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Abstract 

Blazewicz, J., W. Kubiak and S. Martello, Algorithms for minimizing maximum lateness with unit 

length tasks and resource constraints, Discrete Applied Mathematics 42 (1993) 1233138. 

The problem we consider is that of scheduling n unit length tasks on identical processors in the presence 

of additional scarce resources. The objective is to minimize maximum lateness. It has been known for 

some time that the problem is NP-hard even for two processors and one resource type. In the present 

paper we show that the problem can be solved in O(n log n) time, even for an arbitrary number of 

resources if the instance of the problem has the saturation property (i.e., no resource unit is idle in an 

optimal schedule). For the more general problem without saturation, two heuristic algorithms and a 

branch and bound approach are proposed. The results of computational tests of the above methods are 

also reported. 

1. Introduction 

One of the most important problems arising in the context of deterministic sched- 

uling is that of scheduling under resource constraints, where each task may also re- 
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quire, besides a processor, the use of additional scarce resources [3,6]. Several papers 

have been devoted to the analysis of various aspects of the problem with the follow- 

ing criteria: schedule length [4,6,8,9,11-161, mean flow time [5’] and maximum 

lateness [ 1,2], respectively. Among these criteria the third has the strongest practical 

motivation, which follows from many applications of computer control systems [7]. 

Unfortunately, most of the scheduling subproblems for the last criterion have been 

proved to be NP-hard. In fact, in the case of nonpreemptive scheduling, a poly- 

nomial time optimization algorithm has been constructed for unit processing times 

and zero-one resource requirement concerning one resource type only [l]. All other 

nonpreemptive scheduling problems, including two processor, one resource or several 

resources and zero-one requirement cases, respectively, have been proved to be NP- 

hard. This paper is concerned with the algorithms for solving these problems. It ap- 

pears that two processor nonpreemptive scheduling of unit length tasks to minimize 

maximum lateness is solvable in polynomial time, if all the resources are saturated. 

The saturation property, defined more formally later, generally means that no idle 

resource unit in an optimal schedule exists. This result, mainly of theoretical in- 

terest, is quite surprising if we take into account previous complexity results con- 

cerning three processors and schedule length criterion [9]. The last problem was 

somehow symmetrical to the two processor case when maximum lateness was mini- 

mized and the two problems usually were of the same complexity (cf. analysis car- 

ried on in [3]). However, this is not the case of the saturation property. The three 

processor schedule length minimization problem is NP-hard in both cases with 

saturated and nonsaturated resources, respectively [9]‘. On the other hand, the two 

processor maximum lateness minimization problem is NP-hard for nonsaturated 

resources only [2]; the saturated case being proved to be solvable in polynomial time 

in the present paper. (From the practical point of view we see that the last problem 

is as frequent as 3-partition.) For a nonsaturated version of the latter problem two 

heuristic algorithms are proposed and compared computationally with a branch and 

bound approach. Before presenting the results we will set up the subject more 

precisely. 

We are given a set of n task.s .Y= {q, T2, . . . , T,} to be processed on a set of two 

identical processors P= {P,,P2) with the use of certain amounts of additional re- 
sourcesR,,R,,..., R, available in ml, m2, . . . , m, units, respectively. To be processed, 

each task q requires an arbitrary processor and additional resources specified by the 

vector [R(q)1 = [R,(T,),RA7;), . . ..R.(T,)l, where R,(Tj) is the amount of resource 

Rk required by task ir;. In the following we will assume that all the tasks must be 

processed in a nonpreemptive mode, i.e., once assigned to a processor, each task 

must be processed until completion without any break. For task q (j = 1,2,. . . , n), 
a processing time ~(7;) and a due date d(7;) are given. As is usually done in sched- 

uling theorey we may assume that all p(q), d(Tj), mk, Rk(Tj) are nOnnegatiVe in- 

tegers. 

’ Let us note, that the saturated one resource case is simply the famous 3.partition problem [9]. 
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A feasible schedule is a function f : J ci--+ Z+ which obeys the following conditions: 

(a) For each integer U, ur0, 

where +(u) = { 7; E R f(Tj) 5 u<f(Tj) +p(Tj)} is the set of tasks assigned to pro- 

cessors at time u. 

(b) For each integer U, ~20, and each k, k = 1,2, . . . ,s, 

c Rk(Tj) 5 mk. 
r, E Sf(U) 

For a given schedule, let C(T,) denote the completion time of task q, i.e., C(q) = 

f(T,) +P(Zj). Let the schedule length be defined as C,,, = maxj{ Cj}. Then, we say 

that a schedule has the saturation property if 

i p(7;)R,(7;)=m,C,,,, k-l,2 ,..., s. 
j=l 

It is easy to see that in a saturated schedule no resource unit is idle until C,,,,, is 

reached. 

The criterion we will use to evaluate schedules will be maximum lateness defined 

as follows: 

L max = maxj{C(Tj-d(q)}. 

The paper is organized in the following way. In Section 2 an O(n log n) algorithm 

for nonpreemptive scheduling of unit length tasks on two processors assuming 

saturated resources, is presented. Section 3 is concerned with heuristic procedures 

based on a greedy approach for an unsaturated case. Section 4 presents some basic 

ideas of a branch and bound algorithm. Finally, Section 5 summarizes computa- 

tional experiments with both approaches performed on HP 9000/840. 

2. Minimizing maximum lateness with saturated resources 

In this section we will consider the problem of minimizing maximum lateness on 

two processors with unit length, nonpreemptable tasks on the assumption that an 

optimal schedule has saturated resources. Slightly modifying the notation presented 

in [6, lo] this problem may be denoted as P2 1 res . . . (sat),Pj = 1 ( I,,,,. Firstly, a 

problem with one resource type will be solved in O(n log n) time (this can be denoted 

as P2 1 resl . . (sat),pj = 1 1 L,,). Then, a more general problem will be considered. 

Observe that the number, say no, of tasks with zero resource requirement cannot 

be greater than the number, say nl, of tasks requiring m, resource units. If n’<n’, 
we add n’ - no dummy tasks with zero resource requirement and infinite due date. 

The following algorithm then finds a schedule for P2 1 resl . . (sat),pj = 1 1 L,,. 
(Obviously, this problem has a feasible saturated solution if the numbers of tasks 

with complementary resource requirements (i.e., summing up to m,) are equal.) 
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1 

Algorithm S. 

Let {R,,R,, . . . . R,} be the set of distinct R,(q) values, sorted so that 

Rj<Ri+i (i=l,*.*,A-1); 

for i:=l to A do Zi:={Tj: R,(Tj)=J?j}; 

sort each set Zj in nonincreasing order of the task due dates, and denote 

by ~j thejth task on the list in set Zj; 

for i:=l to LA/~J do Zi’:={(~j,T,_;+l,j): lljl[Zil) 

comment: R,(l$)+R,(Tn_;+,,j)=m,, for all i, j; 
if A is odd then Zf,,zl :={(Tr~,21,2j_1,Tri1,21,2j): l<j< 1Zr,,211/2}; 

(EDD rule) construct a schedule f’ on one processor for the task set 

g’= U[::‘l Zi, where each pair of tasks {T’, T”} is treated as com- 

posite with due date d*(T) = min{d(T’), d(T”)}; composite tasks are 

assigned in EDD order; 

convert the schedule f’ into f on two processors replacing any composite 

T by two tasks T’ and T” (if any). 

We now prove a theorem concerning the optimality of Algorithm S. 

Theorem 2.1. For any instance of the problem P2 1 resl . . (sat),pj = 1 1 L,,, Algo- 
rithm S finds an optimal schedule. 

Proof. Let the set of tasks gbe given. Because of the known properties of the EDD 

rule, schedule f’ constructed in step 2 of Algorithm S is an optimal one for set $I’. 

Let the value of maximum lateness in this schedule be equal to LL,,. We will show 

that schedule f constructed in step 3 is an optimal saturated schedule for task set .K 

To prove the theorem by contradiction, let us assume that there exists schedule 

f0 for task set g having maximum lateness LL,, < L’,,,. Let o,, t = 1,2, . . . denote 

the pair of tasks assigned to processors at moment t in schedule fO. Let 00 be a set 

of all ot containing at least one task belonging to Zi, i= 1, . . . , [%‘21. Let OF= 

10 1,,,...901,,k,}, where ti,i<...<ti,k,, observe that, since both f” and f’ are sat- 

urated schedules, we have 1091 =K,= lZ:l (i=l,..., rfl/21). Hence, let Zl= 

{zi,i, es.9 Zi,kj}, with d*(ZiJs ..~sd*(Z,,~,). Consequently, we have min,,O,,x {d(T)} 5 

mkE Z,,k, {d(T)) Y so we can interchange tasks (or pairs of tasks) in 00 sd’as to ob- 

tain a new schedule fi, with Op’= (0; ,,,, . . . , oi,, } such that o;,,~, = Zi,k, and LK,, 5 

Lkw Repeating this procedure for i = 1, . . . , [A/21 we will get a schedule f{ for task 

set g’ with LO’ max < L’,,w which is a contradiction. Thus, f is an optimal saturated 

schedule. q 

It is not hard to see that Algorithm S constructs schedules in O(n log n) time. 

Note, in fact, that sorted sets Zi can easily be obtained by sorting the tasks accord- 

ing to nondecreasing resource requirements, breaking ties by nonincreasing due 

dates. As an example of its application let us consider the following instance of the 

problem: n=8, m,=5, [R,(~)l=[3,4,2,1,2,3,5,01, [d(TJ)1=[5,2,1,3,4,2,2,031. 



Minimizing maximum lateness 127 

f’: G,Ts T7, Ts T,,Tz Ts,Tl 

0 1 2 3 4 time 

b:IIi 
0 1 2 3 4 time 

Fig. 1. Schedules to the example. 

Performing step 1 of Algorithm S we get A = 6, [Rj] = [0, 1,2,3,4,.5], hence Zt’= 

{(Ts, T,)}, Z;= {(T4, T’)}, Z;= ((Ts, T’,), (T,, 7’t)}. The due dates for the correspond- 

ing composite tasks are [d*(T)] = [2,2,1,4]. From there we get schedules f' and f 
as drawn in Fig. l(a) and (b), respectively. Note that L,, = 1 for f and this is at- 

tained by T,. 
Now, let us consider a more general problem, P2 1 res . . . (sat),Pj = 1 1 L,,. It is 

not hard to see that by slightly modifying the transformation given by Garey and 

Johnson [9] for the schedule length criterion, one may easily prove that this problem 

polynomially transforms to P2 1 resl . . (sat),Pj = 1 1 L,, (the transformation pre- 

serves the saturation property). Thus, we have the following corollary. 

Corollary 2.2. Problem P2 I res . . . (sat),Pj = 1 I L,,, is solvable in O(n log n) time. 

As already mentioned the saturation property is crucial here, since problem 

P2 I res --*IPj=’ IL,,, is NP-hard. In the next sections heuristic, and branch and 

bound approaches for this more general problem will be described. 

3. Heuristic algorithms 

3.1. The basic greedy approach 

Let [Ajk] be an n x n symmetric matrix defined by 

Aj, = 
I, if j#k and R,(I;)+R,(T,)sm, for l=l,...,s; 

0, otherwise. 
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The approximate algorithms we present are based on the following greedy approach: 

1 Determine Aj, (j=l,..., n; k=l,..., n); 

sort .Y so that 

d(T,) 5 d(T,) I a*. 5 d(T,), (3.1) 

2 

breaking ties by maxl,l,, {R,(Tj)/m,}, then by the second 

maxt,,,,(&(Tj)/m,); 
t:=o; 

repeat 

t:=t+1; 

assign to Pi, in time slot t, the first nonassigned task q; 

assign to P2, in time slot t, the first nonassigned task Tk such that 

A,=1 (if any) 

until all tasks are assigned. 

This approach has two interesting properties. First, the assignments to processor 

PI are locally optimal in the following sense. 

Theorem 3.1. In the schedule produced by the greedy approach, no interchange be- 
tween a task T, assigned to PI and any other task Tb, b>a, can improve the value 

of 4nax. 

Proof. Let T, be assigned to PI in time slot t, i.e., L(T,)= t-d(T,) and L(Tb)= 
t + d - d(T_,), with A > 0. Then, from (3. l), the interchange would produce L’(T,) = 
t+d -d(T,)rmax(L(T,),L(Tb)}. 0 

The second property of the greedy approach is that the assignments producing 

nonidfe slots (i.e., time slots in which both processors perform a task) are pairwise 

optimal, in the following sense. 

Theorem 3.2. In the schedule produced by the greedy approach no single inter- 
change involving only nonidle slots can improve the value of L,,,. 

Proof. Let T, be assigned to P, and T, to Pz in time slot t, T, to P, and Td to 

P2 in time slot t +A, d >O. From Theorem 3.1, the assignment of T, is locally 

optimal, so we consider the possibility of interchanging T, and T4 (q= c or d). 
If d(T,)>d(T,), the interchange is impossible, since due to the greedy approach, 

T4 cannot be paired with T,. On the other hand, if d(T,)=d(T,) the operation 

has no effect. Hence, assume d(T,)<d(T,). The interchange could improve the 

value of L,,, only if L(T,) = L,,,. The lateness of Tb would become t + A - d(T,) > 
t+d -d(T,)=L,,,. Cl 
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3.2. On-line interchanges and algorithm H1 

The algorithm we consider in the present section is a modification of the greedy 

approach, in which, in a first phase after the assignment of a task to Pi, only tasks 

having the same due date are considered for possible assignment to Pz. When all 

the tasks with equal due date have been assigned, interchanges are attempted be- 

tween them and previously assigned tasks, in order to improve the current solution. 

The algorithm works as follows. 

Procedure Hl. 

Determine Ajk (j=l,..., n; k=l,..., n); 

subdivide the tasks, sorted according to (3.1), into consecutive blocks 

B,, . . . . B, of tasks having the same due date; 

for 1:=1 to q do 

begin 

repeat 

assign to P, the first nonassigned task rJ E BI; 

assign to P2 the first nonassigned task T, E B, such that Aj, = 1 

(if no such Tk exists leave the current time slot idle for P2); 

until all 7; E B, are assigned; 

interchange tasks of B, with tasks of B,_, in order to improve the 

current value of L,,,; 

for each Tj E B, assigned to P, with idle time for P2 do 

assign to P2 the first task T, E B,, , U ... U Bq such that AJlc = 1 (if 

any) 
end 

The interchanges are determined as follows. Let d,_, and d, denote the due dates 

of the tasks in B,_, and B,, respectively. Let I,_i be the set of the tasks Tj E B,_, 

which are currently paired with another task of B,_,. Let 6 be the set of those tasks 

Tk E B, which are currently not paired (according to Theorem 3.2, “single” inter- 

changes between nonidle time slots do not improve the solution). Determine a subset 

E, c I,, of even cardinality, containing pairs (T,‘,, Tkz) for each of which there is a 

different nonidle time slot assigned, say, to q, and qz (q,, q, E I,_ i), such that q, 

can be paired with Tk, and Tj, with T,,. Assuming, without loss of generality, that 

the tasks in B,_l\I,_, precede those in I/-i, Fig. 2(a) shows the current schedule, 

and Fig. 2(b) an interchange we can perform. The operation improves the current 

value of C,,,. In order to establish whether the current value of L,, is also im- 

proved, let c denote the completion time for B,_, and r the number of time slots 

used for BI \ E,. Then the current maximum lateness for B,_ , and BI is, respectively, 

L(B,p,) = c-d,-,, L(B,) = c+ lE,l +r-d,. 

If L,,,= L(B,_,), then no improvement can be obtained, since the interchange 
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. . . 

. . . 

Tk, T*, 9, 

9, 

C time 

. . . 

. . . 

T,, 

4, 

Ti, ‘G 9, 

Th Tjl Tk, 

c time 

Fig. 2. 

delays tasks of B,_,. If, instead, L,,, = L(B,) > L(B,_ 1) then, after the interchange, 

the maximum lateness would be 

L’(B[_,) = c+ iE,1/2-d,_,, 

L’(B,) = cs IE,1/2+r-d,, 

so the operation is profitable if 

max{(-d,_i),(r-d[)} I IE,1/2+r-d,. (3.2) 

(When in (3.2), the = sign holds, the interchange does not improve L,,, but C,,, 

decreases.) 

Example 3.3. Consider the situation of Fig. 3 with 1=2, d(7;;) =dl =3, d(Tki) = 

d2 = 4. We have L(B,) = 0, L(BJ = 3. 

(a) If E2 = {T,,, Tk2), i.e., r= 2, pairing q, with Tk, and q, with Tkz as in Fig. 2(b) 

is profitable since, from (3.2), max{(-dJ,(r-d2)} =r-d2= -2< -1. 

(b) If E2 = B,, i.e., r= 0, interchanging the tasks as in Fig. 4 is profitable since 

max{(-d,), (r-d2)} = -dl = -3 < -2. 

(c) If we had d2 = 6, then E2 = (Tkl, Tkz} would not change the local maximum 

lateness, while El = Bz would increase it. 

The initialization phase of Hl takes 0(n2s) time to determine [Ajk]. Apart from 

the interchange phase, the time complexity of the iterative part is 0(n2), since O(n) 

tasks are assigned to Pi and, for each of them, O(n) tasks are considered for possi- 

ble pairing. The time required by the interchange phase depends on the method used 

for determining E,. This can be done, in a greedy way, as follows: 



Minimizing maximum lateness 131 

I”:::“::~ 

0 3 time 

Fig. 4. 

E:=0; 
for each nonidle time slot assigned, say, to 7;,, q2 E I,_, do 

if 3 Tk, E 1, such that A,,, = 1 then 

if 3 Tkz E I; \ { Tk,} such that Aj2,kZ = 1 then 

begin 

In this way O(n) operations are required for each time slot, so the overall time 

complexity of Hl is O(n’s). 

It is worth noting that the above interchange technique can easily be generalized 

to interchanges between the current block BI and any block B,, q< 1. Computa- 

tional experiments, however, indicated that such an extension produces very limited 

improvements with considerably higher average computing times. 

3.3. Off-line interchanges and algorithm H2 

The second algorithm we consider operates on the final schedule produced by H 1, 

in an attempt to reduce the final value of L,,, through an interchange technique 

similar to that used in the previous section, but independent of the subdivision into 

blocks. 

Interchanges of this kind can be computationally very expensive, requiring rear- 

rangement of a large portion of the final schedule. We adopted the following 

strategy, which produces a comparatively simple rearrangement. 
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S . . . T. . . . . . Td . . . 

PZ . . . Tb . . . . . . . . . 

0 t t + A’ t + A” time 

Q Q’ &” 

. . . T. Tb . . . . . . . . . 

PZ . . . TC Td . . . . . . . . . 

0 t time 

Q Q &” 

Fig. 5. 

Let T, and Tb be assigned to PI and P2, respectively, in time slot t. Let T, and Td 

be nonpaired tasks assigned to PI in time slots t + A’ and t + A”, respectively, with 
d”> d’> 0. Let Q, Q’ and Q” be the sets of tasks assigned to the time slots between 
t and t + A’, between t + A’ and t + A”, and following t + A”, respectively (Fig. 5(a)). 
Assuming A,, - -Abd = 1, Fig. 5(b) shows an interchange which decreases the value 

of Glax by one unit. It also decreases the value of L,,, if L,,, is determined by 
tasks in {T,} U {T,} U Q”, i.e., there is no task t outside {T,, Td} U Q” with L(t) = 

L max. It cannot be performed, instead, if the lateness of some task in {Tb} U Q has 
value L,,,. The resulting algorithm is as follows. 

Procedure H2. 
Execute procedure H 1; 
for each nonidle time slot t (with T, assigned to PI and Tb to P2) do 

if d(T,)<L,, then 
begin 

r:=t+l; 
hope := “yes”; 

foutid := 0; 

while t I Cm, and hope = “yes” and found < 2 do 
begin 

if found=0 then 
begin 

let L = maximum lateness of a task in time slot r; 
if L=L,, then hope : = “no”; 
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if time slot r is idle (with T, assigned to s) 

then if A,, = 1 or A,, = 1 then found: = 1 

end 

else 

if time slot Y is idle (with Td assigned to 5) 

then if A,, = A,, = 1 or Abe = A,, = 1 

then found := 2; 

t:=r+l 

end 

if found = 2 then 

if A.;=Abd= 1 then rearrange the schedule as in Fig. 5(b) 

else 

rearrange the schedule as in Fig. 5(b) with T, and Td inter- 

changed 

end 

The off-line interchanges clearly require 0(n2) time. Hence the overall time com- 

plexity of H2 is 0(n2s). The quality of the solutions obtained by algorithm H2 has 

been evaluated experimentally. The results are presented in Section 5. 

4. Branch and hound algorithm 

We implemented a depth first branch and bound algorithm for the exact solution 

of the problem. The execution starts by performing Procedure H2 of the previous 

section, thus determining an initial feasible solution of value, say, LiaX. The enu- 

merative phase is then applied. 

4. I. Branching scheme 

The algorithm generates decision nodes by assigning a task to one of the two pro- 

cessors. Since the tasks are considered in the EDD order we have, by the same argu- 

ment as used in the proof of Theorem 3.1, all the assignments to P, optimal, i.e., 

they need no branching on brother nodes. The node corresponding to an assignment 

to PI (of task say, 7;) generates a son node for each nonassigned task Tk such that 

Aj, = 1. These are explored according to the EDD order. The branching scheme is 

shown in Fig. 6 (P, on a branch indicates assignment of the next feasible task to 

processor P,). 
At each node we determine a lower bound on the best solution obtainable from 

the descending nodes. If this is less than the value Lo,,, of the best solution so far, 

the next son node is generated. Otherwise we backtrack to the first ancestor node 

(generated by an assignment to 5) whose associated bound is less than LLax, and 

start a new branching process. The execution terminates when a backtracking 
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. . . . . . 

Fig. 6. 

reaches the root node, or when a feasible solution is found whose value equals that 

of the lower bound computed for the root node. 

4.2. Lower bounds 

At each decision node N, let gN be the set of those tasks which are currently 

nonassigned, and D,,, = (d,, d2, . . . , d,) (6 = jONI) the set of different due dates of 

tasks in 9JN. For k = 1, . . . ,6, let 

&(k) = {q E gN: d(Tj)sdk}. 

Let us assume, for the time being, that node N has been generated by assigning 

a task to Pz in time slot C, (current completion time). We relax the current prob- 

lem by assuming that, for a given k, all tasks in gN(k) have due date d,+ For each 

k (k=l, . . . . 6) different lower bounds on the solution value obtainable from node 

N can then be computed as follows. 

A first bound immediately derives from the cardinality of gN(k): 

Lb(k) = C, + 
i 1 

l%(k)1 _d 
~ 

2 k. 

A second lower bound can be obtained by recalling that, in each time slot, at most 

mj units of resource R, (I= 1, . . . , s) are available: 

L;(k) = C,,,+ 
c 

max 
T,e&(k) Rl(T,) 

l<lCS ml 1 

_d 
k. 

By noting that, for each resource RI, all tasks requiring more than m,/2 units of 
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resource R, must be assigned to different processors, we have a third lower bound: 

L~(k)=c,+,~~~~{l{T,~~~(k): R,(T,)>m,/2}/}-&. < 

None of the three bounds dominates the others as shown by the following 

Example 4.1. Let n=7, s=2, [dj]=[1,1,1,1,1,2,2], [R,(?;)]=[4,4,4,4,4,8,8], 

[R*(q)] = [5,5,5,5,5,8,8]. Consider the root node (i.e., gN= .!F, D,,,= (dl,d2} = 

{1,2}, C,=O) and k=2 (i.e., .!&(k)=(T,, . . . . T7)). 

(a) If m, = m2 = 15 we have L;(k) = 2 (optimal solution value), La(k) = 1, L:(k) = 0. 

(b) If m, = m2 = 10 we have Lb(k) = 2, L;(k) = 3 (optimal solution value), L;(k) = 0. 

(c) If m, =m2 = 9 we have Lk(k) =2, L>(k) = 3, L:(k) = 5 (optimal solution 

value). 

An overall lower bound for node N is thus 

LN = I~;~8 {max(L~(k),La(k),L~(k))). 

Determining L, apparently requires 0(n2s) time. Note however that, since the 

tasks are sorted, given T,(k) = {T,, T,, ,, . . . , Tb}, we can obtain T,(k + 1) by adding 

a set of consecutive tasks Tb+ ,, Tb +2, . . . . Hence it is not difficult to implement LN 

through a series of updatings for k = 1, . . . , 6, so as to have the same time complexity 

required for computing LN(B), i.e., O(ns).We have obtained L, by assuming that 

decision node N derives from an assignment to P2. If it derives from an assignment 

to PII the formulae above must be modified so as to take into account the possibili- 

ty that one of the tasks in &(k) is assigned to the current time slot C,. We do not 

give the details, which are straightforward. 

4.3. Dominance relations 

The number of decision node explorations can be decreased by eliminating nodes 

which are dominated by previously explored nodes. One such situation arises when, 

after a backtracking on a taks q, an identical task Tk (with d(T,) = d(q), R,(Tk) = 

R,(q) for I= 1, . . . . S) is assigned to the same time slot. 

Also when backtracking on the assignment to PI of the last task compatible with 

that assigned to 5, the decision node generated by leaving the current time slot idle 

for P2 is clearly dominated by any of its brother nodes. 

::: pqq::: 1:: m::: 11: RI::: 
4 b) Cl 

Fig. 7. Schedule (a) dominates schedules (b) and (c). 
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Finally, dominances arise when the same set of four tasks (say To, Tb, T,, Td with 

d(T,) rd(T,) rd(T,)sd(T,)) is assigned, in different order, to the same pair of 

consecutive time slots. No branching being performed on the assignments to Pi, 

this can happen in the three ways shown in Fig. 7. It immediately follows from 

Theorem 3.2 that the first schedule produced by the algorithm ((a) in the figure) 

dominates the following ones, (b) and (c). 

5. Computational experiments 

The branch and bound algorithm of the previous section and the approximate 

algorithm H2 of Section 4 have been implemented in Fortran IV and run on an 

HP 9000/840. Test problems have been obtained by uniformly randomly gener- 

ating, for different values of n, values d(c) in the range (1, n + l), values ml in the 

range (1,100) and values R,(T,) in the range (O,m,). For each pair (n,s), with s= 

1,2,5,10, ten problems have been generated. The entries in Table 1 give the average 

running times expressed in CPU seconds and, in brackets, an evaluation of the 

average errors produced by H2. For the cases in which the branch and bound algo- 

rithm could exactly solve the problem (producing the optima1 LzaX and a value 

C&J, the error was evaluated as (L(H2)-L&J/C,*,,, where L(H2) denotes the 

maximum lateness produced by H2. For the case in which the exact solution could 

not be obtained, the error was evaluated as (L(H2) - L”)/C(H2), where Lo is the 

value of the lower bound at the root node of the branch decision tree and C(H2) 

the completion time produced by H2. (The choice of dividing the absolute error by 

the completion time, instead of the optimal lateness is due to the possibility of 

having zero (or even negative) optima1 lateness.) 

The table shows that for problems with one resource the exact solution can be 

determined efficiently, also for large values of n. Higher values of s clearly increase 

the difficulty. The approximations obtained with H2 were always satisfactory. Also 

the absolute error was always very small, never exceeding few units: the average ab- 

solute error was between 0 and 0.2, and independent of .s or n. Also for the approx- 

imate algorithm the running times increase with the value of s, but of course, not 

as dramatically as for the branch and bound algorithm. The variance was moderate, 

with the maximum running time never exceeding the average time by more than 

20 percent. 
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