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Abstract

Background: The increasing resistance of Plasmodium, the malaria parasites, to multiple commonly used drugs has
underscored the urgent need to develop effective antimalarial drugs and vaccines. The new direction of genomics-
driven target discovery has become possible with the completion of parasite genome sequencing, which can lead
us to a better understanding of how the parasites develop the genetic variability that is associated with their
response to environmental challenges and other adaptive phenotypes.

Results: We present the results of a comprehensive analysis of the genomes of six Plasmodium species, including
two species that infect humans, one that infects monkeys, and three that infect rodents. The core genome shared
by all six species is composed of 3,351 genes, which make up about 22%-65% of the genome repertoire. These
components play important roles in fundamental functions as well as in parasite-specific activities. We further
investigated the distribution and features of genes that have been expanded in specific Plasmodium lineage(s).
Abundant duplicate genes are present in the six species, with 5%-9% of the whole genomes composed lineage
specific radiations. The majority of these gene families are hypothetical proteins with unknown functions; a few
may have predicted roles such as antigenic variation.

Conclusions: The core genome components in the malaria parasites have functions ranging from fundamental
biological processes to roles in the complex networks that sustain the parasite-specific lifestyles appropriate to
different hosts. They represent the minimum requirement to maintain a successful life cycle that spans vertebrate
hosts and mosquito vectors. Lineage specific expansions (LSEs) have given rise to abundant gene families in
Plasmodium. Although the functions of most families remain unknown, these LSEs could reveal components in
parasite networks that, by their enhanced genetic variability, can contribute to pathogenesis, virulence, responses
to environmental challenges, or interesting phenotypes.

Background
Malaria affects approximately 300 million people world-
wide and kills between 1 and 1.5 million people every
year. It has been largely controlled by effective medi-
cines until recently, but malaria parasites have gradually
developed resistance to multiple drugs and pose an
increasingly important health threat.

The causative agents of malaria are protozoan para-
sites in the genus Plasmodium. Four species of Plasmo-
dium cause malaria in humans: Plasmodium falciparum,
P.vivax, P. ovale, and P. malaria. P. falciparum is the
most widespread and devastating one; if untreated it can
be fatal. Other species from this genus are known to
infect rodents and non-human primates.
The complete sequencing of various malaria parasite

genomes has brought new hope for the discovery of
new antimalarial targets [1-5]. Before the genome of
P. falciparum was sequenced, only about 20 proteins
had been characterized. Genome sequencing revealed
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over 5,400 open reading frames (ORFs) in P. falci-
parum. Successful application of the genomic analysis
approach has already lead to the discovery of potential
vaccine targets such as P. falciparum erythrocyte mem-
brane protein families (PfEMPs) [6,7] and drug targets
such as a 1-deoxy-D-xylulose 5-phosphate (DOXP)
reductoisomerase [8] and a catalog of proteases that
may play important roles in parasite development and
invasion [9-11]. Comparative genomics has also shed
significant light on the mechanisms of drug resistance
involving transporter proteins [12]. The release of the
genome data has also made it possible to carry out
large scale expression analysis at the transcriptome and
proteome levels. Microarray and proteomic experi-
ments have revealed interesting expression patterns of
gene products under specific temporal and spatial con-
ditions [13-19], providing a blueprint for a systems
level study of gene regulatory networks, protein-pro-
tein networks and metabolic networks [20-22], and
representing the beginning of a new era of systems
biology in malaria research.
Within the scheme of systems biology, one of the

interesting questions is how parasites develop genetic
variability that can be tied to their response to environ-
mental challenges and other adaptive phenotypes.
In this study, we propose to explore the genome

context and systems evolution of six model species of
Plasmodium: P.falciparum and P. vivax are the model
system for human parasites, and cause the first and
second most severe forms of human malaria; P. know-
lesi used to be considered as a model system for the
simian parasite whose natural mammalian host is the
Macaque monkey, however, increasing evidence
shows that naturally occurring P. knowlesi-induced
human malaria is not rare [5,23]; P. yoelii yoelii, P.
berghei, and P. chabaudi are the model systems of
rodent parasites which have been used widely and
successfully to complement research on human
malaria parasites.
We focus on two fundamental questions: (1) What are

the common components in these six malaria parasites?
As they all have evolved a successful parasite lifestyle,
the core genome structure may reveal critical adaptive
features. (2) What are the lineage specific components
in each species? In particular, we are interested in genes
or gene families that have been largely expanded in one
or several unique lineages. We show that the core gen-
ome and lineage-specific expanded genome components
involve genes that are tied to pathogenesis and virulence
mechanisms as well as in the fundamental life cycle of
Plasmodium species.

Results and discussion
The core genome of six Plasmodium species
(1) The core genome is comprised of 3,351 othologous
genes
The orthoMCL analysis revealed that the core genome
of the six Plasmodium species we examined is com-
prised of 3,351 othologous genes (Table 1). The catalog
of the core genome is summarized in Additional file 1.
The proportions of core genome components in the two
human malaria parasites (P. falciparum and P. vivax)
were very similar (approximately 61%). The simian para-
site P. knowlesi has a slightly larger genome and a
higher proportion of the core genome (66%). The three
rodent species seem to have more diverse genomes; only
about 22-42% of the genes encode core components.
The numbers of the predicted ORFs in the P. berghei
genome (12,235) and in the P. chabaudi genome
(15,007) are relatively larger than those in the other four
species due to the fragmented nature of the sequence
data and incomplete annotation of these genomes [17],
therefore results for these species must be seen as
preliminary.
Interestingly, 1,079 (33%) of the 3,351 orthologous

clusters in the core genome were predicted to fall into
at least one Gene Ontology class, while the remaining
2,272 (67%) appear to have no identifiable ontology
functions. This is consistent with the fact that at least
60% of the 5,460 ORFs in the best-annotated Plasmo-
dium species, P. falciparum, were annotated as
“hypothetical protein”, indicating that no reliable func-
tional prediction/characterization was available [4].
(2) Core genome components involved in fundamental
biological processes in Plasmodium
Despite their different host specificities, the six Plasmo-
dium species preserve the common components that are
essential for their fundamental biology (see examples in
Table 2).
Abundant orthologous families are involved in genetic

information processing: replication, transcription and
translation. None of these processes in malaria parasites
are fully understood. For example, it is believed that the
transcriptional regulation of malaria parasites is very
complex, as it must adapt to different developmental
processes in their vertebrate hosts and invertebrate mos-
quito vectors such as sexual development, parasite inva-
sion, and antigenic variation. However, to date, only a
small number of general transcription factors have been
identified [24]. Recently, microarray expression and
machine learning approaches have revealed putative cis-
regulatory promoters that may be associated with speci-
fic transcription factors [25,26]. The core genome of
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these six Plasmodium species suggests that the basic
transcriptional machinery includes the essential
enzymes, general transcription factors, and positive and
negative transcriptional cofactors. Similarly, the com-
mon elements of the translational machinery are also
present in the core genome, including orthologous clus-
ters that regulate the initiation, elongation, and termina-
tion of the processes. Associated with translation, we
also observe that the RNA splicesome is conserved in
the six Plasmodium genomes: orthologous clusters are
predicted to belong to the GO classes of small nucleolar
ribonucleoprotein complex (GO:0005732), spliceosome
assembly (GO:0000245), RNA splicing factor activity,
transesterification mechanism (GO:0031202), spliceo-
some (GO:0005681), snRNP U1 (GO:0005685), and
snRNP U2 (GO:0005686). The core genome also
includes components that are essential for repair
mechanisms and cell motion.
(3) Core genome components involved in cellular processes
related to the parasite lifestyle
In addition to the genes or gene products that are
required for fundamental biology, we are particularly
interested in the core genome components that are per-
tinent to parasite-specific lifestyles. Representative func-
tional classes of orthologous clusters are shown in
Table 3.
One of the most important cellular processes that are

critical for a successful life cycle in malaria parasites is
cell cycle regulation. During the red blood cell stage,
malaria parasites undergo atypical cell cycles. The entire
genetic regulatory network of the cell cycle remains lar-
gely unknown [27-29]. Previously, we proposed a cell
cycle network composed of 38 components using a Var-
iational Bayesian expectation maximization (VBEM)
approach based on comparative genomic prediction and
microarray time-series expression profile [30]. This
study confirmed that fifteen of the orthologous clusters
in the Plasmodium core genome are members of the
cell cycle network. For example, ORTHOMCL1356 and
ORTHOMCL2659 may both be involved in cyclin-
dependent kinase regulation (Table 3). The next step

will be to place these orthologous genes in a network
context.
In addition to the cell cycle, signal transduction also

plays a role in other cellular networks. For example, at
least one orthologous cluster (ORTHOMCL3024) is
found in all six Plasmodium species and may participate
in a G-protein coupled receptor (GPCR) protein signal-
ing pathway. GPCRs have been attractive therapeutic
targets for human diseases due to their versatile and cri-
tical roles in many signal transduction pathways. How-
ever, to date, no GPCR homolog has been identified in a
Plasmodium genome, although Rab GTPases are found
in the P. falciparum genome [4]. The core component
ORTHOMCL3024 encodes a receptor for an activated C
kinase homolog, named pfRACK, in P. falciparum. It
has a single homolog in the other five Plasmodium spe-
cies, all of which contain guanine nucleotide-binding
motifs. It has been shown that pfRACK mRNA is
expressed throughout the 48-hour red blood cell (RBC)
cycle [13,19], and its protein product has been found in
red blood cell membrane, and in the merozoite and tro-
phozoite stages of the RBC cycle in several independent
proteomics experiments [15,16]. Notably, it was pre-
viously reported that signaling via human erythrocytic
GPCR regulated the entry of malaria parasites and a
GPCR inhibitor blocked malaria infection [31], which
makes GPCR agonists potential antimalarial targets. The
existence of parasite proteins that may be involved in
GPCR-like activities suggests that other parasite signal-
ing proteins may be associated with host proteins to
contribute to the parasite entry process.
Parasites, during their complex life cycles, also need to

meet the challenges from various environmental signals.
At least 23 orthologous clusters that play a role in the
parasite responses to heat and stress, such as oxidative
stress, are commonly shared in the six Plasmodium
species.
Moreover, the core genome contains orthologous clus-

ters that may be relevant to pathogenesis or virulence.
Four othologous clusters (ORTHOMCL106,
ORTHOMCL15, ORTHOMCL2196, ORTHOMCL2303)

Table 1 The core genome components and lineage specific genes in six Plasmodium species. The inter-genomic search
yielded a core genome comprised of 3,351 orthologous proteins

Strains No. Genes in genome % core in genome No. Families with LSE No. LSE genes % LSEs in genome

Lineage-unique Typical LSE

P. berghei 12,235 27.39 111 323 960 7.84

P. chabaudi 15,007 22.33 176 379 1342 8.94

P. falciparum 5,460 61.37 36 13 510 9.34

P. knowlesi 5,110 65.57 12 14 293 5.73

P. vivax 5,432 61.69 45 21 488 8.98

P. yoelii yoelii 7,861 42.63 62 65 553 7.03
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Table 2 The core genome components in six Plasmodium species involved in fundamental cellular processes

Function description Examples of GO classes Orthologous families

Replication GO:0003688 (DNA replication origin binding) ORTHOMCL1162

ORTHOMCL2123

GO:0003887 (DNA-directed DNA polymerase activity) ORTHOMCL2751

ORTHOMCL61

ORTHOMCL2153

ORTHOMCL593

ORTHOMCL2507

GO:0005663 (DNA replication factor C complex) ORTHOMCL1738

ORTHOMCL1861

ORTHOMCL443

ORTHOMCL513

ORTHOMCL1911

ORTHOMCL2437

ORTHOMCL3328

GO:0005662 (DNA replication factor A complex) ORTHOMCL683

Transcription GO:0000122 (negative regulation of transcription from RNA polymerase II promoter) ORTHOMCL190

GO:0000126 (transcription factor TFIIIB complex) ORTHOMCL2349

ORTHOMCL802

GO :0016251 (general RNA polymerase II transcription factor activity) ORTHOMCL2179

GO:0003702 (RNA polymerase II transcription factor activity) ORTHOMCL1522

ORTHOMCL3420

GO:0003712 (transcription cofactor activity) ORTHOMCL3015

GO:0003700 (transcription factor activity) ORTHOMCL1875

ORTHOMCL3398

ORTHOMCL880

ORTHOMCL2851

ORTHOMCL2947

Translation GO:0006412 (translation) ORTHOMCL1544

ORTHOMCL3343

ORTHOMCL1471

ORTHOMCL1516

ORTHOMCL1698

ORTHOMCL2550

ORTHOMCL1856

GO:0003743 (translation initiation factor activity) ORTHOMCL1832

ORTHOMCL1842

ORTHOMCL2705

ORTHOMCL3178

ORTHOMCL2122

ORTHOMCL940

ORTHOMCL3423

GO:0003746 (translation elongation factor activity) ORTHOMCL350

ORTHOMCL1193

ORTHOMCL2152

ORTHOMCL2232

ORTHOMCL1803

ORTHOMCL516

ORTHOMCL1744

GO:0006449 (regulation of translational termination) ORTHOMCL2253
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may be related to the host cell entry process. For exam-
ple, ORTHOMCL106 includes 3 copies of Merozoite
Surface Protein 7 (MSP7) precursor homologs (acces-
sion numbers MAL13P1.173, MAL13P1.174, and
PF13_0197), and one hypothetical protein (PF13_0191)
in P. falciparum. These four genes are tandemly located
at adjacent positions in the same direction on Chromo-
some 13. They all seem to code for antigenic epitopes,
and the three MSP7-like proteins were all expressed at
the RBC surface [15]. MSP7 was reported to be
expressed at the merozoite surface and associated with
the MSP1 complex shed during RBC invasion [32]. Var-
ious copies of MSP7 homologs are present in other spe-
cies (1 in P. berghei, P. knowlesi, P. yoelii yoelii, 2 in P.
chabaudi, 3 in P. vivax), suggesting that RBC entry
requires similar surface proteins in all species.
ORTHOMCL2797 is another orthologous cluster that

is predicted to be related to pathogenesis. It encodes a
transmission-blocking target antigen s230 precursor
(Pfs230) in P. falciparum and one single copy is present
in the other five Plasmodium species. Pfs230 is
expressed on the plasma membrane of parasite gameto-
cytes in the human host and, after the parasites are
taken up in a blood meal by a mosquito vector, it
remains on the surface of the emerged gamete [33].
Transmission activity was found to be blocked when
anti-Pfs230 antibodies were used, suggesting Pfs230 can
be a potential vaccine target.
Two orthologous clusters might be related to the

parasite’s response to drugs. ORTHOMCL3437 contains
one copy of chloroquine resistance transporter in each
Plasmodium species; ORTHOMCL780 contains one
copy of a multidrug resistance protein in five Plasmo-
dium species, and 2 copies in P. chabaudi.

Lineage specific expansions (LSEs) in Plasmodium species
The comparative genomic analysis of six Plasmodium
species revealed genes that are specifically expanded in
certain lineage(s). The emergence of multiple gene
copies by duplication or lateral gene transfer in a spe-
cific lineage is known as a lineage specific expansion
(LSE) event. Gene duplication has long been consid-
ered as a driving force for functional novelty as the
duplicate copy can serve as a shield for the other copy
with otherwise deleterious mutations to evolve novel
functions under relaxed evolutionary constraints [34].
Parasites can also acquire new genes from other organ-
isms via lateral gene transfer. The subsequent expan-
sion of these new genes can increase the number of
gene copies. LSEs are believed to be of critical impor-
tance to the evolution of genome plasticity as they
provided opportunities for functional redundancy
which could lead to the emergence of new functions
[35].
A large number of duplicate genes have been identi-

fied in Plasmodium. Among them, abundant genes exhi-
bit lineage specific expansions, accounting for
approximately 5%-9% of the whole genomes (see Table
1 for the summary, and also see Additional file 2 for the
detailed gene lists), suggesting that these parasite gen-
omes have undergone frequent gene duplications that
may confer advantages in selection. Two human malaria
parasites, P.falciparum and P. vivax possess the largest
proportion of LSEs. Three rodent parasite species P. ber-
ghei, P. chabaudi and P. yoelii yoelii have slightly smaller
proportion of LSE genes than the human parasites, ran-
ging from 7.03%-8.94%. P. knowlesi, however, contains
significantly smaller number of duplicate genes, com-
pared to the other five sibling species.

Table 2 The core genome components in six Plasmodium species involved in fundamental cellular processes
(Continued)

Repair GO:0006289 (nucleotide-excision repair) ORTHOMCL444

GO:0000724 (double-strand break repair via homologous recombination) ORTHOMCL1863

GO:0006302 (double-strand break repair) ORTHOMCL867

GO:0006281 (DNA repair) ORTHOMCL543

ORTHOMCL1058

Cell motion GO:0007017 (microtubule-based process) ORTHOMCL2981

ORTHOMCL1078

GO:0003777 (microtubule motor activity) ORTHOMCL2241

ORTHOMCL2737

GO:0007018 (microtubule-based movement) ORTHOMCL1635

ORTHOMCL2737

ORTHOMCL1944

GO:0030048 (actin filament-based movement) ORTHOMCL278

ORTHOMCL1146

ORTHOMCL428
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Table 3 Representative cellular processes related to parasite specific lifestyle that are commonly present in six
Plasmodium genomes

Function description Examples of GO classes Orthologous families

Cell Cycle GO:0000079 (Regulation of cyclin-dependent protein kinase activity) ORTHOMCL1356

ORTHOMCL2659

GO:0051726 (regulation of cell cycle) ORTHOMCL703

ORTHOMCL2129

ORTHOMCL2139

ORTHOMCL3332

ORTHOMCL93

ORTHOMCL1497

ORTHOMCL2030

ORTHOMCL3034

GO:0045836 (positive regulation of meiosis) ORTHOMCL1572

GO:0007049 (cell cycle) ORTHOMCL3532

ORTHOMCL1160

GO:0000082 (G1/S transition of mitotic cell cycle) ORTHOMCL3162

Signal transduction GO:0007266 (Rho protein signal transduction) ORTHOMCL2354

GO:0007165 (signal transduction) ORTHOMCL3462

ORTHOMCL3526

ORTHOMCL3426

ORTHOMCL1645

ORTHOMCL710

GO:0007186 (G-protein coupled receptor protein signaling pathway) ORTHOMCL3024

GO:0008426 (protein kinase C inhibitor activity) ORTHOMCL2343

Response to environmental challenges GO:0006979 (response to oxidative stress) ORTHOMCL2680

ORTHOMCL602

ORTHOMCL2542

ORTHOMCL1549

ORTHOMCL2530

ORTHOMCL1476

ORTHOMCL3291

ORTHOMCL3446

ORTHOMCL2315

GO:0006950 (response to stress) ORTHOMCL3208

GO:0009408 (response to heat) ORTHOMCL2452

ORTHOMCL2633

ORTHOMCL112

ORTHOMCL237

ORTHOMCL702

ORTHOMCL803

ORTHOMCL1088

ORTHOMCL1813

ORTHOMCL3347

ORTHOMCL1486

ORTHOMCL2019

ORTHOMCL3266

ORTHOMCL700
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We observed two distinct patterns of LSE gene families
in the Plasmodium genomes: (1) lineage-unique LSEs,
where genes are only duplicated in one unique genome
and there is no orthologous gene in any other five gen-
omes. (2) Typical LSEs that are formed from a gene for
which at least one ortholog is found in at least one other
of the genomes studied. Table 1 summarizes the distribu-
tions of these two types of LSEs in Plasmodium.
The lineage-unique gene families are likely to have

more impacts on the genome because they carry spe-
cies-specific signatures and appear to be “novel” within
the pan-genome. Our further analyses focused on this
group of LSEs. Two rodent parasites, P. chabaudi and P.
berghei, have the largest numbers of lineage-specific
LSEs (111 and 176, respectively); this may simply reflect
the fact that these two genomes were predicted to have
much larger number of ORFs.
The majority of these LSE families in Plasmodium

contain only a small number (≤10 copies) of genes (Fig-
ure 1). The gene family size ranges from two to 165. In
individual Plasmodium species, 28%-80% of the gene

families are of size 2, and, collectively, gene families of
2-4 genes account for 60%-96% of the gene families.
Large gene families are rare. The largest family is the
rifin family in P. falciparum which has 165 paralogous
members. Although the cellular function of rifins
remains unknown, the antigenic variation in these pro-
teins makes them vaccine candidates [36]. A recent phy-
logenetic and function shift analysis suggested that neo-
functionalization and subfunctionilzation may have
occurred during the rifin evolution [37]. Similarly, a
complex evolutionary pattern is found in the second lar-
gest LSE in P. falciparum, erythrocyte membrane pro-
tein 1 (PfEMP1), another vaccine candidate which is
proven responsible for antigenic variation and cytoadhe-
sion of infected red blood cells [38,39].
It is extremely challenging to study the impact of LSEs

in Plasmodium as most of these gene families are
hypothetical proteins with unidentified functions - over
60% of the ORFs are annotated as hypothetical even in
the best-studied P.falciparum genome [4]. For example,
85 out of 111 of the lineage-unique families in P. berghei

Figure 1 The distribution of the size of lineage-unique expanded multiple-gene families in Plasmodium.

Table 3 Representative cellular processes related to parasite specific lifestyle that are commonly present in six Plas-
modium genomes (Continued)

Pathogenesis GO:0009405 (pathogenesis) ORTHOMCL2797

GO:0030260 (entry into host cell) ORTHOMCL106

ORTHOMCL15

ORTHOMCL2196

ORTHOMCL2303

GO:0042493 (response to drug) ORTHOMCL3437

ORTHOMCL780

GO:0020035 (cytoadherence to microvasculature, mediated by parasite protein) ORTHOMCL361

ORTHOMCL41

Cai et al. BMC Genomics 2010, 11(Suppl 3):S13
http://www.biomedcentral.com/1471-2164/11/S3/S13

Page 7 of 10



were predicted to be hypothetical, and the rest of them
were predicted to be “putative”, “Pb-fam” or “BIR pro-
tein”, with none being functionally characterized. In the
genome of P. chabaudi, several clusters of genes were
annotated as “cyclin-related, putative”, however, no clear
evidence supports this prediction.
Some of the lineage-unique LSEs may carry out func-

tions or have distinct antigenic features, which may be
related to characteristics of the host organism that dis-
tinguish it from the other Plasmodium species. For
example, vir genes, P. vivax variant genes coding for
variant antigens exposed on P. vivax-infected reticulo-
cytes, can be classified into several subgroups based on
their sequence and structural diversity [40]. Although
antigenic variation is common in Plasmodium species as
a mechanism for parasites to evade the host immune
system, different parasites appear to evolve different sur-
face antigens with tissue-specific activities. Vir, for
instance, is implicated in spleen-specific cytoadherence
in chronic infections [41]. Similarly, a group of seven
paralogous genes are found in P. knowlesi, forming
SICAvar-like antigen, the simian specific surface antigen.
There are also remote homologs of genes with poten-

tial functions. For example, two paralogous genes
(PFI0115c and PFI0120c) are likely to be products of a
recent gene duplication event as they are tandemly
located next to each other on chromosome 9. They are
annotated as “Serine/Threonine protein kinase, FIKK
family”, however, there is only weak statistical support
(E-score = 0.00035) for the presence of a kinase domain
in a PFAM domain search. It is unclear whether there is
indeed a kinase activity in these putative proteins.

Conclusions
Comparative genomic analysis of the six Plasmodium
species with varying host specificity revealed 3,351 core
genome components, whose functions range from fun-
damental biological processes to complex networks spe-
cific to a parasite-specific lifestyle. These core
components represent the minimum requirement to
maintain a successful life cycle that spans vertebrate
hosts and mosquito vectors. They also include function-
alities important to pathogenesis and adhesion to and
invasion of host cells, indicating these six strains share a
common mechanism for carrying out this phase of para-
sitic life cycle. Lineage specific expansions have given
rise to abundant gene families in Plasmodium. Although
functions of the majority of these families remain
unknown, these LSEs could reveal components in para-
site networks that, by their enhanced genetic variability,
can be tied to pathogenesis, virulence, responses to
environmental challenges, or interesting phenotypes.

Methods
Data
We collected the complete genomes of six Plasmodium
species (Table 1) from PlasmoDB, the Plasmodium Gen-
ome resource center (http://www.plasmodb.org) [42].
The nucleotide, protein, and annotation data of Release
5.5 (September 29, 2008) were downloaded.

Sequence similarity search and identification of
orthologoues and paralogous families
To identify the presence of orthologous and paralogous
genes, we pooled all the protein sequences from the six
Plasmodium genomes and conducted an exhaustive all-
against-all BLASTP search; genes were defined as ortho-
logous or paralogous if (1) they had a FAST A E-score
< e-10; (2) their similarity I was ≥30% if the length of
the alignable region L ≥150 amino acid residues (or I =
0.01n + 4.8L(-0.32(1+exp(-L/1000))), if L <150 aa, where
n = the number of sequences); (3) the length of the
alignable region between the two sequences was >50%
of the longer protein [43]; (4) Low complexity regions
were filtered out.
A Markov cluster algorithm, OrthoMCL, was used to

cluster genes into gene clusters [44]. The gene clusters
contain the orthologous and paralogous genes from dif-
ferent genomes.
Multiple alignments of each cluster were obtained by

the program ClustalX [45] and T-coffee [46], followed
by manual inspection and editing. Phylogenetic trees
were inferred by the neighbor-joining method, using
MEGA4 [47]. The inferred phylogenetic relationships
were used to detect the orthologous and paralogous
genes in each cluster.

Functional classification analysis
A hierarchical classification of cellular component, bio-
logical process, and molecular function was performed
for each Plasmodium sequence by searching against the
Gene Ontology database [48]. The classification of speci-
fic supergene families including transporters, kinases,
and proteases was based on the standard nomenclature
defined in the Transporter Classification (TC) system
[49], the Kinase Classification System [50], and the Mer-
ops Peptidase Database [51].

Additional file 1: Core genes in six Plasmodium speciesA core
genome of six Plasmodium genomes comprised of 3,351 orthologous
groups is listed. Brief descriptions of predicted gene functions and GO
functional classification are also included.

Additional file 2: Genes in Plasmodium species that show Lineage
Specific Expansions (LSEs)The lineage-unique and typical LSEs are
presented in the second and third spreadsheets, respectively.
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