ Yi-1, Vis Vitls -+ > Ym)

is a Lagrange-type basis with respectito

Lemma 2.3 and Theorem 2.4 below provide a method to derive a ker@& o, (£2)
from a kernel inCPDp(£2). The ideas behind these two results are originally from the
theory of positive definite functions on groups (see Chapter 3 in [2]) and have strong con-
nections with reproducing kernel Hilbertages. Early papers of I.J. Schoenberg [13,14]
also made use of similar relations between different types of kernels. Our proof of Theo-
rem 2.4 is a simplified version of arguments explored in [12].

qi(x): i=1,...,m, (2.2)

Lemma 2.3. Let P be anm-dimensional subspace of, I" = {y1, ..., ym} @ subset of2
and{q1,...,qmn} abasisforP.If fisasin(1.8) and

g0x, y) = f(x, ) = i) fGi,y) = Y a0 F &, ¥))
i=1 j=1

DY a g f i ) (2.3)

i—1 =1
thenax () = ak(f), gk € P+,

Proof. Direct computation with formula (2) with a help of the orthonormality di}.
O

Theorem 2.4. Let’? andI" be as in the previous lemma afwh, ..., g} a Lagrange-type
basis forP with respect ta". Then the following assertions hold

(i) If f € CPDp(82) then the kernek, as described in Lemma.3, is an element of
CPD{O}(.Q);
(i) If f € SCPDp(£2) theng € SCPDoy($2\ I').

Proof. (i) Let {x1,...,x,} C £ and{cy, ..., c,} C C. The quadratic form

Q:= Z CuCvg (X, Xv) (2.4)

n,v=1

can be decomposed in the form
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n m n m n
D cubo fGnx) = Y > abifix) = Y Y eubjf (X))
nov=1 i=1lv=1 j=lu=1
m _
+ Y bibi f iy y)), (2.5)
i,j=1
in which
n
b; =Zc.,'q,-(xj), i=1...,m. (2.6)
j=1
Hence,
m+n
Q=Y audyfwy,w), (2.7)
w,v=1
where
_ Cus y,:l,...,l’l,
a“_{—bu_n, w=n+1,...,m+n, (2.8)
and
_ Xus M:l,...,n,
w“_{yun, w=n+1....m+n. (2:9)

Itis now clear that the proof will be completed as long as we show that

m-+n

> auqew) =0, k=1.....m. (2.10)
n=1
But, using (2.6) and the fact théj, ..., g,} is a Lagrange-type basis f@r yield
m-+n n m
D augwi) =Y cugr(xn) — Y bug(yu) =br —bp =0,
n=1 n=1 n=1
k=1,...,m. (2.11)

(if) Assume that at least ong, is nonzero and thdty, ..., x,} C £\ I". Then at least
oneaq,, is nonzero and the, are pairwise distinct. Thus, if € SCPDp(£2), the quadratic
formin (2.7) is positive. O

Coroallary 2.5. Under the conditions in Theore@4, the following assertions hold for
a subspacé; of P:

(i) If f € CPDp(£2) then the kernelg, as defined in Lemma.3, is an element of
CPDp, (£2);
(i) If f € SCPDp(£2) theng € SCPDp, (22 \ I').

Proof. It suffices to use the previous theorem along with the inclusoR®q(£2) C
CPDp, (£2) andSCPDQq (2 \ I') C SCPDp, (2 \ I'). O
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Theorem 2.6. If P is a finite-dimensional subspacef@fthen CPD»(£2) C ICPDp(£2).
Proof. Select a Lagrange-type badig, ..., g} for P with respect to a subsdt =

{y1,...,ym} Of 2. Let f € CPDp(£2) and consideg as defined in Lemma 2.3. Since
g € CPDg)(£2), the inequality

Z Iculzf(x/u xu) + Z E,ucvf(x,u: Xy) — Z(Z Cuqi (x,u)> chf(y“ Xv)

n=1 n,v=1 i=1 \p=1
[53%
- Z(chql (xU)> Z C,uf(xuv )’]
j=1\v=1
2 Z FOis ) (Z Cndi (xu)> (Z cvd; (xv)> >0
i=1lj=1 u=1 v=1

holds for{cy, ..., c,} C Cand{x1, ..., x,} C £2. In particular,

S0P f G x) + Y RGIR @) f (s x0)
u=1 ,u,\;é:l
Sy

- Z(Z h(xli)ql (x,lt)) Zh(xv)f()’lvxv)

i=1 \p=1

- Z(Zh(xv)q,(x,,)) > hGe) £ G y))

j=1\v=1

+ Z Z S i, y; (Z h(xp.)q: (xp.)) (Zh(xv)pj (xv)) >0

i=1j=1 v=1

holds forh € C(£2) N P+ and{x, ..., x,} C £2. Integration with respect te, andx,
yield

w(ﬂ)Zﬂh(xu)\ £ xp) doo(xy)

Mlg

+ Z //f(x;uxu)h(xu)h(xu)dw(xu)dw(xu)>0 (2.12)

wv=lo @
+

in which w(£2) stands for the measure &2. Defining M := max{f(x,,x,): n =
1,...,n}, the above inequality implies that

nMa)(.Q)/|h(x)| da)(x)+n(n—1)//f(x Wh(x)h(y)dw(x)dw(y) > 0.
(2.13)
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Dividing by n(n — 1) and lettingn — oo, we obtain

//f(x,y)imh(y)dw(x)dw(y) >0, (2.14)
2 2
concluding the proof of the theoremO

The following theorem is now evident.

Theorem 2.7. Let P be a finite-dimensional subspacel@f Assumédg;} contains a basis
for P. Then the following assertions are equivatent

(i) f €CPDp(£2);

(i) f eICPDp(£2);
(i) ax(f) =0, o € PL;
(iv) ak(f) >0, ¢ ¢ P.

Proof. Theorem 2.6 shows that (i) implies (ii). That (iii) follows from (ii) is obvious.
Lemma 2.1(ii) justifies that (iii) implies (iv). The closing implication follows by direct
computation. O

References [8,10] contain some interesting discussion on the connection between posi-
tive definite and integrally positive definite kernels.

3. Strict conditional positive definiteness

As it turns out, strict integral conditional positive definiteness is not difficult to describe.
Before we do that, let us introduce the truncated series of a k¢rmepresentable as in
(1.8) with respect to a subspageof I71. It is just

fpey) =Y ae®el), xyeR. (3.1)
k: ok &P
The importance of this notion for conditional positive definiteness is illustrated by the
following lemma whose proof will be omitted.

Lemma 3.1. Let P be a subspace dff and letF denote any of the classes CBD?),
SCPDp(2), ICPDp(£2) and SICPD>(£2). Thenfp € F if and only if f € F.

Theorem 3.2 below reveals that strict integral conditional positive definiteness is the
best one can expect when dealing with strict conditional positive definiteness.

Theorem 3.2. Let P be a subspace dif and f a kernel as in(1.8). The following asser-
tions are equivalent

(i) f eSICPDp(£2);
(i) ar(f) > O0whenevery € PL.
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Proof. One implication is obvious since we can repldcey ¢, in (1.11). Conversely,
assume thaty (f) > 0 when ¢, € P+ and suppose thaf ¢ ISCPDp(£2). Due to
Lemma 3.1, we conclude that

f f fp (e, ) h(y)do(x)do(y) =0 (3.2)
2 2

for someh € (C(2) N'PL) \ {0}. Since{g} is an orthonormal basis fdr?($2, dw), there
iS ¢ky ¢ P such thatgy,, 1) # 0. It follows that

0= / / fp (6, RGO R dw(x) do(y) = @iy, 1) (@rg, ) > 0, (3.3)
2 2
a contradiction. O

Next, we turn to plain strict conditional positive definiteness with respe@.ttt is
not hard to see that the strict conditional positive definiteness of a kgra€LPDp (£2)
depends upon the set

Ap(f):={k: o ¢ PYN {k: a(f) > O} (3.4)

and not on the actual values of the coefficientsf). Thus, the following definition needs
no additional explanation: let be a family of subsets &, andF a subset 0 6CPDp (£2).
We say that’ representsF if the following two conditions hold:

(i) If feF,thereexistX € L suchthatAp(f) =K;
(i) If K € L, there existsf € F such thatk = Ap(f).

It is known that for some choices ¢ andP (see the cas@ = 5/~ in [4]), kernels
in SCPDp(£2) have the following invariance property: jf e SCPDp(£2) andm > 0 then
any kernelg € CPDp(£2) such that

Ap(@) =Ap(f)+m:={a+m: aeAp(f)} (3.5)

belongs toSCPDx(£2). This property is the motivation to our next definition. A family
of subsets 0% is translation-invariantf it possesses the following feature:Af € £ and
A is finite thenk \ A € L.

The following lemma complements Lemma 2.3 and Theorem 2.4.

Lemma3.3.LetP, I, {g1,-..,q9m}, f andg be as in Lemma.3. If

h(x,y) =g, )+ Y _q;(0)g;(),  x,yeR, (3.6)
j=1

thenay (h) = ax(g) wheng; € PL. If {q1,...,qn} is a Lagrange-type basis fgP with
respect tol” and f € CPDp(£2) thenh € CPDyq($2). Further, if f € SCPDp(£2) then
h € SCPDQy(£2).
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Proof. The first assertion of the lemma is obvious. To prove the others, assume that
{q1,...,q9m} IS a Lagrange-type basis f@ with respect tol" and let{xy, ..., x,} C £2
and{ci, ..., ¢y} C C. Then, the quadratic form® := " | _; ¢,¢uh(xy, x») can be writ-

ten as

n m
R= Z C/J.Evg(x,us Xy) + Z
w,v=1 j=1
If f € CPDp(£2), Theorem 2.4(i) implies thag € CPDjq($2). Hence,R > 0, and con-
sequently € CPDyg(£2). To finish the proof, assume thg are distinct. The condition
R =0 yields the conclusions

n

" 2
Zcﬂqj(xﬂ) .

u=1

(3.7)

Y cuqj(x) =0, 1<j<m, (3.8)
n=1

and
Z Cucvg(xy, xy) =0. (3.9)
wv=1

Looking at the definition of, we obtain

Z cuCy f(xy, xy) = Z cuCvg(xy, x,) =0. (3.10)
wv=1 n,v=1
Hence, if f € SCPDx(£2), Eq. (3.10) implies that; = --- = ¢, = 0, thereforeh €
SCPDg(£2). O

Regarding the kernels involved in Lemma 2.3, Theorem 2.4 and Lemma 3.3, the fol-
lowing formulas hold wherg;} contains a basis faP:

ar(g) = ar(f) — (£ Gk s bk) = (FCo 30y )+ FOr. ¥6)s 9k & P, (3.11)
andax (h) = ar(g) + 1, ¢x ¢ PL. Even being interesting, these formulas will be of no use
in this paper.

The major theorem in this paper is as follows.

Theorem 3.4. Let P be anm-dimensional subspace @ andP; a subspace oP. As-
sume{gy} contains a basis fofP. If £ is a translation-invariant family that represents
SCPDp, (22) then{K € L: K N{k: ¢, € P} =0} represents SCPP(£2).

Proof. Let f € SCPDp(£2). Choose a Lagrange-type ba$is, ..., g} for P with re-
spect to a subsdat = {y1, ..., y} Of £2 and consider the corresponding kerhegiven
in (3.6). Due to Lemma 3.3 and Corollary 2.b,c SCPDp, (£2). By Lemma 3.1}17%1 €
SCPDp, (£2) while the translation-invariance of guarantees thah%) € SCPDp, (£2).
Since L represents the famil$CPDp, (£2), there existsA € £ such thatApl(h%D) =A.
Lemma 3.3 implies that

ar(h) =ar(f), ¢reP*. (3.12)
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Since{gy} contains a basis fdP, it follows that

ar(hy =ar(f), o éP. (3.13)
Hence,

Ap, (h3) = {k: gk ¢ P1} N {k: ax(h3) > O}
={k: gx ¢ P} N {k: a(hp) > O}
= {k: g« ¢ Py {k: ax(f) > 0} = Ap(f).

Itis now clear thatd € {K € £: K N{k: ¢ € P} =@} which takes care of the first half of
the proof. To conclude it, leB € {K € L: K N {k: ¢ € P} =@}. Pick g € SCPDp, (£2)
such thatAp, (¢) = B. It follows thatg € SCPDp(£2). Finally,

B={k: ¢x ¢ P1} N {k: ax(g) > 0}
= ({k: or € P\ P1} N {k: ax(g) > O}) U ({k: gk ¢ P} {k: ar(g) > 0})
={k: g ¢ PYN {k: ax(g) > 0} = Ap(g).
This concludes the proof.O

If P="P1thenL ={K € L: K N{k: ¢ € P} =¥} and the invariance hypothesis gn
can be discarded.

In practice, the use of Theorem 3.4 will depend on the knowledge of a characterization
of the classSCPDQg;(£2) and nothing else. However, even for some desirable donsains
such characterization is not available yet. We hope this continue being a topic for future
research.

In the case in whicli2 is a sphere or some other similar manifolds, some subclasses of
SCPDg, (£2) are known. For instance, the clag&s" SCPDoy (S ~1), in which 2, stands for
the bi-zonal kernels of/~1, was described in [3]. In Section 4, we prove that Theorem 3.4
can be adapted to hold for bi-zonal s$&s so that a characterizationgpin SCPDp (5! 1)
can be reached. The search for versions oddrbm 3.4 for other domains and classes
seems to be a problem that should deserve future attention.

4. Conditional positive definitenesson real spheres

In this section, we analyze the case in whigh= $'~1, the unit sphere iR'. The
measurev will be the unique probability Borel measure owr! which is O;-invariant,
where; is the group of orthogonal transformationsRf. The basig ¢y} will be a basis
of spherical harmonics indimensions. Thus, the hypothes{gj} contains a basis fgP”
used in previous sections is now meaningless. With this background notation established,
Theorem 3.4 can be easily restated in the present case as the reader can easily verify.

Next, we discuss smaller classes of conditionally positive definite kerne$§énThe
most important ones perhaps are those composbidzufnalkernels. A kernelf : §'~1 x
§!=1 s Cis bi-zonal when

fe,y)=f@x-y), x,yes (4.1)
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where- stands for the usual inner product®f. In particular, a bi-zonal kernef is O;-
invariant in the following sense:

(T, TO)=fx,y), x,yes ™t TeoO. (4.2)

The symbolZz; will continue standing for the set of all such kernels.
When dealing with zonal kernels, it is convenientto use spRogbkich areO;-invariant
in the following sense:

poT=p, peP, TeO,. (4.3)

Spherical harmonics are examples of polynomials having this property. The space
L2(8'1, dw) also has a similar invariance property, namely,

(foT,goT)=(fg), fgel? R dw), TeO, (4.4)
Lemma 4.1 below describes ttig-invariant spaces of spherical harmonics. The symbol
Hi (S'~1) will stand for the space of spherical harmonics of degrée! dimensions.

Lemma 4.1. A finite-dimensional subspace b¥(S'~1, dw) is O;-invariant if and only if
it is a direct sum of finitely many spacg (S’ ).

Proof. See [9, p. 55], for example.O

We intend to state the results in the zonal case taking into account standard notation
adopted in the literature dealing with analysis®n' [7,16]. To do that, additional notation
is needed. First, we write the orthonormal famiiy;} as a double-indexed family of the
form

{oc} ={Fo, F1... .}, (4.5)
in which
Fe={Y: j=1....dkD} (4.6)

is a basis forH; (5'~1). The following representation foP.,(s'~1) := P! , the space of
polynomials of degree at most in [ variables, restricted t¢’~1, is then immediate:
PL(SI™Y) = Do Hi(S'1). The representatiofl.8) takes the form

oo d(k,l)

fEN=)" 3" ay(HY;mY,0), x,yes™ (4.7)

k=0 j=1

A description ofCPDp (5!~1) follows from Theorem 2.7. In particular, a description of
Z; N CPDp(S'~1) is easily deduced. Theorem 4.2 belman adaptation of Theorem 3.4
to the zonal situation. We refer the reader to [7,11] for the specifics about analy¥iston

Theorem 4.2. Let P be anQ;-invariantm-dimensional subspace of andP; a subspace
of P. If £ is a translation-invariant family that represen N SCPDp, (5'~1) then the set
(K € L: KN{k: ¢ ¢ P} =0} representsz; N SCPDp (S~ 1).
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Proof. It suffices to adapt the proof of Theorem 3.4 to the present situation. The key step
is to show that iff € Z; andP is O;-invariant thenf; € Z;. This can be justified along

the following lines. A kernel admitting a representation a¢4ir7) is bi-zonal if and only

if it possesses the following additional feature:

agi () =an(f), j=1...,dk,1D), k=0,1,.... (4.8)

Thus, if f is such a kernel an® is O;-invariant, the direct sum decomposition given in
Lemma 4.1 implies thaf; satisfies conditioni4.8). Therefore, it is bi-zonal. With this in
mind, the first part of the proof goes without diffilties. The last part is handled by picking
h € 2N SCPDp(S'~1) from the beginning. O

We close the section looking at the special case WhenP.,. As we mentioned before,
this is the most common choice f@r in applications. Theorem 2.7 reads like this in this
case.

Theorem 4.3. Let f be a kernel as in4.7). Thenf € CPDp: (s'=1y if and only if

ai; =20, j=21,2,....dk D, k=m+1m+2,.... (4.9)
For bi-zonal kernels it takes the following aspect.

Theorem 4.4. Let f be a kernel as itf4.7). Thenf € Z; N CPDp (S'~1) if and only if
akr=---=arik, =20, k=m+1m+2 ... (4.10)

The above theorem contains a descriptionZpin CPD{O}(Slfl), the major result in
Schoenberg’s paper [15]. Due to that result, Theorem 4.4 has been quoted or used in several
references (see [1,4], for example). To our knowledge, an explicit proof was missing until
now.

We restate Theorem 4.2 in two steps.

Theorem 4.5. Let f be a kernel in CPRy, (S'™1). If 1 > 3, thenf € 2, N SCPDgy (S'7Y) if
and only ifagy = - - - = arak,1y > 0 for infinitely many even and infinitely many odd values
of k.

Proof. See [3]. O

Theorem 4.6. Let f be a kernelin CPR: (S'~1). If 1 > 3, thenf € Z,NSCPDp! (S'71) if
and only ifagy = - - - = arak,1y > 0 for infinitely many even and infinitely many odd values
of k.

Proof. It suffices to combine Theorems 4.2 and 4.53

To determine an elementary description of the cl&s3 SCPQO}(Sl) is a question that
stands for many years.
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5. Thecase 22 = 224, the unit spherein C!

The case&2 = 2y, the unit sphere i€’ is very similar to that discussed in Section 4.
Thus, we only point out what the changes are and state the results without proofs.

The groupO; needs to replaced withiy;, the group of all unitary transformations
of C!. The measure» needs to be the unique probability measure 21 which is
Uy -invariant. Finite-dimensiondly;-invariant subspaces df2(24, dw) are of the form
D r.s)cp Hr.s(R221), Where B C Z2 and H,(222) is the space of homogeneo@s-
harmonic polynomials of degree in z € C! and degree: in z, restricted to2y (see
Chapter 12 in [11]).

Since L2(2y,dw) = @”>0H”(921) the basis{gr} can be taken in the form
U,.s>0Frs, WhereF, = {les jiJ=1....d(r,s,D} is a basis fofH, ;(2221). Expres-
sion (1.8) takes the form

oo d(r,s,l)

Fan =" anj(OYL, ;Y (). x.yea (5.1)

r,s=0 j=1

In what foIIows,P,{Ln =@ oD _oHrs(£22). Theorem 2.7 adapted to this new notation
reads as follows.

Theorem 5.1. Let f be a kernel as itf5.1). Thenf e CPDpr[n (8221) if and only if
ars,j =0, j=1...,d(rs,]D), (5.2)

when either >m +1ors>n+ 1.

Bi-zonality can be easily transferred to the complex setting as the reader can easily
verify. In particular, we have the following results. The symBai will denote the class of
bi-zonal kernels orf2y;.

Corollary 5.2. Let f be a kernel as if5.1). Thenf € Zy N CPDP'IH | (8221) if and only if
Urs1=-=arsdesn>0wWheneither >m+1lors>n+1.

Proof. It suffices to use the main theorem in [5] and Theorem 501.

Theorem 5.3. Let f be a kernel in CPI%I (.(221) If I > 3,thenf € Zy ﬂSCPQ;z (.(221)
ifandonly ifa, 51 =" =a,s.4(¢s5.1) > O for infinitely many pairqr, s) such tha'rr —sis
even and infinitely many paixs, s) such that- — s is odd.

Proof. The condition stated in the theorem is precisely the one obtained in [6] to charac-
terize the clas€y N SCPDg; (£227). An adaptation of Theorem 4.2 to the complex setting
is all that is needed to conclude the proofa
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