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Abstract

Background: Diabetic cardiomyopathy is associated with a number of functional and structural pathological
changes such as left ventricular dysfunction, cardiac remodeling, and apoptosis. The primary cause of diabetic
cardiomyopathy is hyperglycemia, the metabolic hallmark of diabetes. Recent studies have shown that a diabetic
environment suppresses hypoxia-inducible factor (HIF)-1a protein stability and function. The aim of this study was
to analyze the functional role of HIF-1a in the development of diabetic cardiomyopathy. We have hypothesized that
the partial deficiency of HIF-1a may compromise cardiac responses under diabetic conditions and increase
susceptibility to diabetic cardiomyopathy.

Methods: Diabetes was induced by streptozotocin in wild type (Wt) and heterozygous Hifla knock-out (Hifla*")
mice. Echocardiographic evaluations of left ventricular functional parameters, expression analyses by gPCR and
Western blot, and cardiac histopathology assessments were performed in age-matched groups, diabetic,

and non-diabetic Wt and Hifla™" mice.

Results: Five weeks after diabetes was established, a significant decrease in left ventricle fractional shortening was
detected in diabetic Hifla"" but not in diabetic Wt mice. The combination effects of the partial deficiency of Hifla
and diabetes affected the gene expression profile of the heart, including reduced vascular endothelial growth factor
A (Vegfa) expression. Adverse cardiac remodeling in the diabetic Hifla™" heart was shown by molecular changes in
the expression of structural molecules and components of the extracellular matrix.

Conclusions: We have shown a correlation between heterozygosity for Hifla and adverse functional, molecular,
and cellular changes associated with diabetic cardiomyopathy. Our results provide evidence that HIF-1a regulates
early cardiac responses to diabetes, and that HIF-1a deregulation may influence the increased risk for diabetic
cardiomyopathy.
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Background

Both type 1 and type 2 diabetes are characterized by an
increased risk of cardiomyopathy and myocardial infarc-
tion. Diabetic cardiomyopathy is associated with a num-
ber of functional and structural pathological changes,
including decreased diastolic compliance, systolic dys-
function, apoptosis, and cardiac remodeling [1]. Diabetes
is also associated with the majority of risk factors for car-
diac failure, such as hypertension, hyperlipidemia, obesity,
thrombosis, autonomic neuropathy, endothelial dysfunc-
tion, and microvascular pathology [2-4]. Hyperglycemia
triggers diabetic tissue damage, including cardiovascular
and microvascular complications. Existing evidence sug-
gests that hyperglycemia induces an altered metabolism,
abnormal expression of genes, the overproduction of
reactive oxygen species (ROS), and mitochondrial dys-
function, which are underlying mechanisms behind patho-
logical changes in diabetes [3]. Hypoxia is one of the most
important pathophysiological factors associated with dia-
betic complications.

Transcriptional responses to hypoxia are mediated by
hypoxia inducible factor 1 (HIF-1). HIF-1 activates over
800 target genes that are involved in cell proliferation,
angiogenesis, glycolytic energy metabolism, and apoptosis
[5]. HIE-1 consists of two subunits, HIF-1a, the regulatory
subunit, and constitutively expressed HIF-1B. Oxygen ten-
sion plays a key role in the regulation of HIF-1a expres-
sion, stabilization, and activation [5]. The bulk of this
response can be further modulated by growth factor and
cytokine dependent signaling pathways [6,7]. Furthermore,
existing evidence indicates that mitochondrial ROS are
sufficient enough to initiate the stabilization and activation
of HIF-1q, and that treatment with antioxidants prevents
HIF-1a protein stabilization [8,9]. Embryonic lethality
due to cardiovascular defects resulting from the global
deletion of HIF-1a illustrates the critical role of Hifla in
embryonic development [10]. Hifla™" mutants normally
survive past embryonic development; however, Hifla he-
terozygotes demonstrate impaired responses when chal-
lenged with hypoxia after birth [11,12]. A partial deficiency
of HIF-1a has been associated with a complete loss of
cardioprotection against ischemia—reperfusion injury,
including the impairment of functional recovery parame-
ters, a lack of ROS generation, and increased apoptosis
[13]. Cardiac myocyte-specific HIF-1a gene deletion causes
reductions in contractility, vascularization, and alters the
expression of multiple genes in the heart during normoxia
[14]. These findings point toward the central role of HIF-
la in coordinating molecular, cellular, and functional
responses in the heart and, also, toward the central role of
HIF-1a in diseases with impaired oxygen delivery, such as
diabetes.

The diabetic environment reduces HIF-la expression
and function [15-18]. Consistent with a negative effect
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of diabetes on HIF-1a function, decreased levels of one
of the best-known HIF-1 targets, VEGF-A, have been de-
tected in diabetic hearts and other tissues [19]. In fact,
the down-regulation of VEGE-A in diabetic hearts is the
earliest event detected during diabetic cardiomyopathy
and it is associated with the initiation of all the other
features of diabetic cardiomyopathy, such as apoptosis,
fibrosis, and progressive diastolic and systolic dysfunc-
tion [20]. Dysfunction of the left ventricle (LV) in dia-
betic cardiomyopathy has been correlated with cardiac
remodeling, which leads to myocardial collagen depos-
ition and cardiac fibrosis [21]. The causal relationship
between decreased VEGFA expression, HIF-1a func-
tional activity, and high glucose-induced microvascu-
lar pathology has been revealed in experiments with a
wound healing mouse model [18]. Interestingly, an im-
paired ability to increase hypoxia-stimulated VEGF-A ex-
pression in diabetic tissues resulted from a primary defect
in HIF-1 transactivation but not HIF-1 stabilization. HIF-
1 activity increased by a local adenovirus-mediated transfer
of stable HIF-la constructs normalizes VEGF-A ex-
pression and prevents diabetic complications [15,16].
Cardiac-specific HIF-la—overexpressing transgenic mice
show cardiac protection from diabetes-induced defects
in glucose metabolism and angiogenesis [22]. HIF-1la
overexpression has restored VEGF-A levels and blocked
cardiac fibrosis in the diabetic heart. However, the
functional parameters of the LV have not been evalu-
ated, which would be necessary for a more complex
analysis.

Our study examines the relationship between the de-
velopment of diabetic cardiomyopathy and the partial
deficiency of HIF1-a caused by the global deletion of
Hifla functional allele. We have hypothesized that the
partial deficiency of Hifla may compromise cardiac re-
sponses under diabetic conditions and increase suscepti-
bility to diabetic cardiomyopathy. Our research provides
a new insight into the potential role of HIF-1a and Hifla
genetic variations in multiple pathways in diabetic car-
diomyopathy. We analyzed echocardiographic parame-
ters and molecular changes in the early phase of diabetic
cardiomyopathy. We evaluated the expression of six
HIF-1 transcriptional targets in order to identify signal-
ing pathways and genes that may contribute to cardiac
changes accompanying diabetes-induced cardiomyopathy
and to directly evaluate HIF1-pathway responses. These
genes encode molecules involved in vasculogenesis, glu-
cose metabolism, insulin signaling, and autophagy (Vegfa,
Fit1, Slc2al, Ldha, Igf2, and Bnip3l). Additionally, we eval-
uated the expression of structural molecules (Cxadr
Cx43) and molecules associated with cardiac remodeling
(Coll, Pdgfra, Ctss, TIgfbrl, Itgav, and Il6st). Our data
showed that the partial deficiency of the Hifla gene accel-
erated the progression of pathological changes induced
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by the diabetic environment in the heart, including
significant changes in cardiac mechanical function and in
cardiac gene expression.

Methods

Experimental animals

This study was conducted in accordance with the Guide for
the Care and Use of Laboratory Animals (NIH Publication
No. 85-23, revised 1996). The experimental protocol was
approved by the Animal Care and Use Committee of the
Institute of Molecular Genetics, the Czech Academy of
Sciences. The experimental mice were housed in a con-
trolled environment (23°C; 12-h light/dark cycle) with free
access to water and a standard chow diet. All experiments
were performed with male and female littermate mice that
were either wild-type, Hifla™"* (W?) or heterozygous Hifla
knock-out (Hiﬂa” ) on a FVB background (strain code
207, Charles River). The heterozygous Hifla mutants have
the Hifla™ " mutant allele in which exon 2, encoding
the bHLH domain of the Hifla gene, has been replaced by
an intragenic deletion with a neomycin resistance (neo®)
gene [10]. The heterozygous Hifla deficient mice showed
a partial loss of HIF-1a protein expression levels [23,24].
Offspring of Wt x Hifla”~ matings were genotyped by
PCR, using genomic DNA isolated from tails and amplify-
ing neomycin (Neo) and Hifla exon 2 sequences [10,25].
Both Neo (463-bp) and Hifla (317-bp) sequences were
amplified from the DNA of Hifla*"~ mice, whereas only
Hifla sequences were amplified from the DNA of Wt mice
(Hifla™""), respectively. The sequences of the Neo primers
were 5'-ACTGGCTGCTATTGGGCGAAGTG-3" and 5'-
GTAAAGCACGAGGAAGCGGTCAG-3'. The conditions
for PCR were 94°C for 30 s, 48°C for 30 s, and 72°C
for 30 s, for 40 cycles. The sequences of Hifla exon
2 primers were 5 -TGTAGTCTCCTGCTAAAAG-3’
and 5 -TTATTCGAGTTAAGACAAAC-3". The condi-
tions for PCR were 94°C for 30 s, 63°C for 30 s, and 72°C
for 30 s, for 40 cycles.

Diabetes was induced in mice 8-10 weeks of age by 2
intraperitoneal injections of 100 mg/kg body weight of
streptozotocin (STZ; Sigma, St. Louis, MO), as described
in [26]. The fasting blood glucose levels were measured
by glucometer (COUNTOUR TS, Bayer, Switzerland)
one week after the last STZ injection. Mice whose blood
glucose levels exceeded 13.9 mmol/L were considered
diabetic. The mice were analyzed after being diabetic for
5 weeks. The fasting blood glucose levels (mean + SD) of Wt
and Hifla"" mice were 9.9 + 0.3 and 10.0 + 0.3 mmol/L be-
fore STZ treatment, and 32.5+ 1.8 and 30.3 + 2.0 mmol/L
after 5 weeks of diabetes, respectively.

Echocardiography
The echocardiographic evaluation of the geometrical and
functional parameters of the LV was performed using the
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GE Vivid 7 Dimension (GE Vingmed Ultrasound, Horten,
Norway) with a 12 MHz linear matrix probe M12L. The
animals were anesthetized by the inhalation of 2% isoflur-
ane (Aerrane, Baxter SA) and their rectal temperature
was maintained within 36.5 and 37.5°C by a heated
table throughout the measurements. For the baseline
evaluation, the following diastolic and systolic dimensions
of the LV were measured: the posterior wall thickness
(PWTp and PWTs), anterior wall thickness (AWTp and
AWTs), and the cavity diameter (LVDp and LVDs). From
these dimensions, the main functional parameter, frac-
tional shortening (FS) was derived by the following for-
mula: FS [%] = 100 x (LVDp — LVDg)/LVDp.

After the echocardiographic examination, a fluid filled
catheter connected to an external transducer (Bpr-02,
Experimetria) was introduced into the left carotid artery
to measure the blood pressure. The mean blood pressure
was averaged from five measurements within a 10-min
interval. The hearts were then rapidly excised and dis-
sected into the right ventricle (RV), the LV and the inter-
ventricular septum. All ventricular parts were weighed
and processed for subsequent analyses.

Quantitative real-time PCR

RNA was isolated from the LV of individual diabetic
and non-diabetic adult males (8 individual samples/each
group) by Trizol® (Invitrogen). The concentration of ex-
tracted RNA was quantified using NanoDrop. Quantita-
tive Real-Time PCR (RT-qPCR) was performed using
the LightCycler® 480 Real-Time PCR system (Roche,
Roche Applied Science, Mannheim, Germany) on cDNA
samples. The collected RNA samples (1 pg) were sub-
jected to reverse transcription using Superscript II (Fer-
mentas, Lithuania). cDNA was diluted 20x and 4 pl were
added to 6 pl of Syber® Green JumpStart™ Tag ReadyMix™
(Sigma) with primers (0.25 pmol). Following the reverse
transcription (RT), quantitative real-time PCR (qPCR) was
performed with the initial AmpliTaq activation at 95°C
for 10 min, followed by 40 cycles at 95°C for 15 s and 60°C
for 60 s, as described in [25]. The Hprtl gene was se-
lected as the best reference gene for our analyses from a
panel of 12 control genes (TATAA Biocenter AB, Sweden).
The expression of this reference gene was unchanged
in response to the experimental conditions being investi-
gated. The relative expression of the target gene was
calculated using the AACp method, based on qPCR effi-
ciencies (E) and the crossing point (Cp) difference (A) of
an experimental sample (diabetic Wt non-diabetic and

diabetic Hiﬂa*/ ") versus control-non-diabetic Wt (ratio =

ACp target(Mean control — Mean EXP)/ ACp Hprtl
(Etarget) 8 (EHprtl)

(Mean control — Mean EXP) 157 RT_qPCR data were analyzed
using the GenEX5 program (www.multid.se/genex). The
differences in normalized Cp values were tested for statis-
tical significance. The primers were designed using the
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Primer 3 software (http://bioinfo.ut.ee/primer3/). Primer
sequences are listed in Additional file 1: Table S1.

Morphological analysis

The adult hearts of diabetic and non-diabetic Wt and
Hifla™" males were arrested in diastole by coronary per-
fusion with saline containing 5 mM cadmium chloride
and 20 mM potassium chloride. After fixation with 4%
paraformaldehyde overnight, the hearts were processed
for paraffin histology. Adjacent sections (7 um) were stained
with Alcian Blue/Hematoxylin-Eosin (general histological
staining), Picrosirius Red (PSR, collagen), TUNEL (apop-
tosis; #1684795, Roche), anti-collagen 1 (anti-Coll; #203002,
MD Biosciences), anti-smooth muscle actin (#A 2574,
Sigma), anti-CD34 (blood vessels; #ab8158, Abcam), anti-
VEGE-A (#sc-7269, Santa Cruz Biotechnology), and anti-
connexin43/wheat germ agglutinin (anti-Cx43/WGA; gap
junctions and cell membranes; #C6219, Sigma/#W7024,
Invitrogen). The nuclei were counterstained with Hoechst
33342 in fluorescence techniques or hematoxylin in diami-
nobenzidine (DAB; #D3939, Sigma) visualization protocol.
Myocyte size (minimum transverse diameter) was measured
on sections stained with anti-CD34 visualized by DAB.
The cardiomyocytes can be best approximated as rod-
shape with an oval cross section. Any errors due to a vari-
ation of the section plane are avoided by choosing the
minor axis only in cells where a nucleus is present. Each
analysis was repeated a minimum of 2 times on 2-3 indi-
vidual samples per genotype and included appropriate
controls. The sections were analyzed under a Nikon
Eclipse E400 fluorescent microscope or Leica SPE con-
focal microscope with a 40x magnification oil immersion
objective, with NIS-elements or LCS program. VEGF-A"
areas were quantified using Image | software. The evalu-
ator of the VEGF-A expression was blinded to the experi-
mental conditions and genotype.

Western blot

Dissected LVs from the diabetic and non-diabetic hearts
were lysed with protease and phosphatase inhibitors to
prevent protein degradation and stored at —80°C until
analysis. For HIFl-a immunoblot assays, nuclear ex-
tracts from dissected LVs were prepared using a Nuclear
extract kit (#40010; Active Motif, Belgium). The protein
levels were quantified using the BCA assay. 20 pg of
total protein lysates or 30 pg of nuclear extracts per lane
were denatured, resolved using 10% SDS-PAGE, and trans-
ferred to a nitrocellulose membrane [10,28]. The membrane
was blocked with 5% dry milk and incubated overnight with
rabbit anti-Coll at 1: 1000 dilution (#203002; MD biopro-
ducts, Switzerland), anti-Cx43 at 1:6000 (#C6219, Sigma),
anti-HIF-1a at 1:750 dilution (#NB100-105; Novus 224
Biologicals, UK), or anti-phospho-Cx43 at 1:1000 (#3511;
Cell Signaling, MA, USA). After incubation with a horseradish
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peroxidase—conjugated secondary IgG (Amersham, IL, USA),
the blots were developed using the SuperSignal* West
Dura Chemiluminescent Substrate (#PIA34075; Thermo
Scientific, MI, USA). Chemiluminescent signals were cap-
tured using an ImageQuant LAS 4000 Imager (GE Health-
care Bio-Sciences AB, Sweden) and analyzed by Image]
software (http://rsbweb.nih.gov/ij/). Protein levels were
quantified on duplicate blots and were normalized to
the loading control mitochondrial membrane marker
(ATP5a) or glyceraldehyde 3-phosphate dehydrogenase
(GAPDH; Membrane Fraction WB Cocktail, #ab140365;
Abcam, Cambridge, USA).

Statistical analysis

All values are expressed as mean + SEM. Group data
were analyzed using 2-way ANOVA (with genotype and
experimental condition as categories) and Tukey’s post-
hoc multiple-comparisons test for between-group differ-
ences (significance assigned at the P <0.05 level; Graph
Pad, 2005; Graph Pad, San Diego, CA). Sample sizes and
individual statistical results for all analyses are provided
in the figures and tables.

Results

Echocardiographic evaluation of the LV function

Five weeks after diabetes was induced by repeated intra-
peritoneal STZ injections, the body mass and LV mass
gains of diabetic Hifla™" and Wt males were lower com-
pared to non-diabetic groups (Table 1). Diabetic females
were less affected in the body and LV mass gains than
diabetic males. Neither heart rate nor blood pressure dif-
fered among the groups, although blood pressure tended
to increase in both Wt and Hifla"" diabetic mice com-
pared to the corresponding controls (males: P =0.053
and 0.066, respectively, Table 2). LV echocardiography
did not reveal any difference between non-diabetic Wt
and Hifla™” mice. However, diabetes significantly influ-
enced the LV echocardiographic parameters of Hifla""
mice. The general trends of functional changes induced
by diabetes were similar in males and females (Figure 1
and Table 2). LV FS was unaffected by genotype in non-
diabetic Wt (males: 38.3 + 0.6, females: 33.8 +1.3) and
non-diabetic Hifla*~ mice (males: 38.0 +0.9, females:
33.6 + 0.6, Figure 1A). A significant decrease in LV FS
was detected in diabetic Hifla™" mice (males: 33.8 + 1.2,
females: 29.8 +1.0) but not in diabetic W¢ animals
(males: 36.9 0.8, females: 32.8+0.9, Figure 1A). The
differences in LV FS between non-diabetic and diabetic
Hifla™” mice are also shown in representative M-mode
echocardiographic recording (Figure 1B and C). Both
diastolic and systolic AWT and PWT were significantly
lower in diabetic Hifla*" males than in non-diabetic Wt
and Hifla*" males. Although we observed similar ten-
dencies in AWT and PWT parameters in diabetic Wt
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Table 1 Body and heart mass

Genotype Wt wt Hifla™" Hifla*”
Parameter Non-diabetic Diabetic Non-diabetic  Diabetic
Males (n) 7 8 10 8

BM (9) 280+04 248+0.7%  284+06 229+08*
HM (mg) 106+ 2 88 + 3* 104+ 4 86 + 3*
RV/BM 0.77£0.03 074+£004 076+004 0.73+£0.02
LV/BM 218 +0.03 1.98 +0.06* 2.07+0.04 1.96 + 0.03*
Females (n) 7 12 10 8

BM (9) 220+07 221106 221405 205+04
HM (mg) 81%1 80+ 1 79+£2 77 £1
RV/BM 0.80+0.04 080+£002 0.74+0.02 0.73£0.03
LV/BM 2.34+0.07 231£008 226+0.05 234+£0.14

Values are means = SEM from indicated number of animals in each group.
Abbreviations: BM, body mass; HM, heart mass; LV, left ventricular mass; RV,
right ventricular mass. Statistical significance was assessed by 2-way ANOVA
with Tukey’s multiple-comparison test, *P < 0.05 vs. non-diabetic Wt; *P<0.05
vs. non-diabetic Hifla*".

Table 2 Mean systemic arterial blood pressure (MAP),
heart rate (HR) and basal left ventricular
echocardiographic parameters

Genotype wt wt Hifla™" Hifla*"
Parameter Non-diabetic Diabetic Non-diabetic Diabetic
Males (n) 6 8 10 8

MAP (mmHg) 83.0+2.1 875+15 841+14 882+16
HR (beats/min) 496 + 23 471+13 449440 440 + 36
LVDp (mm) 3.60 £0.09 359+004 347+0.10 3.65+0.06
LVDs (mm) 222007 227+005 216+0.08 242 +£0.07
AWTp (mm) 0.84 +0.02 076001 089+0.02 0.74+ 003"
PWTp (mm) 0.84 £0.03 076 £0.01 092 +0.04 069 + 003"
AWTs (mm) 130+ 0.03 1.20£0.04 1.27+£0.03 110+ 0.05™
PWTs (mm) 1.21+£0.03 1.09+£003 1.20+004 100+ 0,04™
Females (n) 7 12 10 8

MAP (mmHg) 846+2.1 885+22 8481004 881+£13
HR (beats/min) 504 +7 478+15 484+ 16 449+ 17
LVDp (mm) 3.52+£0.08 352+006 345+004 346 +£0.04
LVDs (mm) 233+£0.07 237+006 230+£0.05 243 +£0.06
AWTp (mm) 0.75+£0.02 0.75+001 0.72+£0.02 0.72+0.02
PWTp (mm) 0.79+0.02 074+002 0.78+0.03 0.74+0.02
AWTs (mm) 1.12£0.04 1.05+002 1.06+0.01 0.98 +0.02™
PWTs (mm) 1.10+£0.02 1.05£002 1.09+002 0.99+0.02%

Values are mean + SEM. LVDy, - diastolic cavity diameter, LVDs - systolic cavity
diameter, AWT, - diastolic anterior wall thickness, PWTp, - diastolic posterior
wall thickness, AWTs - systolic anterior wall thickness, PWTs - systolic posterior
wall thickness. Statistical significance was assessed by 2-way ANOVA with
Tukey’s multiple-comparison test, *P < 0.05 vs. non-diabetic Wt, TP < 0.05 vs.
non-diabetic Hifla*™".
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Figure 1 Echocardiographic assessment of LV systolic function
in Wt and Hifla*" mice. (A) The exposure to the diabetic
environment resulted in a significant decrease of LV fractional
shortening (FS) in Hifla"” mice but not in Wt animals. The values
are mean + SEM, statistical significance by 2-way ANOVA with
Tukey's multiple-comparison test, *P < 0.05, diabetic Hifla®” vs. Wt
and Hifla*” non-diabetics. Representative M-mode recordings of LV
structures in long axes view in a non-diabetic (B) and diabetic

(C) Hifla™ mouse with FS=38.7 and FS=3238, respectively.

animals, these differences were not statistically signifi-
cant. Thus, the partial deficiency of Hifla compromised
the LV functional parameters under diabetic conditions.
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Since male groups were more affected in LV echocar-
diographic parameters by diabetes than female groups,
we only used males for our subsequent analyses.

Cardiac gene expression profiling

To explore the tissue specific molecular changes induced
by diabetes, we analyzed the expression of 13 selected
genes in the LV myocardium (Figure 2). All tests showed
a significant effect of diabetes. We analyzed the expression
of six HIF-1 target genes involved in glucose metabolism
(Ldha; Slc2al), autophagy (Buip3l), insulin signaling (Igf2)
and vasculogenesis (Vegfa; FitI; Figure 2A). Under normal
conditions, the HIF-1a heterozygous-null mutants showed
a decreased cardiac transcription of three HIF-1 target
genes, Vegfa, Igf2, and Ldha, reflecting Hifla haploinsuffi-
ciency. The expression levels of mRNA of Vegfa were sig-
nificantly affected by the combination of genotype and
diabetes (2-way ANOVA interaction effect, P <0.01). The
cardiac expression of Slc2al, Fit1, and Bnip3l mRNA was
significantly affected by diabetic conditions, but not by
genotype. We also analyzed the expression of additional
genes encoding molecules associated with cardiac remodel-
ing (Figure 2B). The expression levels of Cxadr, Pdgfra, and
Il6st were increased, whereas the expression of Itgav was
decreased in both Wt and Hifla™" diabetic hearts com-
pared to the non-diabetics. Interestingly, Tgfbri, Ctss, and
transcription factor Gata2 levels were increased in the dia-
betic Hifla"", but not in the diabetic W% hearts (a significant
effect of genotype, P<0.01). Based on the gene expression
analysis, we can conclude that the diabetic Hifla™" hearts
demonstrated molecular changes associated with transcrip-
tional regulation and cardiac remodeling processes.

Analysis of HIF-1a protein levels in the LV

In the next step, HIF-1a protein expression was analyzed
in nuclear extracts from the LVs in order to understand
the basis for the diabetes-induced changes in Hifla""
diabetic hearts. A representative example of the immu-
noblot assay and the mean data obtained from densito-
metric analysis are presented in Figure 3A. Protein
analysis revealed that HIFl-a levels were decreased
by 35% in the LV of Hifla"~ hearts compared to Wz A
significant condition-genotype interaction was identified
(P<0.003, 2-way ANOVA). Unexpectedly, HIF-1a levels
were significantly increased in diabetes-exposed Hifla""
hearts compared to diabetes-exposed Wt and non-diabetic
Hifla™" mice by 2.6-fold and 2.1-fold, respectively. We de-
tected a decreased HIF-1a expression in the diabetic W¢
heart, although the difference was not statistically signifi-
cant compared to non-diabetic W# (P > 0.05, Figure 3B).

Cellular and structural analysis
We further investigated pathogenic molecular and cellular
changes associated with diabetes-induced myocardial
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remodeling, characterized by structural modifications,
increased extracellular matrix and fibrosis, increased
cardiac hypertrophy, apoptosis, and microvascular changes.
The expression and proportion of phosphorylated and
dephosphorylated forms of structural gap-junctional
protein Cx43 are altered in diabetic conditions [29]. In
our study, the relative abundance of Cx43 was moderately
decreased in the diabetic myocardium compared to non-
diabetic groups (Figure 4A). The quantification of Cx43
protein levels by Western blot showed no significant
differences between groups or genotypes (Figure 4B and C).
However, the phosphorylated form of Cx43 at serine
368 (Ph-Cx43) was significantly decreased in the dia-
betic Hifla”" mutant LV (Figure 4D). Tissue sections from
Wt and heterozygous Hifla®" hearts were subjected to
histological analysis to evaluate perivascular fibrosis by colla-
gen deposition (PSR and anti-Coll staining, Figure 4A).
Perivascular collagen deposition was not noticeably different
in diabetics compared to non-diabetic groups (Figure 4A).
However, Western blot analysis detected a significant in-
crease in the protein levels of Coll in the LV of diabetic
Hifla™" heart compared to other analyzed groups (Figure 4E).
Quantitative measurements of myocyte width yielded identi-
cal values in all groups (data not shown), which confirmed
the absence of hypertrophy at this stage.

Additionally, we analyzed levels of apoptosis using TUNEL
staining. We counted apoptotic cells in the LV, RV, and
septum. The number of apoptotic cells was moderately in-
creased in the diabetic W but not in the diabetic Hifla™"
hearts, which suggests that the Hifla*" genotype affects
the apoptotic process in diabetic hearts (Figure 5).

Since our RT-qPCR analysis demonstrated a significant
combinatorial effect of genotype and diabetes on Vegfa
mRNA expression, we analyzed the cardiac expression
of VEGEF-A, a key HIF-1 target gene product. VEGF-A is
the essential modulator of neovascularization and dimin-
ished levels of VEGE-A have been associated with the im-
paired collateral vessel formation in the myocardial tissue
of diabetic patients [18,19]. Using immunohistochemistry,
we analyzed VEGEF-A expression in histological sections of
Wt and Hifla"" hearts from diabetic and non-diabetic
mice (Figure 6A). The anti-VEGF-A staining was found to
be limited to the wall of coronary vessels in all groups.
The relative quantification of VEGF-A expression in the
wall of coronary vessels showed decreased protein levels
by 50% in non-diabetic Hifla*~ compared to W%, corre-
sponding to the haploinsufficiency of Hifla (Figure 6B).
Furthermore, the VEGF-A protein levels were signifi-
cantly reduced in the coronary vessels of diabetic Hifla""
and Wt compared to non-diabetic W%, indicating micro-
vascular changes in the diabetic heart. Overall, these data
suggest that the partial deficiency of Hifla alters mo-
lecular and cellular adaptations of cardiac tissue to dia-
betic conditions.
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Figure 2 Gene expression changes in the LV of Wt and Hifla*”~ diabetic mice. The expression of genes was analyzed using RT-GPCR:
(A) direct HIF-1a target genes and (B) genes encoding signaling molecules, growth factors, cytokines, and transcription factors. The relative expression
levels were quantified using the AACT method. The data represent the expression of mRNA relative to the non-diabetic Wt expression of mRNA,
normalized by the housekeeping mRNA of Hprt1. The values are mean + SEM (each experiment in duplicate; n = 8). All tests showed a significant effect
of diabetes in a 2-way ANOVA, P < 0.01. The effect of genotype was significant in a 2-way ANOVA for Igf2 (P < 0.003), Ldha (P < 0.0001), Tgfor (P < 0.006),
Gata2 (P<0.01), Ctss (P < 0.05). We identified a condition-genotype interaction (2-way ANOVA interaction effect P < 0.01) for Vegfa. Tukey's post-hoc
multiple-comparison test was used for between-group differences, *P < 0.05 vs. Wt and Hifla*”” non-diabetics, P <005 vs. non-diabetic Wt, #P < 0.05 vs.
all other groups. Abbreviations: glucose transporter 1 (Slc2al), vascular endothelial growth factor A (Vegfa), Vegf receptor-1 (Fit1), insulin-like growth
factor 2 (Igf2), lactate dehydrogenase A (Ldha), BCL2/adenovirus E1B interacting protein 3-like (Bnip3l), coxsackie virus and adenovirus receptor (Cxadr),
interleukin 6 signal transducer (/l6st), transforming growth factor beta receptor | (Tgfbri), integrin alpha V (ltgav), platelet derived growth factor receptor
alpha (Pdgfra), GATA binding protein 2 (Gata?2), cathepsin S (Ctss).
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Discussion

This study investigated the functional role of HIF1-
pathways in cardiac responses to diabetic conditions,
including changes in echocardiographic parameters, tran-
scriptional profile modulations, and tissue remodeling.
For the first time, we showed that the partial deficiency of
Hifla accelerated the early-phase pathological effects of
diabetes on the heart. The echocardiographic parameters
of the LV were significantly affected in diabetic Hifla™"
animals. Impaired LV function of diabetic Hifla™" mu-
tants was accompanied by molecular changes associated
with cardiac remodeling.

We used the STZ model which has been proved to pro-
duce diabetes in animal models without systemic toxicity
and is characterized by hyperglycemia (blood glucose
levels > 13.9) and insulinopenia. Most studies using animal
models with STZ-induced diabetes revealed a decreased
myocardial contractility and increased stiffness, resulting
in both systolic and diastolic dysfunction at later stages of
the disease (reviewed in [30,31]). However, the onset of
these changes, preceded by an altered gene expression,
differs in individual studies and can be explained by differ-
ences in the severity of hyperglycemia, chronicity of dia-
betes, and experimental conditions. For example, both
echocardiography and magnetic resonance imaging per-
formed in the fourth week of diabetes in mice showed
impaired indices of systolic and diastolic function [32].
Similarly, diabetic rats exhibited decreased maximal sys-
tolic elastance at this stage of diabetes, indicating impaired
intrinsic myocardial contractility [33]. However, Hoit et al.
[34] observed the first signs of contractile dysfunction in
rats only 5 weeks after STZ injections and the overt sys-
tolic and diastolic dysfunction in 6 weeks. Consistent with
this study, our experiments revealed only a minor de-
crease in relative LV wall thickness and unchanged frac-
tional shortening in 5-week-diabetic W mice, indicating
that heart function was still preserved at this stage. How-
ever, the harmful effects of diabetes were clearly more
pronounced in Hifla*" mice as illustrated by the signifi-
cantly decreased FS. It suggests that Hifla™" deficiency
promotes the development of systolic dysfunction in the
diabetes-exposed heart. The LV dysfunction in Hifla™"
mice was associated with expressional changes connected
with cardiac remodeling. Our observations are in line with
the increasing evidence that the HIF1-regulated pathways
are compromised in the diabetic heart [15,17,18].

Our molecular analysis showed increased levels of
Cxadr, Il6st, Pdgfra, and Slc2al in the LV of both Wt
and Hifla*” diabetic hearts which corresponds to the
onset of pathological processes associated with cardiac
remodeling in diabetic cardiomyopathy. The overex-
pression of Cxadr, an adhesion molecule found at
the intercalated disc and gap junctions of cardiomyo-
cytes, produces cardiomyopathy in transgenic mice
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Figure 3 Protein levels of HIF-1a in the LV of Wt and Hifla+/-.
(A) The HIF-1a protein in nuclear fractions from the isolated LVs of
Wt and Hifla+/- non-diabetic and diabetic hearts was detected by
Western blot analysis. A representative immunoblot is shown. (B) Bar
graph shows mean + SEM (n = 4/group) from densitometric analysis.
The values are shown as a ratio of HIF-1a/loading control, GAPDH.
P values shown are for the interaction of genotype and condition
(2-way ANOVA), Tukey's post-test, *P < 0.05.

[35]. The transmembrane signal transduction protein
gp130, encoded by Il6st, is a common receptor for the
interleukin 6 family, which contributes to inflammatory
processes, cardiac fibrosis, and possibly to the develop-
ment of type 1 and type 2 diabetes [36]. The activa-
tion of PDGFR-a induces collagen deposition, fibrosis,
and inflammatory responses in an infarcted myocardium
[37]. Observed increased levels of Sic2al, the insulin-
independent glucose transporter, indicate an adaptation of
the myocardium to the diabetic environment for better
glucose uptake and utilization [38].

In our study, the combinatory effect of the Hifla*" geno-
type and diabetes was detected in the expression of Gata2,
Ctss, and Tfgbrl. The transcriptional factor GATA2 cooper-
ates with HIF1-a and complements HIF-1 transcriptional
regulation of pro-inflammatory genes in endothelial cells
[39,40]. Thus, the increase of Gata2 mRNA in the diabetic
Hifla*” heart may indicate a compensation of HIF-1a ac-
tivity. Increased levels of Ctss positively correlate with
extracellular matrix remodeling in the diabetic Hifla™"
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ANOVA with Tukey's post-test).

Figure 4 Effects of diabetes on structural remodeling and protein levels in the Wt and Hifla™” LV. (A) Representative of immunofluorescence
confocal and light microscopy images of the hearts stained with anti-connexin 43 (Cx43, red) together with fluorescein-labeled wheat germ agglutinin
(WGA, green); with picrosirius red (PSR, polarizing microscopy); and with anti-collagen 1 (Col1, red), autofluorescence (auto) are shown. The nuclei were
counterstained with Hoechst 33342 (blue). Confocal images are stacked Z-plane sections from confocal microscopy. Scale bar. Cx43/WGA 25 um,

PSR 50 pm, Col1 25 um. (B) Representative Western blot analyses of protein lysates from the isolated LVs of Wt and Hifla™" non-diabetic and diabetic
hearts are shown. (C-E) A relative quantification of protein levels of Cx43, phosphoCx43 (pCx43), and Coll (n =3 per group) was performed. The bar
graphs show the mean values of relative protein levels normalized to the loading control (GAPDH) + SEM from densitometric analysis. *P < 0.05 (2-way

heart because CTSS protease is involved in matrix degrad-
ation and collagen deposition [41]. Although the import-
ant regulatory role of HIF-1a in inflammation has been
established [42], a cross-talk between CTSS and HIF-1
has not yet been observed. We showed an increased ex-
pression of Tgfbrl mRNA in the LV of the Hifla"" dia-
betic hearts, suggesting the activation of TGF-p signaling,
which is associated with maladaptive changes in the com-
position of the extracellular matrix and fibrosis [43]. A
cross-talk between TGF-f and HIF-1 pathways has been
shown in the transcriptional regulation of Vefga, and Coll
genes [44,45].

In our study, the molecular changes associated with al-
terations of structural molecules and with the compos-
ition of the extracellular matrix were also shown in the
protein levels. We detected a reduction in the gap-
junctional phosphorylated form of Cx43 in the LV of the
Hifla™" diabetic heart, which has been associated with

O non-DIA
WDIA

Number of apoptotic cells
O =2 N W A~ 0D

Wt

Hif1a+/-

Figure 5 Apoptosis in the diabetic and non-diabetic hearts of
Wt and Hifla™" mice. The apoptotic cells were detected with
TUNEL assay. The apoptotic cells were counted in the whole heart,
including the myocardium of left and right ventricles, and the
atrioventricular septum. The values represent mean + SEM (n =3
individuals x 3 heart sections per group); *P < 0.05, (2-way ANOVA
with Tukey's post-test).

diabetes-induced structural remodeling and impaired ven-
tricular contractions [29]. We also showed increased pro-
tein levels of Coll in Hifla*~ diabetic hearts compared
to other groups, indicating modifications of the extra-
cellular matrix and the onset of fibrosis. However, our
immunohistological analysis revealed that the substan-
tial cellular effects of hyperglycemia, including myo-
cyte hypertrophy or fibrosis, were absent at this stage
of diabetic cardiomyopathy. This phenotype reconciles
with STZ-induced diabetes models characterized by
the impaired LV function in the absence of significant
structural changes in the early phase of diabetic car-
diomyopathy [31].

Under normal conditions, apoptosis is a protective mech-
anism which eliminates old, useless, and damaged cells.
Under diabetic conditions, increased apoptosis is associated
with diabetes-related tissue damage and cardiac remodeling
in diabetic hearts [46]. Surprisingly, we observed an in-
creased number of apoptotic cells in the diabetes-exposed
Wt hearts but not in the Hifla™" hearts. The decreased
sensitivity of Hifla™" cardiac tissue to apoptosis-induction
signals may be a consequence of the HIF-1a partial defi-
ciency to induce apoptosis via p53, BNIP3, or/and caspase-
3 pathways. However, additional studies are required to
determine which signaling pathways mediate these effects
in the diabetic Hifla"" heart.

Diabetic microvascular defects, associated with the in-
creased incidence of chronic wounds and decreased post-
ischemic vascularization, have been accompanied by a sig-
nificant reduction of VEGF-A, a key HIF-1 target gene
product [18,19,47]. Decreased levels of VEGF-A mRNA
have been detected in the ventricles of diabetic patients
when compared to controls [19]. The observed reduction
of cardiac VEGF-A levels correlated with pathologically
altered responses of diabetic patients to myocardial ische-
mia. In our study, we demonstrated the significantly de-
creased expression of Vegfz mRNA in diabetic Hifla™"
compared to diabetic W¢ mice. Both transcription and
RNA stability can be enhanced by HIF-la in response
to normal as well as pathological conditions [48]. We
observed discrepancies in the amplitude of mRNA and
protein levels in Hifla*” and Wt diabetic hearts. Although
we are unable to explain these discrepancies, they are
likely caused by the specific regulation of VEGF-A at
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Figure 6 Diabetes-induced changes in cardiac VEGF-A expression. (A) Confocal imaging of transverse sections of Wt and Hifla™" hearts
stained with anti-VEGF-A antibody (green) showed VEGF-A expression in coronary blood vessels (white arrow). Hoechst 33342 (blue) was used as
a nuclear counterstain. Images are stacked Z-plane sections from confocal microscopy. Scale bar: 10 um. (B) A relative quantification of VEGF-A
expression in the blood vessel wall was performed. The quantification of VEGF-A" area was determined as a ratio of VEGF-A" area per total vessel
area in the field of view using Imagel. Data are presented as the mean + SEM (n =4 - 8 vessels x 2 individuals per group); P <001, non-diabetic
Wt vs. non-diabetic Hifla™"; *P < 0.001, non-diabetic Wt vs. diabetic Wt or diabetic Hifla™” (2-way ANOVA with Tukey's post-test).

post-transcription, translation, and post-translation levels ~ The decreased levels of Vegfa in the Hifla™" diabetic
[48]. Our model provides the first evidence that HIF-  heart correlate with LV dysfunction and myocardial
la regulates Vegfa expression in the diabetic heart. remodeling.
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Our results are indirectly supported by a study show-
ing that the overexpression of Hifla gene under the con-
trol of the myosin heavy chain promoter normalizes
VEGE-A levels and inhibits fibrosis in hearts exposed to
diabetes [22]. Unfortunately, Xue et al. have not evalu-
ated the echocardiographic functional parameters of the
mutant heart to provide a more complex analysis. The
protective role of HIF-1x in acute cardiac ischemia is
well known [13,49]. However, the constitutive expression
of HIF-1a and chronic long-term activation of HIF-la
pathways over time induce cardiomyopathy in transgenic
mice with HIF-la cardiac-specific overexpression [49].
Thus, a strict regulation of HIF-la and its associated
adaptive pathways is necessary for the long-term preser-
vation of heart function.

In our study, under normoglycemic conditions, we
showed decreased HIF-la protein levels in Hifla™
compared to Wi hearts, reflecting Hifla haploinsuftfi-
ciency (Figure 4). The reduction of HIF-1a levels in nu-
clear fractions from Hifla™" tissues is consistent with
other reports [10,23,24]. Although HIF-« levels are de-
creased in Hifla*~ mice, these mice are indistinguishable
from their Wt littermates but have impaired responses to
hypoxia and ischemia [11,23,24]. Accordingly, we observed
the same phenotype in both Wz and Hifla*~ mice under
normoglycemic conditions, including echocardiographic,
geometrical, and functional parameters. However, under
STZ-induced diabetes, Hifla™~ mice exhibited faster de-
terioration of cardiac functional parameters associated
with diabetic cardiomyopathy compared to diabetic Wt
mice. Unexpectedly, HIF-1a protein levels were increased
by 2.6-fold in diabetic hearts of Hifla™~ mutants com-
pared to diabetic W, which may indicate a possible com-
pensation for heterozygosity for the Hifla knockout allele
by changes in the rate of synthesis or degradation of HIF-
la mRNA or protein. However, based on our VEGF-A ex-
pression data, the HIF-la functional activity is af-
fected by the combination of Hifla haploinsufficiency
and diabetes. This is in line with other reports show-
ing that diabetes-reduced VEGEF-A expression is the
result of decreased HIF-1la functional activity but not
HIF-1a stabilization [15,18]. Furthermore, our results
showing decreased VEGF-A and increased TGF-f sig-
naling coincide with other reports investigating Hifla
gene deletion mutants [24,45].

The most important limitation of our study lies in the
global nature of the Hifla deletion. We are unable to de-
termine which cell type or which combinations of cell
types are contributing to the increased susceptibility of
Hifla*~ mice to diabetic cardiomyopathy. At the same
time, the global deletion of Hifla may affect other tissues
and it may indirectly escalate pathological functional and
structural changes in the heart of Hifla"" mutants. For
example, this may include the neuronal effect of HIF-1a,
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which may contribute to cardiac dysfunction [13]. Still,
our results represent new information, which may have
important implications for understanding the mechanisms
behind the functional and structural remodeling of the
myocardium in response to diabetes.

Conclusions

According to the data obtained with our mouse model,
the loss of Hifla functional allele contributes to the de-
velopment of diabetic cardiomyopathy. The partial defi-
ciency of Hifla accelerates the progression of diabetic
cardiomyopathy by significantly decreasing LV fractional
shortening. This functional impairment has been accom-
panied by changes in the LV transcriptional profile, includ-
ing Vegfa, and cardiac remodeling. Our results highlight a
critical link between diabetes, HIF-1a regulation, and car-
diovascular dysfunction. Furthermore, clinical studies have
demonstrated that polymorphisms at the HIF1A locus in-
fluence the development of ischemic heart disease and
have been associated with type 2 diabetes [50,51]. The re-
sults presented in this study further suggest that genetic
variation at the HIF1A locus may also influence the in-
creased risk for diabetic cardiomyopathy.
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