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Abstract

This paper characterizes several classes of conditionally positive definite kernels on a domΩ

of either Rl or Cl . Among the classes is that composed of strictly conditionally positive defi
kernels. These kernels are known to be useful in the solution of variational interpolation pro
onΩ. Our study covers the case in whichΩ is the sphereSl−1 of Rl or a similar manifold. Among
other things, our results imply that the characterization of (strict) conditional positive definiten
Ω can be obtained from a characterization of (strict) positive definiteness onΩ. The bi-zonal strictly
conditionally positive definite kernels onSl−1, l � 3, are described.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Positive definite and related kernels are encountered in many problems involvi
numerical treatment of functions of several variables. Usually, the function one has t
with has the form
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s(x) =
n∑

j=1

cjf
(
d(x, xj )

)
, cj ∈ C, (1.1)

where the pointsxj belong to a certain domainΩ of R
l or C

l , d is some sort of metric
structure of the domain and(x, y) ∈ Ω2 �→ f (d(x, y)) is an at least continuous, positiv
definite or related kernel [4]. A potentially important example we have in mind is th
which Ω is the unit sphereSl−1 of Rl andd is either the geodesic distance inSl−1 or the
inner product ofRl .

Conditionally positive definite kernels come into play when low-degree polynomia
added tos. To understand that, one needs to recall the most common notion of condition
positive definiteness. It does not involve either the structure ofΩ or the space where it i
sitting but it depends on a subspaceP of Π , the space of polynomials inl variables with
complex coefficients in the caseΩ ⊂ Rl and the space of polynomials in the variablez
and z̄, z ∈ Cl , otherwise. As it will become clearahead, we will need in fact the spa
obtained fromP by restricting its elements toΩ . We will not distinguish between thes
two versions of the same space.

A Hermitian kernelf : Ω × Ω �→ C is conditionally positive definite with respect toP
onΩ if for all {x1, . . . , xn} ⊂ Ω , and{c1, . . . , cn} ⊂ C satisfying

n∑
µ=1

cµp(xµ) = 0, p ∈ P, (1.2)

the associated quadratic form

n∑
µ,ν=1

cµc̄νf (xµ, xν) (1.3)

is nonnegative. If the quadratic form is positive when thexj are distinct, thecµ satisfy(1.2)

and
∑n

µ=1 |cµ| > 0, then the kernelf is calledstrictly conditionally positive definite wit
respect toP onΩ . A (strictly) positive definitekernel onΩ is then a (strictly) conditionally
positive definite kernel with respect to the trivial subspace{0} onΩ .

If a kernelf is strictly conditionally positive definite with respect to a finite-dimensio
subspaceP of Π , then the interpolation problem

n∑
ν=1

cνf (xµ, xν) + q(xµ) = λµ, µ = 1, . . . , n, q ∈P, (1.4)

under the condition
n∑

ν=1

cνp(xν) = 0, p ∈ P, (1.5)

is always uniquely soluble as long asp = 0 is the only element ofP vanishing at the
interpolation points. In applications, the most common setting where conditionally p
tive definite kernels appear is the real one while the spaceP is always finite dimensiona
The usual choice forP is the space of polynomials of degree at mostm, for somem.
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Conditional positive definiteness with respect toP on Ω is then termed conditional pos
itive definiteness of orderm on Ω . We refer to [4,12] and references therein for gen
information on conditionally positive definite kernels on subsets ofRl .

The purpose of this paper is to introduce andcharacterize two classes of conditiona
positive definite kernels, including the strict cases. To better explain that, we first intr
the basic setting adopted in the whole paper.

Let Ω be a quite general subset of eitherRl or Cl anddω a positive measure onΩ not
concentrated on a subset ofΩ of measure zero. We will not list any additional hypothe
on eitherΩ or ω but our intention is to avoid singular cases. We will assume tha
spaceL2(Ω,dω) possesses an ordered countable basis{ϕk}, orthonormal with respect t
the inner product〈·, ·〉 of L2(Ω,dω), that is,∫

Ω

ϕj(x)ϕk(x)dω(x) = δjk, j, k = 0,1, . . . . (1.6)

For the cases we are specially interested, the basis{ϕk} can be assumed to be in the spa

Π |Ω := {p|Ω : p ∈ Π}. (1.7)

Thus, in addition to the above, we will assume that every member of the family is a
tinuous function, even knowing that such assumption may be not needed in many pl
the paper.

We will deal with kernels having an absolutely and uniformly convergent series r
sentation in the form

f (x, y) =
∞∑

k=0

ak(f )ϕk(x)ϕk(y), x, y ∈ Ω. (1.8)

The Fourier coefficients off in (1.8) are given by

ak(f ) :=
∫
Ω

∫
Ω

f (x, y)ϕk(x)ϕk(y) dω(x) dω(y). (1.9)

One class of kernels is thenCPDP (Ω), the set of kernels that are both, representable a
(1.8) and conditionally positive definite with respect toP onΩ . Its subclassSCPDP (Ω) is
that comprising the elements ofCPDP (Ω) which are strictly conditionally positive definit
kernels with respect toP onΩ .

To proceed, we make use of the orthogonal complement of a subspace ofΠ . Precisely,
given a subspaceP of Π we write

P⊥ := {
q ∈ L2(Ω,dω): 〈q,p〉 = 0, p ∈P

}
. (1.10)

A kernel f is integrally conditionally positive definite with respect toP on Ω if the
following condition holds:∫

Ω

∫
Ω

f (x, y)h(x)h(y) dω(x) dω(y) � 0, h ∈ C(Ω) ∩P⊥, (1.11)

whereC(Ω) stands for the space of continuous functions onΩ . It is strictly integrally
conditionally positive definite with respect toP on Ω if the inequality in(1.11) is strict
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whenh ∈ (C(Ω)∩P⊥)\{0}. These two classes of kernels will be denoted, respectivel
ICPDP (Ω) andSICPDP (Ω). In our context, it will becomeclear that these two concep
of integral conditional positive definiteness are easier to handle than the previous ones
expected, in most casesICPDP (Ω) ⊂ CPDP (Ω) andSICPDP (Ω) ⊂ SCPDP (Ω).

The paper is laid out as follows. In Section 2 we fully characterize the classesCPDP (Ω)

andICPDP (Ω). In the caseΩ is a real sphere, this result generalizes a famous the
of Schoenberg [15] concerning zonal positive definite functions on spheres. One of
inclusions mentioned in the previous paragraph is plainly justified. The rest of the s
investigates conditions under which the reverse inclusion holds. Section 3 investiga
classesSCPDP (Ω) andSICPDP (Ω), including a characterization of the latter. It conta
another major result of the paper which asserts that the classSCPDP (Ω) can be describe
as long as a description ofSCPD{0}(Ω) is available. In Section 4, we specialize the res
in Sections 2 and 3 to the case in whichΩ = Sl−1. The classesZl ∩CPDP (Sl−1) andZl ∩
SCPDP (Sl−1), whereZl denotes the class of bi-zonal kernels onSl−1, are identified for all
values ofl, but one, and for many choices of the spaceP . In Section 5, we go one step fu
ther, extending the results in Section 4 to the case in whichΩ = Ω2l , the unit sphere inCl .

2. Conditional positive definiteness

In many interesting cases, including the case in whichΩ is a sphere or a spheric
surface, the orthonormal basis{ϕk} can be taken polynomial. When this is not the case
will require the basis to contain a basis of the polynomial spaceP . The reason why this i
an aspect that should not be ignored is the following

Lemma 2.1. LetP be a subspace ofΠ . The following assertions hold:

(i) If ϕk ∈ P⊥ thenϕ /∈P ;
(ii) If {ϕk} contains a basis forP andϕj /∈P for somej thenϕj ∈ P⊥.

A first relationship among the classes we have introduced so far is formalized be

Theorem 2.2. LetP be a subspace ofΠ . If {ϕk} contains a basis forP then ICPDP (Ω) ⊂
CPDP (Ω).

Proof. If f ∈ ICPDP (Ω), thenak(f ) � 0 whenϕk ∈ P⊥. If, in addition,{ϕk} contains a
basis forP then Lemma 2.1 reveals that the previous conclusion corresponds toak(f ) � 0,
ϕk /∈P . Thatf ∈ CPDP (Ω) now follows by calculating the quadratic form (1.3).�

Next, we present conditions under which the converse of Theorem 2.2 is true
converse itself appears in Theorem 2.6, after we recall some basics about the concep
Lagrange-type bases and state two auxiliary results.

LetP be a finite-dimensional subspace ofΠ , m its dimension and{y1, . . . , ym} a subset
of Ω . A Lagrange-type basisfor P with respect to{y1, . . . , ym} is a basis{q1, . . . , qm}
of P such thatqj (yi) = δij . The construction of a Lagrange-type basis usually begins wit
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the choice of a basis{p1, . . . , pm} for P . Then one chooses a subsetΓ = {y1, . . . , ym}
of Ω such that the linear functionals

p ∈ P �→ p(yj ), j = 1, . . . ,m, (2.1)

form a linearly independent set. This can be done by induction selectingΓ so that the
matrixP(y1, . . . , ym) := (pi(yj )) and its principal minors have nonzero determinant. S
a set is called afundamental setof P . Finally, the set{q1, . . . , qm} in which

qi(x) := detP(y1, . . . , yi−1, x, yi+1, . . . , ym)

detP(y1, . . . , yi−1, yi, yi+1, . . . , ym)
, i = 1, . . . ,m, (2.2)

is a Lagrange-type basis with respect toΓ .
Lemma 2.3 and Theorem 2.4 below provide a method to derive a kernel inCPD{0}(Ω)

from a kernel inCPDP (Ω). The ideas behind these two results are originally from
theory of positive definite functions on groups (see Chapter 3 in [2]) and have stron
nections with reproducing kernel Hilbert spaces. Early papers of I.J. Schoenberg [13,
also made use of similar relations between different types of kernels. Our proof of
rem 2.4 is a simplified version of arguments explored in [12].

Lemma 2.3. LetP be anm-dimensional subspace ofΠ , Γ = {y1, . . . , ym} a subset ofΩ
and{q1, . . . , qm} a basis forP . If f is as in(1.8) and

g(x, y) := f (x, y) −
m∑

i=1

qi(x)f (yi, y) −
m∑

j=1

qj (y)f (x, yj )

+
m∑

i=1

m∑
j=1

qi(x)qj (y)f (yi, yj ), (2.3)

thenak(g) = ak(f ), ϕk ∈P⊥.

Proof. Direct computation with formula (1.9) with a help of the orthonormality of{ϕk}.�
Theorem 2.4. LetP andΓ be as in the previous lemma and{q1, . . . , qm} a Lagrange-type
basis forP with respect toΓ . Then the following assertions hold:

(i) If f ∈ CPDP (Ω) then the kernelg, as described in Lemma2.3, is an element o
CPD{0}(Ω);

(ii) If f ∈ SCPDP (Ω) theng ∈ SCPD{0}(Ω \ Γ ).

Proof. (i) Let {x1, . . . , xn} ⊂ Ω and{c1, . . . , cn} ⊂ C. The quadratic form

Q :=
n∑

µ,ν=1

cµc̄νg(xµ, xν) (2.4)

can be decomposed in the form
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n∑
µ,ν=1

cµc̄νf (xµ, xν) −
m∑

i=1

n∑
ν=1

c̄ν bif (yi, xν) −
m∑

j=1

n∑
µ=1

cµb̄jf (xµ, yj )

+
m∑

i,j=1

bib̄jf (yi, yj ), (2.5)

in which

bi =
n∑

j=1

cjqi(xj ), i = 1, . . . ,m. (2.6)

Hence,

Q =
m+n∑

µ,ν=1

aµāνf (wµ,wν), (2.7)

where

aµ =
{

cµ, µ = 1, . . . , n,

−bµ−n, µ = n + 1, . . . ,m + n,
(2.8)

and

wµ =
{

xµ, µ = 1, . . . , n,

yµ−n, µ = n + 1, . . . ,m + n.
(2.9)

It is now clear that the proof will be completed as long as we show that
m+n∑
µ=1

aµqk(wµ) = 0, k = 1, . . . ,m. (2.10)

But, using (2.6) and the fact that{q1, . . . , qn} is a Lagrange-type basis forP yield

m+n∑
µ=1

aµqk(wµ) =
n∑

µ=1

cµqk(xµ) −
m∑

µ=1

bµqk(yµ) = bk − bk = 0,

k = 1, . . . ,m. (2.11)

(ii) Assume that at least onecµ is nonzero and that{x1, . . . , xn} ⊂ Ω \ Γ . Then at leas
oneaµ is nonzero and thewµ are pairwise distinct. Thus, iff ∈ SCPDP (Ω), the quadratic
form in (2.7) is positive. �
Corollary 2.5. Under the conditions in Theorem2.4, the following assertions hold fo
a subspaceP1 of P :

(i) If f ∈ CPDP (Ω) then the kernelg, as defined in Lemma2.3, is an element o
CPDP1(Ω);

(ii) If f ∈ SCPDP (Ω) theng ∈ SCPDP1(Ω \ Γ ).

Proof. It suffices to use the previous theorem along with the inclusionsCPD{0}(Ω) ⊂
CPDP1(Ω) andSCPD{0}(Ω \ Γ ) ⊂ SCPDP1(Ω \ Γ ). �
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Theorem 2.6. If P is a finite-dimensional subspace ofΠ then CPDP (Ω) ⊂ ICPDP (Ω).

Proof. Select a Lagrange-type basis{q1, . . . , qm} for P with respect to a subsetΓ =
{y1, . . . , ym} of Ω . Let f ∈ CPDP (Ω) and considerg as defined in Lemma 2.3. Sinc
g ∈ CPD{0}(Ω), the inequality

n∑
µ=1

|cµ|2f (xµ, xµ) +
n∑

µ,ν=1
µ�=ν

c̄µcνf (xµ, xν) −
m∑

i=1

(
n∑

µ=1

c̄µqi(xµ)

)
n∑

ν=1

cνf (yi, xν)

−
m∑

j=1

(
n∑

ν=1

cνqj (xν)

)
n∑

µ=1

c̄µf (xµ, yj )

+
m∑

i=1

m∑
j=1

f (yi, yj )

(
n∑

µ=1

c̄µqi(xµ)

)(
n∑

ν=1

cνqj (xν)

)
� 0

holds for{c1, . . . , cn} ⊂ C and{x1, . . . , xn} ⊂ Ω . In particular,

n∑
µ=1

∣∣h(xµ)
∣∣2f (xµ, xµ) +

n∑
µ,ν=1
µ�=ν

h(xµ)h(xν)f (xµ, xν)

−
m∑

i=1

(
n∑

µ=1

h(xµ)qi(xµ)

)
n∑

ν=1

h(xν)f (yi, xν)

−
m∑

j=1

(
n∑

ν=1

h(xν)qj (xν)

)
n∑

µ=1

h(xµ)f (xµ, yj )

+
m∑

i=1

m∑
j=1

f (yi, yj )

(
n∑

µ=1

h(xµ)qi(xµ)

)(
n∑

ν=1

h(xν)pj (xν)

)
� 0

holds forh ∈ C(Ω) ∩ P⊥ and {x1, . . . , xn} ⊂ Ω . Integration with respect toxµ andxν

yield

ω(Ω)

n∑
µ=1

∫
Ω

∣∣h(xµ)
∣∣2f (xµ, xµ) dω(xµ)

+
n∑

µ,ν=1
µ�=ν

∫
Ω

∫
Ω

f (xµ, xν)h(xµ)h(xν) dω(xµ) dω(xν) � 0, (2.12)

in which ω(Ω) stands for the measure ofΩ . Defining M := max{f (xµ, xµ): µ =
1, . . . , n}, the above inequality implies that

nMω(Ω)

∫
Ω

∣∣h(x)
∣∣2 dω(x) + n(n − 1)

∫
Ω

∫
Ω

f (x, y)h(x)h(y) dw(x) dω(y) � 0.

(2.13)



352 V.A. Menegatto, A.P. Peron / J. Math. Anal. Appl. 294 (2004) 345–359

s.
ct

n posi-

ribe.
n

the

is the

-

Dividing by n(n − 1) and lettingn → ∞, we obtain∫
Ω

∫
Ω

f (x, y)h(x)h(y) dω(x) dω(y) � 0, (2.14)

concluding the proof of the theorem.�
The following theorem is now evident.

Theorem 2.7. LetP be a finite-dimensional subspace ofΠ . Assume{ϕk} contains a basis
for P . Then the following assertions are equivalent:

(i) f ∈ CPDP (Ω);
(ii) f ∈ ICPDP (Ω);
(iii) ak(f ) � 0, ϕk ∈P⊥;
(iv) ak(f ) � 0, ϕk /∈P .

Proof. Theorem 2.6 shows that (i) implies (ii). That (iii) follows from (ii) is obviou
Lemma 2.1(ii) justifies that (iii) implies (iv). The closing implication follows by dire
computation. �

References [8,10] contain some interesting discussion on the connection betwee
tive definite and integrally positive definite kernels.

3. Strict conditional positive definiteness

As it turns out, strict integral conditional positive definiteness is not difficult to desc
Before we do that, let us introduce the truncated series of a kernelf representable as i
(1.8) with respect to a subspaceP of Π . It is just

f ⊥
P (x, y) :=

∑
k: ϕk /∈P

ak(f )ϕk(x)ϕk(y), x, y ∈ Ω. (3.1)

The importance of this notion for conditional positive definiteness is illustrated by
following lemma whose proof will be omitted.

Lemma 3.1. Let P be a subspace ofΠ and letF denote any of the classes CPDP (Ω),
SCPDP (Ω), ICPDP (Ω) and SICPDP (Ω). Thenf ⊥

P ∈ F if and only iff ∈F .

Theorem 3.2 below reveals that strict integral conditional positive definiteness
best one can expect when dealing with strict conditional positive definiteness.

Theorem 3.2. LetP be a subspace ofΠ andf a kernel as in(1.8). The following asser
tions are equivalent:

(i) f ∈ SICPDP (Ω);
(ii) ak(f ) > 0 wheneverϕk ∈P⊥.
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Proof. One implication is obvious since we can replaceh by ϕk in (1.11). Conversely
assume thatak(f ) > 0 when ϕk ∈ P⊥ and suppose thatf /∈ ISCPDP (Ω). Due to
Lemma 3.1, we conclude that∫

Ω

∫
Ω

f ⊥
P (x, y)h(x)h(y) dω(x) dω(y) = 0 (3.2)

for someh ∈ (C(Ω) ∩P⊥) \ {0}. Since{ϕk} is an orthonormal basis forL2(Ω,dω), there
is ϕk0 /∈ P such that〈ϕk0, h〉 �= 0. It follows that

0 =
∫
Ω

∫
Ω

f ⊥
P (x, y)h(x)h(y) dω(x) dω(y) � 〈ϕk0, h〉〈ϕk0, h〉 > 0, (3.3)

a contradiction. �
Next, we turn to plain strict conditional positive definiteness with respect toP . It is

not hard to see that the strict conditional positive definiteness of a kernelf ∈ CPDP (Ω)

depends upon the set

AP (f ) := {k: ϕk /∈ P} ∩ {
k: ak(f ) > 0

}
(3.4)

and not on the actual values of the coefficientsak(f ). Thus, the following definition need
no additional explanation: letL be a family of subsets ofZ+ andF a subset ofSCPDP (Ω).
We say thatL representsF if the following two conditions hold:

(i) If f ∈F , there existsK ∈L such thatAP (f ) = K;
(ii) If K ∈L, there existsf ∈ F such thatK = AP (f ).

It is known that for some choices ofΩ andP (see the caseΩ = Sl−1 in [4]), kernels
in SCPDP (Ω) have the following invariance property: iff ∈ SCPDP (Ω) andm � 0 then
any kernelg ∈ CPDP (Ω) such that

AP (g) = AP(f ) + m := {
α + m: α ∈ AP(f )

}
(3.5)

belongs toSCPDP (Ω). This property is the motivation to our next definition. A familyL
of subsets ofZ+ is translation-invariantif it possesses the following feature: ifK ∈ L and
A is finite thenK \ A ∈L.

The following lemma complements Lemma 2.3 and Theorem 2.4.

Lemma 3.3. LetP , Γ , {q1, . . . , qm}, f andg be as in Lemma2.3. If

h(x, y) := g(x, y) +
m∑

j=1

qj (x)qj (y), x, y ∈ Ω, (3.6)

thenak(h) = ak(g) whenϕk ∈ P⊥. If {q1, . . . , qm} is a Lagrange-type basis forP with
respect toΓ andf ∈ CPDP (Ω) thenh ∈ CPD{0}(Ω). Further, if f ∈ SCPDP (Ω) then
h ∈ SCPD{0}(Ω).
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Proof. The first assertion of the lemma is obvious. To prove the others, assum
{q1, . . . , qm} is a Lagrange-type basis forP with respect toΓ and let{x1, . . . , xn} ⊂ Ω

and{c1, . . . , cn} ⊂ C. Then, the quadratic formR := ∑n
µ,ν=1 cµc̄νh(xµ, xν) can be writ-

ten as

R =
n∑

µ,ν=1

cµc̄νg(xµ, xν) +
m∑

j=1

∣∣∣∣∣
n∑

µ=1

cµqj (xµ)

∣∣∣∣∣
2

. (3.7)

If f ∈ CPDP (Ω), Theorem 2.4(i) implies thatg ∈ CPD{0}(Ω). Hence,R � 0, and con-
sequently,h ∈ CPD{0}(Ω). To finish the proof, assume thexµ are distinct. The condition
R = 0 yields the conclusions

n∑
µ=1

cµqj (xµ) = 0, 1� j � m, (3.8)

and
n∑

µ,ν=1

cµc̄νg(xµ, xν) = 0. (3.9)

Looking at the definition ofg, we obtain
n∑

µ,ν=1

cµc̄νf (xµ, xν) =
n∑

µ,ν=1

cµc̄νg(xµ, xν) = 0. (3.10)

Hence, if f ∈ SCPDP (Ω), Eq. (3.10) implies thatc1 = · · · = cn = 0, thereforeh ∈
SCPD{0}(Ω). �

Regarding the kernels involved in Lemma 2.3, Theorem 2.4 and Lemma 3.3, th
lowing formulas hold when{ϕk} contains a basis forP :

ak(g) = ak(f ) − 〈
f (yk, ·), p̄k

〉 − 〈
f (·, yk),pk

〉 + f (yk, yk), ϕk /∈ P⊥, (3.11)

andak(h) = ak(g) + 1, ϕk /∈ P⊥. Even being interesting, these formulas will be of no
in this paper.

The major theorem in this paper is as follows.

Theorem 3.4. Let P be anm-dimensional subspace ofΠ andP1 a subspace ofP . As-
sume{ϕk} contains a basis forP . If L is a translation-invariant family that represen
SCPDP1(Ω) then{K ∈ L: K ∩ {k: ϕk ∈P} = ∅} represents SCPDP (Ω).

Proof. Let f ∈ SCPDP (Ω). Choose a Lagrange-type basis{q1, . . . , qm} for P with re-
spect to a subsetΓ = {y1, . . . , ym} of Ω and consider the corresponding kernelh given
in (3.6). Due to Lemma 3.3 and Corollary 2.5,h ∈ SCPDP1(Ω). By Lemma 3.1,h⊥

P1
∈

SCPDP1(Ω) while the translation-invariance ofL guarantees thath⊥
P ∈ SCPDP1(Ω).

SinceL represents the familySCPDP1(Ω), there existsA ∈ L such thatAP1(h
⊥
P ) = A.

Lemma 3.3 implies that

ak(h) = ak(f ), ϕk ∈ P⊥. (3.12)
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Since{ϕk} contains a basis forP , it follows that

ak(h) = ak(f ), ϕk /∈ P . (3.13)

Hence,

AP1

(
h⊥
P

) = {k: ϕk /∈P1} ∩ {
k: ak

(
h⊥
P

)
> 0

}
= {k: ϕk /∈P} ∩ {

k: ak

(
h⊥
P

)
> 0

}
= {k: ϕk /∈P} ∩ {

k: ak(f ) > 0
} = AP (f ).

It is now clear thatA ∈ {K ∈ L: K ∩ {k: ϕk ∈P} = ∅} which takes care of the first half o
the proof. To conclude it, letB ∈ {K ∈ L: K ∩ {k: ϕk ∈ P} = ∅}. Pick g ∈ SCPDP1(Ω)

such thatAP1(g) = B. It follows thatg ∈ SCPDP (Ω). Finally,

B = {k: ϕk /∈P1} ∩ {
k: ak(g) > 0

}
= ({k: ϕk ∈ P \P1} ∩ {

k: ak(g) > 0
}) ∪ ({k: ϕk /∈P} ∩ {

k: ak(g) > 0
})

= {k: ϕk /∈P} ∩ {
k: ak(g) > 0

} = AP (g).

This concludes the proof.�
If P =P1 thenL= {K ∈ L: K ∩ {k: ϕk ∈ P} = ∅} and the invariance hypothesis onL

can be discarded.
In practice, the use of Theorem 3.4 will depend on the knowledge of a characteri

of the classSCPD{0}(Ω) and nothing else. However, even for some desirable domainΩ

such characterization is not available yet. We hope this continue being a topic for
research.

In the case in whichΩ is a sphere or some other similar manifolds, some subclass
SCPD{0}(Ω) are known. For instance, the classZl ∩SCPD{0}(Sl−1), in whichZl stands for
the bi-zonal kernels onSl−1, was described in [3]. In Section 4, we prove that Theorem
can be adapted to hold for bi-zonal classes so that a characterization ofZl ∩SCPDP (Sl−1)

can be reached. The search for versions of Theorem 3.4 for other domains and clas
seems to be a problem that should deserve future attention.

4. Conditional positive definiteness on real spheres

In this section, we analyze the case in whichΩ = Sl−1, the unit sphere inRl . The
measureω will be the unique probability Borel measure overSl−1 which isOl -invariant,
whereOl is the group of orthogonal transformations ofRl . The basis{ϕk} will be a basis
of spherical harmonics inl dimensions. Thus, the hypothesis “{ϕk} contains a basis forP”
used in previous sections is now meaningless. With this background notation estab
Theorem 3.4 can be easily restated in the present case as the reader can easily ver

Next, we discuss smaller classes of conditionally positive definite kernels onSl−1. The
most important ones perhaps are those composed ofbi-zonalkernels. A kernelf :Sl−1 ×
Sl−1 �→ C is bi-zonal when

f (x, y) = f (x · y), x, y ∈ Sl−1, (4.1)
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where· stands for the usual inner product ofRl . In particular, a bi-zonal kernelf is Ol -
invariant in the following sense:

f
(
T (x), T (y)

) = f (x, y), x, y ∈ Sl−1, T ∈ Ol . (4.2)

The symbolZl will continue standing for the set of all such kernels.
When dealing with zonal kernels, it is convenient to use spacesP which areOl-invariant

in the following sense:

p ◦ T = p, p ∈ P, T ∈Ol . (4.3)

Spherical harmonics are examples of polynomials having this property. The
L2(Sl−1, dω) also has a similar invariance property, namely,

〈f ◦ T ,g ◦ T 〉 = 〈f,g〉, f, g ∈ L2(Ω,dω), T ∈Ol . (4.4)

Lemma 4.1 below describes theOl -invariant spaces of spherical harmonics. The sym
Hk(S

l−1) will stand for the space of spherical harmonics of degreek in l dimensions.

Lemma 4.1. A finite-dimensional subspace ofL2(Sl−1, dω) is Ol -invariant if and only if
it is a direct sum of finitely many spacesHk(S

l−1).

Proof. See [9, p. 55], for example.�
We intend to state the results in the zonal case taking into account standard n

adopted in the literature dealing with analysis onSl−1 [7,16]. To do that, additional notatio
is needed. First, we write the orthonormal family{ϕk} as a double-indexed family of th
form

{ϕk} = {F0,F1, . . .}, (4.5)

in which

Fk := {
Y l

kj : j = 1, . . . , d(k, l)
}

(4.6)

is a basis forHk(S
l−1). The following representation forP l

m(Sl−1) := P l
m, the space o

polynomials of degree at mostm in l variables, restricted toSl−1, is then immediate
P l

m(Sl−1) = ⊕m
k=0Hk(S

l−1). The representation(1.8) takes the form

f (x, y) =
∞∑

k=0

d(k,l)∑
j=1

akj (f )Y l
kj (x)Y l

kj (y), x, y ∈ Sl−1. (4.7)

A description ofCPDP (Sl−1) follows from Theorem 2.7. In particular, a description
Zl ∩ CPDP (Sl−1) is easily deduced. Theorem 4.2 belowis an adaptation of Theorem 3
to the zonal situation. We refer the reader to [7,11] for the specifics about analysis onSl−1.

Theorem 4.2. LetP be anOl -invariantm-dimensional subspace ofΠ andP1 a subspace
ofP . If L is a translation-invariant family that representsZl ∩SCPDP1(S

l−1) then the se
{K ∈L: K ∩ {k: ϕk /∈ P} = ∅} representsZl ∩ SCPDP (Sl−1).
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Proof. It suffices to adapt the proof of Theorem 3.4 to the present situation. The ke
is to show that iff ∈ Zl andP is Ol -invariant thenf ⊥

P ∈ Zl . This can be justified alon
the following lines. A kernel admitting a representation as in(4.7) is bi-zonal if and only
if it possesses the following additional feature:

akj (f ) = ak1(f ), j = 1, . . . , d(k, l), k = 0,1, . . . . (4.8)

Thus, if f is such a kernel andP is Ol-invariant, the direct sum decomposition given
Lemma 4.1 implies thatf ⊥

P satisfies condition(4.8). Therefore, it is bi-zonal. With this in
mind, the first part of the proof goes without difficulties. The last part is handled by pickin
h ∈ Zl ∩ SCPDP (Sl−1) from the beginning. �

We close the section looking at the special case whenP =P l
m. As we mentioned before

this is the most common choice forP in applications. Theorem 2.7 reads like this in t
case.

Theorem 4.3. Letf be a kernel as in(4.7). Thenf ∈ CPDP l
m
(Sl−1) if and only if

akj � 0, j = 1,2, . . . , d(k, l), k = m + 1,m + 2, . . . . (4.9)

For bi-zonal kernels it takes the following aspect.

Theorem 4.4. Letf be a kernel as in(4.7). Thenf ∈Zl ∩ CPDP l
m
(Sl−1) if and only if

ak1 = · · · = akd(k,l) � 0, k = m + 1,m + 2, . . . . (4.10)

The above theorem contains a description ofZl ∩ CPD{0}(Sl−1), the major result in
Schoenberg’s paper [15]. Due to that result, Theorem 4.4 has been quoted or used in
references (see [1,4], for example). To our knowledge, an explicit proof was missing
now.

We restate Theorem 4.2 in two steps.

Theorem 4.5. Letf be a kernel in CPD{0}(Sl−1). If l � 3, thenf ∈Zl ∩SCPD{0}(Sl−1) if
and only ifak1 = · · · = akd(k,l) > 0 for infinitely many even and infinitely many odd valu
of k.

Proof. See [3]. �
Theorem 4.6. Letf be a kernel in CPDP l

m
(Sl−1). If l � 3, thenf ∈Zl ∩SCPDP l

m
(Sl−1) if

and only ifak1 = · · · = akd(k,l) > 0 for infinitely many even and infinitely many odd valu
of k.

Proof. It suffices to combine Theorems 4.2 and 4.5.�
To determine an elementary description of the classZl ∩SCPD{0}(S1) is a question tha

stands for many years.
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5. The case Ω = Ω2l , the unit sphere in Cl

The caseΩ = Ω2l , the unit sphere inCl , is very similar to that discussed in Section
Thus, we only point out what the changes are and state the results without proofs.

The groupOl needs to replaced withU2l , the group of all unitary transformation
of Cl . The measureω needs to be the unique probability measure onΩ2l which is
U2l-invariant. Finite-dimensionalU2l-invariant subspaces ofL2(Ω2l , dω) are of the form⊕

(r,s)∈B Hr,s(Ω2l), whereB ⊂ Z2+ and Hr,s(Ω2l) is the space of homogeneousCl -

harmonic polynomials of degreem in z ∈ Cl and degreen in z̄, restricted toΩ2l (see
Chapter 12 in [11]).

Since L2(Ω2l, dω) = ⊕
r,s�0Hr,s(Ω2l), the basis{ϕk} can be taken in the form⋃

r,s�0Fr,s , whereFr,s = {Y l
r,s,j : j = 1, . . . , d(r, s, l)} is a basis forHr,s (Ω2l). Expres-

sion(1.8) takes the form

f (x, y) =
∞∑

r,s=0

d(r,s,l)∑
j=1

ar,s,j (f )Y l
r,s,j (x)Y l

r,s,j (y), x, y ∈ Ω2l . (5.1)

In what follows,P l
m,n := ⊕m

r=0
⊕n

s=0Hr,s(Ω2l). Theorem 2.7 adapted to this new notat
reads as follows.

Theorem 5.1. Letf be a kernel as in(5.1). Thenf ∈ CPDP l
m,n

(Ω2l) if and only if

ar,s,j � 0, j = 1, . . . , d(r, s, l), (5.2)

when eitherr � m + 1 or s � n + 1.

Bi-zonality can be easily transferred to the complex setting as the reader can
verify. In particular, we have the following results. The symbolZ2l will denote the class o
bi-zonal kernels onΩ2l .

Corollary 5.2. Let f be a kernel as in(5.1). Thenf ∈ Z2l ∩ CPDP l
m,n

(Ω2l) if and only if
ar,s,1 = · · · = ar,s,d(r,s,l) � 0 when eitherr � m + 1 or s � n + 1.

Proof. It suffices to use the main theorem in [5] and Theorem 5.1.�
Theorem 5.3. Letf be a kernel in CPDP l

m,n
(Ω2l). If l � 3, thenf ∈Z2l ∩SCPDP l

m,n
(Ω2l)

if and only ifar,s,1 = · · · = ar,s,d(r,s,l) > 0 for infinitely many pairs(r, s) such thatr − s is
even and infinitely many pairs(r, s) such thatr − s is odd.

Proof. The condition stated in the theorem is precisely the one obtained in [6] to ch
terize the classZ2l ∩ SCPD{0}(Ω2l). An adaptation of Theorem 4.2 to the complex sett
is all that is needed to conclude the proof.�
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