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Abstract We study the renormalization group flow in weak
power-counting (WPC) renormalizable theories. The latter
are theories which, after being formulated in terms of certain
variables, display only a finite number of independent diver-
gent amplitudes order by order in the loop expansion. Using
as a toolbox the well-known SU(2) non-linear sigma model,
we prove that for such theories a renormalization group equa-
tion holds that does not violate the WPC condition; that is,
the sliding of the scale μ for physical amplitudes can be reab-
sorbed by a suitable set of finite counterterms arising at the
loop order prescribed by the WPC itself. We explore in some
detail the consequences of this result; in particular, we prove
that it holds in the framework of a recently introduced beyond
the Standard Model scenario in which one considers non-
linear Stückelberg-like symmetry breaking contributions to
the fermion and gauge boson mass generation mechanism.

1 Introduction

Arguably, the most general way to look at the (perturbative)
renormalization of quantum field theories is the one intro-
duced two decades ago by Gomis and Weinberg [1]. In this
modern look at the subject, the boundary between what con-
stitutes a renormalizable or a non-renormalizable theory gets
blurred. Indeed, in [1] it was proven that, if one includes in
the tree-level vertex functional all possible Lorentz-invariant
monomials in the fields, the external sources and their deriva-
tives, while respecting, at the same time, the symmetries
of the theory (encoded in the Batalin–Vilkovisky master
equation [2]), then it is possible to subtract all ultraviolet
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(UV) divergences by a redefinition of the tree-level param-
eters. What distinguishes between the renormalizable/non-
renormalizable cases is the stability of the classical action
under radiative corrections. In fact, in the renormalizable
case the finite number of terms already present in the tree-
level action is sufficient to absorb all UV divergences irre-
spectively of the loop order. This ceases to be true for non-
renormalizable theories, where no matter how many terms
are added to the tree-level action, there will always exist a
sufficiently high order operator in the loop expansion which
will give rise to a UV divergence that cannot be absorbed
into the classical action. Such an action would therefore be
unstable against radiative corrections, and one has to allow
for infinitely many (symmetry preserving) terms in order to
absorb all divergences.

A prototype non-renormalizable theory (or, said in the
positive, renormalizable in the modern sense) is the d-
dimensional non-linear sigma model (NLσM for short) in
which the massless pseudoscalar “pion” fields φa form,
together with the scalar field φ0 (with 〈φ0〉 = md > 0),
a chiral multiplet subjected to the (non-linear) constraint
φ2

a + φ2
0 = m2

d ; in this way the global symmetry SU(2)L ×
SU(2)R is non-linearly realized1 [see Eq. (2.7)]. Already at
the one-loop level this theory shows an infinite number of
divergent one-particle irreducible (1-PI) amplitudes, which
in turn make the consistent subtraction of UV divergences
problematic. However, by embedding the global NLσM into
a locally symmetric formulation in terms of a classical source
corresponding to a certain (flat) connection ˜J a

μ , it was shown
in [3] that one can acquire full control over the UV diver-
gences of the model. Specifically, it can be shown that in such
a theory a weak power counting (WPC) exists [4,5] which

1 In the 4-dimensional case φ0 is to be identified with the σ meson and
m = m4 with the pion decay constant fπ .
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implies that the number of independent divergent amplitudes
stays finite at each loop order n, even though it increases with
n. These “ancestor” amplitudes are not the ones associated
with the quantum pion fields φa , but they are rather written
in terms of the connection ˜J a

μ and the composite operator
K0 implementing the aforementioned non-linear constraint.
Then the presence of the so-called local functional equa-
tion (LFE) together with a suitable change of field variables
called “bleaching”, allows one to generate from the ancestor
amplitudes all the (infinite) descendant (off-shell) amplitudes
involving the pion fields, uniquely fixing en route their diver-
gent part at any order in the loop expansion [5].

Within the aforementioned Weinberg–Gomis approach to
renormalization, one can interpret the WPC as a condition
dictating at which loop order the coefficient of a particu-
lar monomial in the ancestor variables and their derivatives
becomes non-vanishing. While it has been proven in [6]
that the WPC allows for the definition of a symmetric (i.e.
compatible with the symmetries of the theory) subtraction
scheme, the question has remained open of whether a renor-
malization group (RG) equation compatible with the WPC
exists. The problem can be stated in the following terms.
WPC renormalizable theories possess a RG flow associated
to the RG equation for ancestor amplitudes. Imagine then
that a change in the scale μ of the radiative corrections is
inequivalent to a rescaling of the coefficients of the ancestor
amplitudes counterterms, at the given loop order prescribed
by the WPC: this would imply that the RG flow mixes up
the hierarchy of UV divergences encoded in the WPC, thus
making it impossible to slide the scale μ between different
energies.

As we will prove in this paper, fortunately this is not the
case, as indeed the RG equation of ancestor amplitudes turns
out to be compatible with the WPC. This is an important result
which acquires particular relevance in the context of the non-
linearly realized electroweak theory introduced in [7,8], in
which the WPC has been used as a model-building princi-
ple. In particular, in this model the classical source ˜J a

μ is
promoted to a local dynamical field responsible for generat-
ing part of the mass of the W ± and Z gauge bosons through
the Stückelberg mechanism; this leads in turn to many unique
features which cannot be found in theories describing physics
beyond the Standard Model (bSM) (e.g. it is impossible
to add a scalar singlet without breaking the WPC, so that
the minimal number of physical scalar resonances in the
model is 4). As we will see, the result proven here for the
compatibility between the RG flow and the WPC applies
also in this case. This entails the possibility of evolving the
scale μ in a mathematically consistent way, thus allowing
to obtain predictions for the relevant observables applicable
in different energy regimes and thus paving the way for a
systematic study of their deviations from the expected SM
results.

The paper is organized as follows. By using the aforemen-
tioned example of the d-dimensional SU(2) NLσM in Sect. 2
we review the embedding of the model in a local formulation
in terms of a flat connection, leading to the LFE and the WPC
condition. The concepts of ancestor and descendant ampli-
tudes as well as of bleached variables are introduced together
with the corresponding symmetric scheme for subtracting the
UV divergences. In Sect. 3 we derive the equation govern-
ing the RG flow in the local NLσM . Next, after specializing
this equation to ancestor amplitudes, we discuss under which
conditions the RG flow preserves the WPC; we then prove
that at the one-loop level these conditions are indeed satis-
fied. Section 4 contains the central result of the paper: there
we prove the general theorem stating that the RG flow of
ancestor amplitudes preserves the WPC. In Sect. 5 we intro-
duce the notion of weak stability, while in Sect. 6 we derive
the consequences of the RG flow theorem for the aforemen-
tioned non-linearly realized SU(2)×U(1) electroweak the-
ory. Our conclusions and outlook are finally presented in
Sect. 7.

2 Preliminaries

2.1 Global NLσM

The d-dimensional action of a NLσM is conventionally writ-
ten as

S0 = m2
d

4g2

∫

dd x Tr
[

∂μ�†∂μ�
]

, (2.1)

where � = �(x) (with x the space-time coordinates) rep-
resents a matrix belonging to a symmetry group G. md =
md/2−1 is the mass scale of the theory (m has dimension 1).
We will consider in particular the case where G is SU(N )

(and then specialize to the case N = 2):

�†� = 1; det � = 1. (2.2)

In terms of a suitable basis of fields φa(x), parametrizing
the G matrix �, i.e. �(x) = �(φa(x)), the action (2.1)
reads

S0 = m2
d

2

∫

dd x gab∂μφa∂μφb;

gab = gba = 1

2g2 Tr

[

∂�

∂φa

∂�†

∂φb

]

.

(2.3)

The fields φa will be generically referred to as “pion”
fields. Geometrically they represent the coordinates of the
group manifold G.
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In what follows we will mostly deal with the case G ≡
SU(2), where one can set

� = 1

md
(φ0 + igφaτa) ; φ2

0 + g2φ2
a = m2

d;

φ0 =
√

m2
d − g2φ2

a , (2.4)

where a = 1, 2, 3, and τa are the usual Pauli matrices.
The action (2.3) will then contain non-polynomial deriva-
tive interactions involving the pion fields, reading

S0 =
∫

dd x

[

1

2
∂μφa∂μφa + 1

2
g2 (φa∂μφa)(φb∂μφb)

φ2
0

]

.

(2.5)

It is exactly the presence of two derivatives in the interac-
tion term that in d > 2 causes severe UV divergences, which
are ultimately responsible for the non-renormalizability of
the corresponding quantized theory.

When writing the action as in (2.1), it is immediate to
show that the theory is invariant under a non-linearly realized
SU(2)L × SU(2)R global symmetry:

� → U�V †; U ∈ SU(2)L, V ∈ SU(2)R. (2.6)

In terms of the pion fields, the left infinitesimal transfor-
mation of constant parameters ωa reads

δφ0(x) = −1

2
g2ωaφa(x);

δφa(x) = 1

2
ωaφ0(x) + 1

2
gεabcφb(x)ωc. (2.7)

In matrix form the infinitesimal left transformation is

δ� = igωa
τa

2
�. (2.8)

2.2 Local NLσM

For any unitary matrix � it is possible to define a flat con-
nection,2

Fμ = i

g
�∂μ�†, (2.9)

so that the action (2.1) can be cast in the form

S0 = m2
d

4

∫

dd x Tr
[

FμFμ
]

. (2.10)

2 The term “flat” refers to the fact that the field strength associated to
Fμ vanishes.

Specialize now to the SU(2) case, and consider a local
SU(2)L transformation on �; this will induce a gauge trans-
formation on the flat connection Fμ, namely

� → U� �⇒ Fμ → U FμU † + i

g
U∂μU †. (2.11)

Clearly, the action (2.10) is not invariant under these local
transformations.

However, let us introduce an additional classical source ˜Jμ

transforming as a gauge connection under the local SU(2)L

group. At this point the difference Fμ − ˜Jμ will transform in
the adjoint representation,

Iμ = Fμ − ˜Jμ → U IμU †, (2.12)

so that the action

S = m2
d

4

∫

dd x Tr
[

Iμ I μ
]

(2.13)

is invariant under a local SU(2)L symmetry. In coordinates
one has

Xμ = 1

2
Xa

μτa; X = F, ˜J , I, (2.14)

with

Fa
μ = 2

m2
d

[

φ0∂μφa − φa∂μφ0 + gεabc(∂μφb)φc
]

;

I a
μ = Fa

μ − ˜J a
μ.

(2.15)

The local infinitesimal transformations are

δφ0(x) = −1

2
g2ωa(x)φa(x);

δφa(x) = 1

2
ωa(x)φ0(x) + 1

2
gεabcφb(x)ωc(x); (2.16)

δ˜J a
μ(x) = ∂μωa(x) + gεabc ˜J b

μ(x)ωc(x).

The global NLσM is embedded in the local formulation
we have just provided. Specifically, the terms ˜J F and ˜J 2 are
separately invariant under a global SU(2)L transformation
(that is, when the ω gauge parameters are kept constant);
therefore we can set ˜J directly to zero to obtain

S0 = S|
˜J=0 . (2.17)

2.3 Local functional equation

The advantage of the gauged formulation of the NLσM pro-
vided by the action (2.13) resides in the existence of a func-
tional identity that can be obtained by exploiting the invari-
ance of the Haar path integral measure under the local gauge
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transformations (2.16). This equation, which goes under the
name of LFE, reads [3]

−∂μ

δ�(0)

δ˜J a
μ(x)

+ gεabc ˜J c
μ(x)

δ�(0)

δ˜J b
μ(x)

+ 1

2

δ�(0)

δK0(x)

δ�(0)

δφa(x)

+ 1

2
gεabcφc(x)

δ�(0)

δφb(x)
= −1

2
g2φa(x)K0(x), (2.18)

where �(0) is given by

�(0) = S + Sext; Sext =
∫

dd x K0φ0, (2.19)

K0 being an SU(2)L invariant source associated to the non-
linear constraint (2.4). Thus, K0 is associated with the auxil-
iary external field required to define the composite operator
entering in the non-linear symmetry transformation. It plays
the same role as the antifields [2] in gauge theories and the
tree-level dependence of the vertex functional on K0 is fixed
by the form of the non-linear transformation (2.16): since
the only composite operator entering in δφa is φ0, one only
needs an external source K0 [5].

As the symmetry is non-anomalous, the LFE (2.18) is
satisfied by the full vertex functional �:

−∂μ

δ�

δ˜J a
μ(x)

+ gεabc ˜J c
μ(x)

δ�

δ˜J b
μ(x)

+ 1

2

δ�

δK0(x)

δ�

δφa(x)

+ 1

2
gεabcφc(x)

δ�

δφb(x)
= −1

2
g2φa(x)K0(x). (2.20)

In addition, notice that since the r.h.s. of Eq. (2.20) is linear
in the quantized fields and thus remains classical, this term
will be present only at tree level.

The LFE encodes at the quantum level the classical local
SU(2) transformation, whose form in Eq. (2.16) is not pre-
served under radiative corrections. Therefore one cannot con-
strain the quantum 1-PI Green functions on the basis of the
classical symmetry in Eq. (2.16); the constraints satisfied by
these functions are fixed by Eq. (2.20).

One of its main consequences is the separation of the 1-PI
amplitudes into two classes. On the one hand, there are the
amplitudes involving only the insertion of the SU(2) con-
nection ˜J a

μ and of the source of the non-linear constraint
K0: these are called ancestor amplitudes [3,4]. On the other
hand, we have the so-called descendant amplitudes, i.e. those
involving at least one external φ-leg. These amplitudes are
not independent, as they are uniquely determined by the LFE
once the ancestor amplitudes are known [3,4,9].

2.4 Weak power counting

Despite the fact that they do not involve external legs of
the quantized fields of the theory φa , the truly fundamental
Green functions of the local NLσM are the ancestor ampli-
tudes. Such Green functions display an UV behavior that is

significantly better than the one of their descendants: namely,
there exists a choice of the tree-level action, compatible with
the symmetries of the theory, such that only a finite num-
ber of divergent ancestor amplitudes arises order by order in
the loop expansion. This property is dubbed the WPC con-
dition [4].

Indeed, one can show that in d-dimensions an n-loop
ancestor amplitude G with N

˜J (NK0 ) external ˜J a
μ (K0) legs

has a superficial degree of divergence given by [4]

D(G) = (d − 2)n + 2 − NJ̃ − 2NK0 . (2.21)

Thus, at every-loop order only a finite number of superfi-
cially divergent ancestor amplitudes exists, i.e. the ones for
which D(G) ≥ 0; obviously, the local NLσM is still non
renormalizable, as Eq. (2.21) shows that as n grows bigger
the number of UV-divergent amplitudes increases. For exam-
ple, in the 4-dimensional case Eq. (2.21) tells us that at one-
loop the UV-divergent amplitudes involve up to four external
˜J a
μ legs and/or two K0 legs. Accordingly, the one-loop 1PI

functional for these ancestor amplitudes reads

A(1)[K0, ˜J a
μ] = 1

2

∫

�
(1)
˜J a
μ

˜J b
ν

(x, y)˜J a
μ(x)˜J b

ν (y)

+ 1

3!
∫

�
(1)
˜J a
μ

˜J b
ν

˜J c
ρ

(x, y, z)˜J a
μ(x)˜J b

ν (y)˜J c
ρ (z)

+ 1

4!
∫

�
(1)
˜J a
μ

˜J b
ν

˜J c
ρ

˜J d
σ

(x, y, z, w)˜J a
μ(x)˜J b

ν (y)

× ˜J c
ρ (z)˜J d

σ (w) + 1

2

∫

�
(1)
K0 K0

(x, y)K0(x)K0(y)

+ 1

2

∫

�
(1)

K0 ˜J a
μ

˜J b
ν

(x, y, z)K0(x)˜J a
μ(y)˜J b

ν (z) + · · · .

(2.22)

where the dots stand for ancestor amplitudes that are not UV
divergent at one loop.

2.5 Bleached variables

Ancestor amplitudes per-se are not a solution of the LFE
(2.20) as they carry no information for amplitudes involv-
ing pion fields. To achieve this, it is necessary to introduce
invariant combinations in one-to-one correspondence to the
ancestor variables ˜J a

μ and K0. These so-called bleached vari-
ables are found to be [4]

jμ = �† Iμ� = 1

2
ja
μτ a; K 0 = m2

d K0

φ0
− φa δS

δφa
.

− ja
μ

∣

∣

φa=0
= ˜J a

μ; K 0
∣

∣

φa=0 = md K0,

(2.23)

where the action S appearing in the definition of K 0 is given
in Eq. (2.13).
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In terms of bleached variables, the one-loop version of the
LFE can be cast in the form [9]

∂

∂φb
�(1)

[

φa, K 0, ja
μ

] = 0, (2.24)

and one can prove that the complete solution of the one-loop
LFE is given by

�(1)
[

φa, K 0, ja
μ

] = A(1)
[

K0, ˜J a
μ

]

∣

∣

∣

K0→K 0/md

˜J a
μ→− ja

μ

, (2.25)

where A(1) is the 1PI functional of the ancestor amplitudes
(2.22). Thus one finds that at this order, all the dependence
on the pion fields is enclosed in the bleached variables.

This prescription allows one to write down all the descen-
dant amplitudes depending on the pion fields in terms of
the ancestor amplitudes; all one has to do is to expand the
bleached variables up to the relevant order in the pion fields.
A direct computation using the definition (2.23) shows that
K 0 starts with two φ’s, with

K 0 = md K0 − md

2
φa∂μ

˜Jμ
a − gεabcφa(∂μφb)˜Jμ

c

+ φa�φa + g2

2m D
K0φ

2
a + · · · . (2.26)

For the variable ja
μ one has instead the result

m2
d ja

μ = m2
d I a

μ − 2g2φ2
b I a

μ

+ 2g2φb I b
μφa + 2gφ0εabcφb I c

μ, (2.27)

yielding, with the help of Eq. (2.15), the expansion

ja
μ = −˜J a

μ + 2

md
∂μφa − 2

m2
d

gεabc(∂μφb)φc

+ 2

m2
d

g
(

gφ2
c δab − gφaφb + mdεabcφc

)

˜J b
μ + · · · .

(2.28)

Thus, for example, one has for the two- and three-point
pion sector

1

2

∫

�
(1)

φaφb (x, y)φa(x)φb(y)

= 2

m2
d

∫

�
(1)
˜J a
μ

˜J b
ν

(x, y)∂μφa(x)∂νφb(y),

1

3!
∫

�
(1)

φaφbφc (x, y, z)φa(x)φb(y)φc(z)

= − 4

m3
d

g
∫

�
(1)
˜J a
μ

˜J b
ν

(x, y)εacd [∂μφc(x)]φd(x)∂νφb(y)

+ 4

3m3
d

∫

�
(1)
˜J a
μ

˜J b
ν

˜J c
ρ

(x, y, z)[∂μφa(x)][∂νφb(y)][∂ρφc(z)].
(2.29)

At higher orders in the loop expansion the bilinearity of
the LFE (2.20) implies that there is an explicit dependence
on the pion fields, governed by the equation [9]

δ�(n)

δφa(x)
= −1

2

n−1
∑

i=1

δ�(i)

δK 0(x)

δ�(n−i)

δφa(x)
. (2.30)

Notice that the above form of the LFE holds provided that
� is written as a functional of the variables K 0, jaμ.

The general solution of the LFE becomes then [9]

�
[

φa, K 0, ja
μ

] = A [

K0, ˜J a
μ

]∣

∣

K0→K 0/md
˜J a
μ→− ja

μ
+G [

φa, K 0, ja
μ

]

,

(2.31)

where G is the functional solving Eq. (2.30); as such it is
uniquely fixed by the ancestor amplitudes, depends explicitly
on φa , and, finally, vanishes at φa = 0. The existence of G
can be proven by exploiting cohomological tools [9].

2.6 Renormalization

Summarizing, the combination of the LFE and the WPC,
expressed in Eqs. (2.20) and (2.21), respectively, allows one
to express the infinite number of divergent amplitudes involv-
ing the pion fields (descendant amplitudes) in terms of a finite
number of ancestor amplitudes involving the connection ˜J a

μ

and the source of the non-linear constraint (2.4) K0.
It turns out that it is also possible to renormalize the theory

in a symmetric fashion, that is, in a way that preserves the
LFE [4,6].

Consider first the one-loop ancestor amplitudes. Taking
into account Lorentz and global SU(2)R invariance, the list
of UV-divergent amplitudes reduces to the following eight
(integrated) local monomials:

M0 =
∫

dd x
(

˜J a
μ

˜Jμ
a

) ; M1 =
∫

dd x
(

∂μ
˜Jμ

a

) (

∂ν
˜J ν

a

) ;

M2 =
∫

dd x
(

∂μ
˜J a
ν

) (

∂μ
˜J ν

a

) ;

M3 =
∫

dd x εabc
(

∂μ
˜J a
ν

) (

˜Jμ
b

˜J ν
c

) ;

M4 =
∫

dd x
(

˜J a
μ

˜Jμ
a

)

(

˜J b
ν

˜J ν
b

)

;

M5 =
∫

dd x
(

˜J a
μ

˜Jμ
b

) (

˜J a
ν

˜J ν
b

) ;

M6 =
∫

dd x (K0)
2; M7 =

∫

dd x K0
(

˜J a
μ

˜Jμ
a

)

.

(2.32)
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For example, for the one-loop two-point function one
finds [4]

�
(1)
˜J ˜J

=
(

− 1

12

1

d − 4

m2
d

m2

g2

(4π)2 + · · ·
)

×
∫

dd x ˜Jμ
a (�gμν − ∂μ∂ν)˜J

ν
a , (2.33)

where m ≡ md=4, and the dots indicate finite (μ-dependent)
pieces. Then we can dispose of this divergence by requiring
that the monomials M1,2 enters the counterterm action in
the combination

ρB
1M1 + ρB

2M2 =
(

1

12

1

d − 4

m2
d

m2

g2

(4π)2 + · · ·
)

×(M1 − M2). (2.34)

Carrying out this procedure for all of the one-loop diver-
gent ancestor amplitudes, one can fix the one-loop countert-
erm action Sct = ∑

i ρB
i Mi thus rendering finite the NLσM

at this level in the loop expansion.
The one-loop counterterms for the descendant amplitudes

are then generated by expressing the monomials Mi appear-
ing in Sct in terms of the bleached variables, whence giving
rise to the SU(2)L invariants

M0 → I0 =
∫

dd x
(

ja
μ jμa

) =
∫

dd x
(

I a
μ I μ

a

)

,

M1 → I1 =
∫

dd x
(

∂μ jμa
) (

∂ν jνa
)

=
∫

dd x
(

Dab
μ I μ

b

)

(Dac
ν I ν

c

)

,

M2 → I2 =
∫

dd x
(

∂μ ja
ν

) (

∂μ jνa
)

=
∫

dd x
(

Dab
μ I b

ν

)

(Dμ
ac I ν

c

)

,

−M3 → I3 =
∫

dd x εabc
(

∂μ ja
ν

) (

jμb jνc
)

=
∫

dd x εabc

(

Dad
μ I d

ν

)

(

I μ
b I ν

c

)

,

M4 → I4 =
∫

dd x
(

ja
μ jμa

)

(

jb
ν jνb

)

=
∫

dd x
(

I a
μ I μ

a

)

(

I b
ν I ν

b

)

,

M5 → I5 =
∫

dd x
(

ja
μ jμb

) (

ja
ν jνb

)

=
∫

dd x
(

I a
μ I μ

b

) (

I a
ν I ν

b

)

,

m2
dM6 → I6 =

∫

dd x (K 0)
2,

mdM7 → I7 =
∫

dd x K 0
(

ja
μ jμa

) =
∫

dd x K 0
(

I a
μ I μ

a

)

,

(2.35)

in which all the covariant derivatives are defined with respect
to the flat connection:

Dac
μ = ∂μδac + gεabc Fb

μ. (2.36)

It turns out that there is no one-loop counterterm associ-
ated with I0, as the theory is massless [4]. Since at φa = 0
one has the normalization conditions given in the second line
of Eq. (2.23), clearly we recover the counterterms introduced
for the one-loop ancestor amplitudes; in addition, however,
the above invariants generate the correct one-loop countert-
erms for all pion amplitudes, solving completely the hierar-
chy imposed by the LFE at this order.

At higher orders, say n > 1, the situation is slightly more
complicated. The bilinear term in the LFE results in the term
(2.30); however, this can only give rise to the mixing of lower
order counterterms and therefore does not lead to new ones.
As a consequence, this term will not appear in the evaluation
of the nth-order counterterms for the ancestor amplitudes.
Thus the symmetric subtraction procedure at order n is the
following. One starts by computing the divergent part of the
ancestor amplitudes that are superficially divergent accord-
ing to the WPC condition (2.21). This will then fix the coef-
ficients of the local monomials Mi appearing at this order.
Then one converts these monomials into the invariants Ii by
writing them in terms of the bleached variables. This will
then give rise to the full set of counterterms required to make
the theory finite at order n in the loop expansion.

3 A renormalization group equation for WPC
renormalizable theories

From the discussion of the previous section we know that the
LFE holds true for the effective action ̂� of the theory, which
comprises the tree-level Feynman rules plus counterterms. In
addition, in the case of zero pion fields, the full bare effec-
tive action ̂�B

0 ≡ ̂�B
∣

∣

φa=0 can be decomposed on a basis of
integrated local monomials involving only the variables K0

and ˜J a
μ and their derivatives

̂�B
0 =

∑

i

ρB
i Mi

(

K0, ˜J a
μ

)

. (3.1)

In the above equation the sum spans all possible (infi-
nite) local monomials, compatible with Lorentz invariance.
By expressing the bare parameters ρB

i in terms of the renor-
malized ones ρi and of the scale μ of the radiative correc-
tions, one gets the effective action ̂�, which yields a finite
theory.

Thus, from the point of view of Weinberg and Gomis
renormalizability, the WPC selects which coefficients ρB

i
must be zero in the tree-level approximation and prescribes
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the loop order at which the counterterms of a given local
monomial start to appear (or, in other words, at which order
a particular coefficient ρB

i 
= 0).
Knowledge of the r.h.s. of Eq. (3.1) completely fixes

(through the LFE) the dependence on the pion fields of the
complete bare action ̂�B. Then one can reabsorb the depen-
dence on the scale μ of the radiative corrections into the
renormalized parameters ρi by expressing the bare parame-
ters in terms of the renormalized ones:

̂�
[

ρB
i

] = ̂�[ρi , μ]. (3.2)

This is always possible, since due to the linearity of ̂�B
0

on the bare parameters, one can reabsorb the divergences
associated with the monomial Mi by redefining the bare
parameter ρB

i . In addition, Eq. (3.2) entails that the same
result holds for the full vertex functional �, namely

�
[

ρB
i

] = �[ρi , μ]. (3.3)

Next, by differentiating Eq. (3.3) with respect to the scale
μ, we get the following RG equation:

μ
∂�

∂μ
+

∑

i

μ
∂ρi

∂μ

∂�

∂ρi
= 0, (3.4)

which holds in full generality for all 1-PI Green functions
(including those involving an explicit dependence on the pion
legs).3

The very important question we are addressing in this
paper is whether the WPC condition is compatible with the
RG flow controlled by the RG equation for the ancestor
amplitudes. In general, in fact, it might happen that a change
in the scale μ of the radiative corrections is not equivalent
to a rescaling of the coefficients of the ancestor amplitudes
counterterms, at the given loop order prescribed by the WPC.
In that case the RG flow would mix up the hierarchy of UV
divergences encoded in the WPC, thus making it impossible
to slide the scale μ between different energies.

Let us start addressing this question by noticing that, for
the zero (external) pion fields case, Eq. (3.4) gives rise to
a particularly simple relation. Indeed in this case ̂�0 is lin-
ear4 in the bare parameters ρB

i , and therefore a change in
the scale μ, affecting the nth-order action, can be accommo-
dated by a change of the finite part of the nth-order (ances-
tor amplitudes) counterterms, so that it appears that the RG

3 In the Chiral Lagrangian approach (momentum expansion) a RG
equation has been derived in [10].
4 This is definitely not the case for the complete effective action ̂�, as
in this case the functional G appearing in the complete LFE solution
(2.31) contains a product of lower order terms and therefore it has a
complicated dependence on the ρi .

equation does not mix up the WPC hierarchy.5 However,
this is not sufficient to prove compatibility with the WPC, as
the redefinition of the renormalized parameters ρi still spans
in principle at a given order n all (infinite) integrated local
monomials corresponding to divergent ancestor amplitudes
and compatible with Lorentz and SU(2)R global symmetry
(under which J̃aμ is in the adjoint and K0 is a singlet) on the
space of ancestor variables. What we need to prove is that i
spans only those monomials that are required by the WPC at
order n and nothing else.

3.1 One-loop analysis

To see where the problem resides and what needs to be
proven, let us consider the one-loop case n = 1. As already
said, in this case there are five divergent ancestor amplitudes:
�

(1)
˜J ˜J

, �(1)
˜J ˜J ˜J

, �(1)
˜J ˜J ˜J ˜J

, �(1)
K0 K0

, and �
(1)

K0 ˜J ˜J
. The one-loop topolo-

gies possibly contributing to these amplitudes are shown in
Fig. 1 through Fig. 4.

The WPC-compatible tree-level couplings used to con-
struct the ancestor amplitudes are the ones coming from the
action (2.19). On the other hand, the effective action ̂�(1)

will contain also the eight monomials (2.32) with a coeffi-
cient6 λ

(1)
i , i 
= 0 (as already noticed, the coefficient ρ

(1)
0 is

zero at one-loop level; in addition, notice that M0 is allowed
by the WPC, so its coefficient is not of the λ-type), fixed
by the divergent part of the corresponding ancestor ampli-
tude. When trading the K0 and ˜J a

μ variables for the bleached
ones, the monomials Mi will become the invariants Ii of
Eq. (2.35); expanding then the bleached variables in terms of
the pion fields as in Eqs. (2.26) and (2.28), will generate new
vertices with pions and external sources J̃μ and K0. Contrary
to the tree-level vertices however, these so-called λ-vertices
(see also the definition given in Sect. 4) violate the WPC and
are proportional to a parameter λ

(1)
i , which was zero at tree

level (from which the name).
A Feynman graph constructed from this type of vertices

might in principle contribute to the RG equation (3.4) due to
the derivative term in ρi , evaluated on the λ-type coefficients.

To understand how this can possibly happen, recall that for
writing down the RG equation one writes down all possible
tree-level couplings compatible with the LFE which are of
two types: the coefficient md , which is also compatible with

5 At the level of amplitudes with the explicit dependence on the pion
legs things are in general much more complicated and one has to resort
to the LFE in order to fix them in a way compatible with the symmetry
of the theory.
6 We reserve the notation λi (respectively, λB

i ) for the renormalized
(respectively, bare) parameters that are bound to be zero at tree level
due to the WPC. This is to be contrasted with ρi (respectively, ρB

i )
which denote the renormalized (respectively, bare) coefficients of all
monomials (that is, including those that are non-zero according to the
WPC).
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the WPC, and all the λ-vertices. Notice that g instead can
be eliminated by redefining the pion fields φa → 1

g φa . The
WPC condition selects the solution in which all the λi are
zero: it is on this solution that one evaluates the amplitude
after taking the derivative w.r.t. ρi in Eq. (3.4). Consequently
the insertion of more than one λ-vertex in an ancestor ampli-
tude cannot contribute to the RG flow, since the WPC sets to
zero all the λ (the derivative obviously disposes of one such
coefficient only).

Thus, the compatibility of the RG flow with the WPC boils
down to the proof that λ-vertices cannot contribute to the RG
flow of an ancestor amplitude.

As a warm up exercise in what follows we see how things
work out at the one-loop order.

3.1.1 ˜J a
μ sector

In the ˜J a
μ sector the invariants that can contribute are I1

through I5 of Eq. (2.35). Let us then start by considering
the two-point function �

(1)
˜J ˜J

, which has D(�
(1)
˜J ˜J

) = 2; the
topologies possibly contributing to this amplitude are shown
in Fig. 1.

Now, all seagull type diagrams [indicated as (t21) in Fig. 1]
vanish in dimensional regularization, as the pion has a mass-
less propagator ∼1/k2. Consider next the topologies (t22).
According to our previous discussion, one of the vertices
appearing there must come from the tree-level Feynman rules
and it is given by

m2
d

4
Tr

(

Fμ − ˜Jμ

)2 ∼ −1

2
gεabc ˜J a

μ∂μφbφc, (3.5)

while the remaining vertex is a λ-vertex. Thus, we expand
the first five invariants in Eq. (2.35) in powers of the pion
fields keeping only terms of the form ˜Jφφ; one finds

I1 ∼ − 4

m2
d

gεabc

(

2˜J a
μ�φb∂μφc + ∂μ

˜J a
μ�φbφc

)

,

I2 ∼ − 4

m2
d

gεabc

×
(

2˜J a
μ∂μ∂νφb∂νφ

c + ∂μ
˜J a
ν ∂μ∂νφbφc

+ ∂μ
˜J a
ν ∂μφb∂νφc

)

,

Fig. 1 One-loop topologies contributing to the �
(1)
˜J ˜J

ancestor ampli-

tudes. Crossed vertices indicate ˜J external legs

I3 ∼ − 4

m2
d

εabc∂μ
˜J a
ν ∂μφb∂νφc,

I4 ∼ 0; I5 ∼ 0. (3.6)

Thus, all of the λ-vertices of this kind contain at least two
derivatives acting on pion fields, being a rather remarkable
fact that all potentially “dangerous” monomials (i.e. mono-
mials possessing only one or no derivatives acting on the
pion fields) cancel out. As a consequence the UV degree of
divergence of the topologies (t22) is at least 3: indeed, they
all have one-loop, two bosonic propagators, one derivative
from the tree-level vertex and at least two derivatives from
the λ-vertex. Hence, since D(t22) > D(�

(1)
˜J ˜J

) all graphs of
this kind cannot appear in the set of one-loop counterterms.

We next consider the ancestor amplitude with three exter-
nal ˜J legs �

(1)
˜J ˜J ˜J

, in which case D(�
(1)
˜J ˜J ˜J

) = 1; Fig. 2 shows
the possible topologies contributing to this amplitude.

As before the topology (t31) vanishes; for graphs of the
type (t32) one has instead that the vertex with two external
sources ˜J and two pion fields has to be a λ-vertex since this
kind of vertices is not present in the tree-level Feynman rules.
Therefore, we now expand the five invariants (2.35) in powers
of φ keeping only terms of the form ˜J ˜Jφφ; we obtain

I1 ∼ 4

m2
d

g2
(

˜J a
μ

˜J a
ν ∂μφb∂νφb − ˜J a

μ
˜J b
ν ∂μφb∂νφa

− ∂μ
˜J a
μ

˜J b
ν ∂νφaφb + ∂μ

˜J a
μ

˜J b
ν ∂νφbφa

)

,

I2 ∼ 4

m2
d

g2
(

˜J 2∂μφa∂μφa − ˜J a
μ

˜J bμ∂νφa∂νφb

− ∂μ
˜J a
ν

˜J bν∂μφaφb + ∂μ
˜J a
ν

˜J bν∂μφbφa
)

,

I3 ∼ 2

m2
d

g
(

3˜J a
μ

˜J b
ν ∂μφa∂νφb + 2˜J 2∂μφa∂μφa

− 2˜J a
μ

˜J a
ν ∂μφb∂νφb − 2˜J a

μ
˜J bμ∂νφa∂νφb

− ˜J a
μ

˜J b
ν ∂μφb∂

νφa + ∂μ
˜J a
ν

˜J bμ∂νφaφb

− ∂μ
˜J a
ν

˜J bμ∂νφbφa + ∂μ
˜J a
ν

˜J bν∂μφbφa

− ∂μ
˜J a
ν

˜J bν∂μφaφb

)

,

I4 ∼ 8

m2
d

(

˜J 2∂μφa∂μφa + 2˜J a
μ

˜J b
ν ∂μφa∂νφb

)

,

Fig. 2 One-loop topologies contributing to the �
(1)
˜J ˜J ˜J

ancestor ampli-
tude
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Fig. 3 One-loop topologies
contributing to the �

(1)
˜J ˜J ˜J ˜J

ancestor amplitude

I5 ∼ 8

m2
d

(

˜J a
μ

˜J a
ν ∂μφb∂

νφb + ˜J a
μ

˜J b
ν ∂μφb∂

νφa

+ ˜J a
μ

˜J bμ∂νφa∂νφb

)

. (3.7)

Notice that the above vertices contain at least one derivative
acting on a pion field. Therefore, the UV degree of divergence
of the (t32) graphs is at least 2 [the power counting is the
same as that of graphs (t22) in Fig. 1 apart for the fact that in
this case the λ-vertex contains at least one derivative]. Thus,
D(t32) > D(�

(1)
˜J ˜J ˜J

) so that, as in the previous case, this kind
of graphs cannot contribute to one-loop counterterms.

Finally, the UV degree of divergence of (t33) graphs must
be at least 2, since they all have one loop, three bosonic
propagators, one derivative from every tree-level vertex and
at least two derivatives from the λ-vertex. So, by the same
token, also these diagrams do not appear in the one-loop RG
equation for �

(1)
˜J ˜J ˜J

.
The last ancestor amplitude is the one containing four

external ˜J sources, in which case D(�
(1)
˜J ˜J ˜J ˜J

) = 0. The
topologies contributing to such amplitude are finally shown
in Fig. 3.

Once again the massless seagull graphs (t41) vanish. Next,
in order to compute the UV degree of divergence of the topol-
ogy (t42), we need to expand the one-loop invariants in pow-
ers of φ keeping only terms of the form ˜J ˜J ˜Jφφ. One finds

I1 ∼ 0; I2 ∼ 0,

I3 ∼ 2

m2
d

g2εabc

(

˜J d
μ

˜J d
ν

˜J aν ∂μφb φc − ˜J 2
˜J a
μ ∂μφb φc

)

,

I4 ∼ − 8

m2
d

gεabc ˜J 2
˜J a
μ∂μφb φc,

I5 ∼ − 8

m2
d

gεbcd ˜J a
μ

˜J a
ν

˜J bν∂μφcφd .

(3.8)

Notice that also the vertices of this kind contain one deriva-
tive acting on a pion field. However, (t42) graphs have an
UV degree of divergence which is at least one irrespec-
tively of the number of derivatives in the λ-vertex. Thus,
D(t42) > 0 and therefore the one-loop invariants with four
external sources ˜J , cannot receive contributions from these
Feynman diagrams.

Also (t43) graphs do not appear in the one-loop RG equa-
tion for �

(1)
˜J ˜J ˜J ˜J

because in the tree-level Feynman rules there

are no vertices of the form ˜J ˜Jφφ and so in this topology
both vertices must necessarily be of the WPC violating type.

Finally, using the previous results, it is straightforward to
prove that the UV degree of divergence of the graphs of type
(t44) (three bosonic propagators, two tree-level vertices with
one derivative and a λ-vertex with at least one derivative) and
(t45) (four bosonic propagators, three tree-level vertices with
one derivative and a λ-vertex with at least two derivatives) is
at least one, so that also in this case D(t44), D(t45) > 0.

This completes the analysis of the ˜J -sector at the one-
loop level and shows that for the two-, three- and four-point
functions of the external source ˜J a change in the scale μ

is compensated by a change of the finite parts of genuinely
one-loop invariants. Let us conclude, by observing that even
though we have taken into account only λ-vertices stemming
from the one-loop invariants (2.35), the argument is valid
also, a fortiori, for monomials that appear as counterterms at
higher loops, for the latter will contain either more derivatives
or more bleached variables j (or both).

3.1.2 K0-sector

In the K0 sector one needs to consider the invariants I6 and I7

of Eq. (2.35). However, recall that the tree-level dependence
from K0 is completely fixed by the coupling to the non-linear
constraint φ0. Indeed the non-linear symmetry is realized
through the transformations (2.7) and the only composite
operator that enters in them is φ0. This dictates the coupling
in Sext of Eq. (2.19), and it makes no sense to insert at tree
level additional invariants that depend on K0. Thus there are
no λ-vertices originating from invariants involving K 0.

This means in turn that there are no λ-vertices contributing
to the two-point function of the scalar source K0; hence, a
change in the scale μ in the ancestor amplitude �

(1)
K0 K0

can
be compensated by a change of the finite part of the one-loop
counterterm I4.

Finally, we show in Fig. 4 the topologies that contribute
to the ancestor amplitude with one external scalar source K0

and two J̃ legs.
As discussed above, the λ-vertex in both topologies can

never come from the K0 source. Therefore for (t51) graphs the
λ-vertex contains at least one derivative; hence the UV degree
of divergence of these graphs is at least 1. This is also the UV
degree of divergence for the topologies (t52). Therefore, we
conclude that the one-loop invariant with one scalar source
K0 and two ˜J , which does not contain derivatives, cannot
receive contributions from these graphs.
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Fig. 4 One-loop topologies contributing to the �
(1)

K0 ˜J ˜J
ancestor ampli-

tude. Square vertices indicate K0 external legs

Also in this sector the results obtained are valid for λ-
vertices originating from higher order counterterms. This
completes the analysis of the K0-sector and it allows us to
conclude that at the one-loop level a change in the scale μ

only requires a change in the finite parts of the WPC one-loop
invariants to be compensated.

4 A general theorem

We are now ready to tackle a general proof of the fact that
the WPC is preserved by the RG flow. The strategy followed
for proving this will be different from the one adopted for
illustrating the one-loop case, which obviously cannot be
adapted to an all-order analysis.

Before dwelling on the detailed proof let us recall the
precise definition of a λ-vertex and state in a precise form
the theorem we would like to prove.

Definition A λ-vertex is an interaction vertex generated
upon the expansion of a symmetric (i.e. fulfilling the LFE)
local functional forbidden by the WPC in powers of the pion
fields φ. It must contain at least one external ˜J leg.7

One then has the following.

Theorem There are no λ-vertex contributions to the RG flow
of a nth-loop ancestor amplitude.

The proof is divided into several steps, which we detail in
the following five subsections.

4.1 Loop expansion of the RG equation

Let us consider a λi parameter that, according to the WPC,
is bound to be zero up to the order n:

λi = λB
i + O(h̄n), (4.1)

and suppose that there exists an order m < n such that a
contribution to the RG equation arises at that order from the
λi -parameter.

7 Again we recall that the dependence of the tree-level effective action
on K0 is fixed by the non-linear SU(2) symmetry and hence noλ-vertices
originating from invariants involving K 0 need to be considered.

Such a contribution to the second term in the l.h.s. of the
RG equation (3.4) for the ancestor amplitudes is given by

μ
∂λ

(m)
i

∂μ

∂�
(0)
0

∂λB
i

∣

∣

∣

∣

∣

λ=0

= μ
∂λ

(m)
i

∂μ

∣

∣

∣

∣

∣

λ=0

Mi . (4.2)

Notice that one obtains a local contribution, as it should be,
since m is the lowest order where λi is assumed to contribute.
If such an integer m < n existed, one would clearly mix up
the WPC counting: a change in the scale μ would be reflected
in lower order contributions, associated with counterterms
that cannot appear at that order according to the WPC.

Let us now prove that this is indeed not the case.

4.2 Topologies

The amplitudes that we need to consider have no external
pion legs and display an insertion of a single λ-vertex Vλ, all
other vertices being generated by the WPC tree-level action
(2.19). We will denote by Vλ

K0
(respectively, Vλ

˜J
) the number

of K0 (respectively, ˜J a
μ) legs attached to the vertexVλ. Finally

r will denote the number of pion legs attached to Vλ.
The relevant nth-loop topologies can be classified accord-

ing to the number of petals P composing a daisy diagram
centered on Vλ; see Fig. 5. These P-amplitudes are descen-
dant amplitudes obtained from the n(i)-order ancestors after
writing them in terms of the bleached variables plus (when-
ever n(i) ≥ 2) the contribution of the functional G of
Eq. (2.31). They correspond to all possible partitions of the
integers 1, . . . , r in disjoint sets each of which has at least
two elements; in particular, if n(i) is the loop order of the
i th petal amplitude, then, since r (i) propagators give rise to
r (i) − 1 loops, one has obviously

n =
∑

i

n(i) +
∑

i

[r (i) − 1], (4.3)

or n = n(1) + r − 1 for just one petal.

(a) (b)

Fig. 5 Relevant topologies for the RG-flow theorem. Graph a shows a
single petal diagram, which, once iterated, gives rise to the multi-petal
daisy diagram (b). To avoid notational cluttering we do not indicate
explicitly the ˜J a

μ and K0 vertices either in the P-amplitude or in Vλ
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4.3 P-amplitudes degree of divergence

Let us indicate with P(i)
φ (respectively, P(i)

K0
, P(i)

˜J
) the num-

ber of φ (respectively, K0, ˜J a
μ) legs attached to the 1PI

amplitude building up the i th petal P(i). Then one has the
following.

Lemma The degree of divergence of a P(i)-amplitude sat-
isfies the WPC bound (2.21), i.e.

D(P(i)) = (d − 2)n(i) + 2 − P(i)
˜J

− 2P(i)
K0

. (4.4)

To prove this, let us analyze the two possible contributions
to a P(i)-amplitude, that is, the one coming from the bleached
variables substitution and the one from the G term of the
general solution of the LFE.

Let

A(i)
˜J . . . ˜J
︸ ︷︷ ︸

N
˜J

K0 . . . K0
︸ ︷︷ ︸

NK0

˜J . . . ˜J
︸ ︷︷ ︸

P(i)
˜J

K0 . . . K0
︸ ︷︷ ︸

P(i)
K0

, (4.5)

be an ancestor amplitude that, upon the substitution of the
NK0 and N

˜J legs contributes to the P(i)-amplitude under
scrutiny

P(i)

φ . . . φ
︸ ︷︷ ︸

r(i)

˜J . . . ˜J
︸ ︷︷ ︸

P(i)
˜J

K0 . . . K0
︸ ︷︷ ︸

P(i)
K0

. (4.6)

Then

D(A(i)) = (d − 2)n(i) + 2 − (N
˜J + P(i)

˜J
) − 2(NK0 + P(i)

K0
).

(4.7)

Now, according to their definition (2.23) and the corre-
sponding expansions (2.26) and (2.28), one observes that
each substitution of a ˜J -leg can give at most one derivative
acting on the pion fields, while in the case of a K0-leg one
gets at most two derivatives. Then one has

D(P(i)) = D(A(i)) + 1 × N
˜J

︸ ︷︷ ︸

one ∂ for each replaced ˜J

+
two ∂ ′s for each replaced K0

︷ ︸︸ ︷

2 × NK0

= (d − 2)n(i) + 2 − P(i)
˜J

− 2P(i)
K0

. (4.8)

However, this does not exhaust all the possible ancestor
amplitudes eventually contributing to the given P-amplitude.
In fact, observe that single derivatives of the pion fields com-
ing from the replacement K0 → K 0/md get accompanied
by an extra ˜J a

μ ; the same is true for zero derivative pion field
terms coming from the replacement ˜J a

μ → − ja
μ. Thus one

has the following two cases:

(i) If we start from an ancestor amplitude and in the replace-
ment of a ˜J we get no derivative and a ˜J , the number of
external ˜J of the descendant amplitude stays invariant;

(ii) If we start from an ancestor amplitude and in the replace-
ment of a K0-leg we get a derivative and a ˜J , then the addi-
tional contribution to the degree of divergence is through
the term

from the derivative

−2
︸︷︷︸

︷︸︸︷

+1 = −1

from the −2NK0 term of D(A(i))

, (4.9)

that is, we get exactly the contribution of the additional
˜J -leg generated.

Thus we conclude that for the part of the petal amplitude
that is generated through the bleached variables the bound
(4.4) holds.

Next consider the contribution coming from the bilinear
term of the LFE. We know that the bound is satisfied when
n = 1, so that we can proceed by induction. We then consider
the differential operator

O = δ�+s+t

δ˜J a1
μ1 (x1) . . . δ˜J a�

μ�
(x�)δK0(y1) . . . δK0(ys)δφb1 (z1) . . . δφbt (zt )

(4.10)

and we apply it to the bilinear equation (2.30). This operation
will give rise to a term contributing to an amplitude involving
� ˜J -legs, s K0-legs, and t + 1 φ-legs. As there are many
possible ways of acting on the r.h.s. of Eq. (2.30), we then
denote by n(I)

˜J
and n(II)

˜J
the number of ˜J derivatives acting on

δ�( j)

δK0(x)
and δ�(n− j)

δφa(x)
, respectively, and similarly for n(I)

K0
and

n(II)
K0

.
Using the induction hypothesis, the UV degree of diver-

gence of the two amplitudes obtained in this way are

D(I) = (d − 2) j + 2 − n(I)
˜J

− 2n(I)
K0

− 2,

D(II) = (d − 2)(n − j) + 2 − n(II)
˜J

− 2n(II)
K0

. (4.11)

Summing everything up one gets again the result

D(O) = (d − 2)n + 2 − � − 2s, (4.12)

that is, the bound holds at order n.
This concludes the proof of the lemma.

4.4 One-petal amplitudes

Consider now the nth-order amplitude � corresponding to a
λ-vertex, with r φ-legs, Vλ

˜J
˜J -legs and Vλ

K0
K0-legs. Assume
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also that there is a single petal P(1) [see diagram (a) in Fig.
5], so that r ≡ P(1)

φ and n = n(1) + P(1)
φ − 1.

The UV degree of divergence of this amplitude is

D(�) = d(P(1)
φ − 1) − 2P(1)

φ + D(P(1)) + δ, (4.13)

where δ ≥ 0 is the number of derivatives present in the λ-
vertex. Since n(1) = n − r + 1, by means of the lemma
previously proved we can write

D(�) = (d − 2)n + δ + P(1)
˜J

− 2P(1)
K0

. (4.14)

A bound on δ can then be obtained by observing that the
degree above cannot be greater than the one of a nth-order
ancestor amplitude with Vλ

˜J
+ P(1)

˜J
˜J -legs and Vλ

K0
+ P(1)

K0
K0-legs, that is,

D(�) ≤ (d − 2)n + 2 −
(

P(1)
˜J

+ Vλ
˜J

)

− 2
(

P(1)
K0

+ Vλ
K0

)

;
(4.15)

thus we get the inequality

0 ≤ δ ≤ 2 − Vλ
˜J

− 2Vλ
K0

. (4.16)

One has then the following cases:

(i) If Vλ
K0

= 1, then Vλ
˜J

= δ = 0 (i.e. the λ-vertex has no
derivatives). In this case the λ-vertex is of the type K0φ0,
already present in �(0) and allowed by the WPC.

(ii) If Vλ
K0

= 0, then either Vλ
˜J

= 1, in which case δ = 1 so

that these are the couplings of the type ˜J F coming from
S, or Vλ

˜J
= 2, in which case δ = 0 so that these are the

couplings of the type ˜J 2 coming again from S.

Thus we find that the only possible λ-vertices are the ones
allowed by the WPC, which proves the theorem at the level
of a single petal amplitude.

4.5 Daisy amplitudes

Let us now consider a full daisy graph composed by m P-
amplitudes. For such an amplitude one has then

D(�) =
m

∑

i=1

[

d(P(i)
φ − 1) − 2P(i)

φ + D(P(i))
]

+ δ′, (4.17)

where m is the number of petals attached to the λ-vertex
Vλ and δ′ is the number of derivatives of the λ-vertex. The
lemma tells us that for each one of the petal amplitudes P(i)

the degree of divergence is

D(P(i)) = (d − 2)n(i) + 2 − P(i)
˜J

− 2P(i)
K0

. (4.18)

In addition, the loop order of the P(m) amplitude is given by

n(m) = n + m − P(m)
φ −

m−1
∑

i=1

[

n(i) + P(i)
φ

]

. (4.19)

Then, after simple algebra, Eq. (4.17) yields

D(�) = (d − 2)n + δ′ −
m

∑

i=1

[P(i)
˜J

+ 2P(i)
K0

]. (4.20)

At this point one obtains the same bound as before on δ′, and
therefore the same conclusions hold.

This completes the proof of the RG-flow theorem.

5 Stability in WPC renormalizable theories

The existence of a RG equation allows one to extend the
notion of stability of the classical theory to the non-linearly
realized models based on the WPC.

In fact, the WPC prescribes uniquely which coefficients
ρi are non-zero at tree level (and therefore it defines the set of
λ-invariants). In addition, the RG-flow theorem just proven
implies that the finite parts of the counterterms, needed to
reabsorb a change in the μ-dependence, appear exactly at
the order where the pole part of the corresponding ancestor
amplitudes becomes non-zero according to the WPC.

Suppose now that one adds a free finite (μ-independent)
part a(n)

i at order n in the loop expansion, in a way to pre-
serve the symmetries of the theory (and not violating the
WPC). As the loop order n of the finite coefficient a(n)

i does
not correspond to the topological loop order,8 one can pro-
ceed as in the power-counting renormalizable theories, that
is, one rescales a(n)

i → 1
h̄n a(n)

i to obtain a finite physically
equivalent theory (as h̄ = 1).

In the power-counting renormalizable case, the rescaling
will give back a term already present at tree level: this is the
well-known stability of the tree-level action against radia-
tive corrections. For WPC renormalizable theories, however,
under the rescaling the addition of a finite free coefficient
a(n)

i at the order n in the loop expansion is equivalent to the
addition of a non-zero λ-vertex at tree level in the rescaled
theory. For such vertices a change in the scale μ cannot be
anymore accommodated by a change of a finite number of
counterterms order by order in the loop expansion, and one
would inevitably end mixing up the WPC criterion on the
loop order of UV divergences in the rescaled theory.

Thus one can extend the notion of stability of the classi-
cal theory: If one demands that the rescaled theory satisfies

8 For example, a local counterterm added to remove a one-loop diver-
gence corresponds topologically to a tree-level graph.
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the WPC, then there is no freedom left to add any finite μ-
independent terms and the theory is (weakly) stable under
radiative corrections.

Incidentally, notice that there is yet another reason why
one cannot add the symmetric finite renormalization terms
a(n)

i just discussed. The WPC uniquely identifies the graphs
in the expansion based on the topological loop number, thus
selecting a particular Hopf algebra, as the latter is constructed
as a dual of the enveloping algebra of the Lie algebra of the
Feynman graphs associated to the theory under scrutiny [11,
12]. On the other hand, it also guarantees that there exists
a suitable exponential map on this Hopf algebra [13] which
allows the removal of all the divergences. The addition of any
a(n)

i is equivalent to a change in the Hopf algebra of the model,
as it would modify the set of 1-PI Feynman diagrams on
which the Hopf algebra is constructed. This change destroys
the compatibility between the WPC and the RG equation;
therefore, the addition of such terms is not allowed.

The existence of a connection between the WPC preserv-
ing RG flow and the selected Hopf algebra clearly deserves
further investigations.

6 Beyond the Standard Model: the WPC as a
model-building principle

If one promotes the classical source ˜J a
μ to the status of a

dynamical field, the NLσM action gives rise to the Stückel-
berg mass term. By formulating a non-linearly realized SU(2)
Yang–Mills theory in the LFE framework [14–16] (with the
pseudo-Goldstone fields taking over to the role of the pion
fields) and imposing the WPC, one arrives at a somewhat
surprising result.

Specifically, notwithstanding the fact that if the local
gauge symmetry is realized non-linearly the Yang–Mills
action is not singled out on the basis of gauge invariance,9 it
turns out that if the WPC condition is satisfied, then the only
admissible solution of the tree-level LFE is the Yang–Mills
action plus the Stückelberg mass term:

SnlYM = SYM + M2

2

∫

dd x
(

Aa
μ − Fa

μ

)2 ;

SYM = −1

4

∫

dd x Ga
μνGμν

a ,

(6.1)

where Ga
μν is the field strength of the gauge field Aa

μ and Fa
μ

the flat connection.
An important consequence of this fact is that one can for-

mulate a non-linearly realized theory based on the gauge
group SU(2)×U(1) [17–19]. One combines the SU(2) gauge

9 In particular, all possible monomials constructed from the bleached
variable ja

μ and its ordinary derivatives, are gauge invariant, and there-
fore can in principle appear as interaction vertices in the classical action.

fields Aμ = Aa
μ

τa
2 and the U(1)Y gauge field Bμ into the

bleached variable

wμ = waμ

τa

2
= �†g Aμ� + g′ τ3

2
Bμ + i�†∂μ�. (6.2)

g and g′ are the SU(2) and U(1) coupling constants, respec-
tively. The bleached counterparts of the A, Z , and W ± fields
are given by

Aμ = −sW A3μ + cW Bμ;

Zμ = 1
√

g2 + g′2 w3μ

∣

∣

∣

∣

∣

φa=0

= cW A3μ + sW Bμ,

w±
μ = 1√

2
(w1μ ∓ iw2μ), (6.3)

where sW (cW) is the sine (cosine) of the Weinberg angle,
the tangent of which is given by the ratio g′/g. Bleached
fermions are obtained by left multiplication with �† of the
original doublet. For a generic SU(2) doublet L , its bleached
counterpart is

L̃ = �†L . (6.4)

The action of this non-linear version of the Electroweak The-
ory is highly constrained if one requires the WPC to be sat-
isfied: in this case the self-couplings of gauge bosons as well
as the couplings between gauge bosons and fermions are the
same as the conventional SM ones. However, the following
combination of two independent mass invariants arise, and
the Weinberg relation is broken:

M2
Ww+w− + M2

Z

2
w2

3; M2
Z = (1 + κ)

M2
W

c2
W

. (6.5)

This is a peculiar feature of non-linearly realized electroweak
theories [20].

The inclusion of physical scalar resonances in the non-
linearly realized Electroweak Theory, while respecting the
WPC, yields a definite bSM scenario. Indeed it turns out that
it is impossible to add a scalar singlet without breaking the
WPC condition [7]. The minimal solution requires a SU(2)
scalar physical doublet, leading to a CP-even physical field
(to be identified with the recently discovered scalar resonance
at 125.6 GeV) and three additional heavier physical states,
one neutral CP-odd and two charged ones. Notice that this is a
rather peculiar signature, since in two Higgs-doublet models
and the minimal supersymmetric Standard Model the number
of physical scalar resonances is five (see, e.g. [21]).

While some preliminary phenomenology issues of this
model have been addressed in [7], a full analysis and com-
parison with the experimental data can be carried out in a
satisfactory and systematic way only in the presence of an
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RG flow, as the possibility of running the scale μ in a mathe-
matically consistent way would allow one to obtain physical
predictions of the same observables applicable in different
energy regimes.

The extension of the analysis carried out for the NLσM
to the non-linearly realized electroweak theory with scalar
resonances (NLSM for short) requires some care.

The mass generation mechanism for gauge bosons cannot
be entirely of the Stückelberg type, for in this case the decays
of the Higgs scalar h → W W ∗ and h → Z Z∗ would be loop
induced and thus phenomenologically unacceptably small.
Therefore the problem arises as to assess whether a fraction
of the mass is generated by the Stückelberg mechanism, in
addition to the contribution associated with the linearly real-
ized spontaneous symmetry breaking à la Higgs.

Moreover, since current LHC data are in very good agree-
ment with the Standard Model [22,23], one can assume in
a first approximation custodial symmetry and set κ = 0 in
Eq. (6.5). The W and Z masses are therefore

MW = gv

2

√

1 + A

v2 ; MZ = Gv

2

√

1 + A

v2 , (6.6)

where G =
√

g2 + g′2 and A is a parameter of mass dimen-
sion squared describing the fraction of the mass generated
by the Stückelberg mechanism.

The Lagrange multiplier formulation of the non-linear
constraint is particularly suited for studying the small A limit,
which is the phenomenologically relevant regime since bSM
effects are known to be small [22,23]. This is because in this
formulation it is easy to derive the dominant contribution in
the small A expansion of the 1-PI amplitudes (without the
need of resummations) [8].

The Lagrange multiplier (BRST-invariant) implementa-
tion of the non-linear constraint

Sembed =
∫

d4x s(c̄B)

=
∫

d4x
{

B
[

(σ + f )2 + φ2
a − f 2

]

− c̄c
}

(6.7)

is realized by introducing a pair of BRST variables B, c such
that s B = c, sc = 0. B is the Lagrange multiplier field,
c is the associated ghost (that is free). On the other hand,
the BRST variation of the antighost c̄ yields the (invariant)
non-linear constraint:

sc̄ = (σ + f )2 + φ2
a − f 2, (6.8)

where f is the mass parameter expressing the v.e.v.10 of the
trace component φ0 of the SU(2) matrix �.

10 In the NLSM model, v is reserved for the v.e.v. induced by the linear
spontaneous symmetry breaking mechanism.

There is no WPC in the sector spanned by c̄ and its BRST
variation sc̄ [8]. However, since they form a BRST dou-
blet11 [24], it turns out that they can only modify the BRST-
exact sector of the theory, which, like the gauge fixing, is not
physical.

On the other hand, in the gauge-invariant (BRST-closed)
sector of the theory, the WPC holds. In this sector the proof of
the compatibility between the WPC and the RG flow given
in Sect. 4 can be extended to the NLSM. Indeed all quan-
tized fields and external sources of the model transform under
the non-linearly realized gauge group either as a connection,
or in the fundamental representation (like the fermions) or
else in the adjoint representation (like, for instance, the ghost
fields). It turns out that the bleaching procedure for a variable
that transforms in the fundamental or in the adjoint represen-
tation of the gauge group does not involve derivatives. To
be sure, one has the expressions ˜f = �† f (respectively,
˜X = �† X�) for the bleached variable associated to a field
that transforms in the fundamental (respectively, adjoint) rep-
resentation of the gauge group. Therefore the substitution of
these fields with their bleached counterparts does not modify
the degree of divergence of the amplitude considered.

Moreover, one should also note that in a massive theory
the WPC provides only an upper bound on the degree of
divergence of an ancestor amplitudes, with the bound being
saturated only in the massless case. Yet the upper bound is
sufficient in order to establish the validity of the RG equation,
as can be seen from the analysis of Sect. 4.

One therefore sees that the RG equation is again compat-
ible with the WPC in the physically relevant gauge-invariant
sector of the theory.

7 Conclusions and outlook

The existence of a RG equation for the NLσM and the NLSM,
compatible with the WPC, shows that the sliding of the scale
μ on physical amplitudes can be reabsorbed by suitable finite
counterterms, arising at the loop order prescribed by the
WPC itself. As a result, the running with energy of physi-
cal observables becomes a consistent procedure also within
non-linearly realized theories based on the LFE and for which
the WPC holds.

Moreover, one can formulate the notion of weak stabil-
ity, in close analogy with the power-counting renormalizable
case: the inclusion of free finite counterterms at higher order
in the loop expansion alters the Hopf algebra of the model
and, moreover, generates λ-vertices, thus mixing up the order
of the counterterms needed to recover the effect of a change

11 A BRST doublet is a set of variables u and v transforming under the
BRST operator s according to su = v, sv = 0.
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in the scale μ of the radiative corrections. This destroys the
compatibility between the WPC and the RG equation.

It is a rather remarkable fact that in the NLSM the RG
equation can be written for a theory with a finite number of
parameters dictated by the WPC. Consequently, since the RG
equation allows one to run physical observables with energy,
the parameterization of bSM physics embedded in the NLSM
can be tested on a wide range of energy, from the GeV to the
TeV scale.

This provides a consistent theoretical framework for the
study of the non-linear Stückelberg-like symmetry breaking
contribution (and their bSM implications) to the fermion and
gauge bosons mass generation mechanism, which will be one
of the main goals of the next LHC run.
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