
Discrete Applied Mathematics 42 (1993) 123-138

North-Holland

123

Algorithms for minimizing
maximum lateness with unit length
tasks and resource constraints

J. Blazewicz

Instytut Informatyki, Politechnika Poznariska, Poxari. Poland

W. Kubiak

Faculty of Management, University of Toronto, Toronto, Ont., Canada

S. Martello

Dipartimento di Informatica. Universitd di Torino, Torino, Italy

Received 1 June 1990

Revised 1 March 1991

Abstract

Blazewicz, J., W. Kubiak and S. Martello, Algorithms for minimizing maximum lateness with unit

length tasks and resource constraints, Discrete Applied Mathematics 42 (1993) 1233138.

The problem we consider is that of scheduling n unit length tasks on identical processors in the presence

of additional scarce resources. The objective is to minimize maximum lateness. It has been known for

some time that the problem is NP-hard even for two processors and one resource type. In the present

paper we show that the problem can be solved in O(n log n) time, even for an arbitrary number of

resources if the instance of the problem has the saturation property (i.e., no resource unit is idle in an

optimal schedule). For the more general problem without saturation, two heuristic algorithms and a

branch and bound approach are proposed. The results of computational tests of the above methods are

also reported.

1. Introduction

One of the most important problems arising in the context of deterministic sched-

uling is that of scheduling under resource constraints, where each task may also re-

Correspondence to: Professor S. Martello, DEIS-University of Bologna, Viale Risorgimento 2,40136 Bologna,

Italy.

0166-218X/93/$06.00 0 1993 - Elsevier Science Publishers B.V. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81186286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

124 J. Blazewicz et al.

quire, besides a processor, the use of additional scarce resources [3,6]. Several papers

have been devoted to the analysis of various aspects of the problem with the follow-

ing criteria: schedule length [4,6,8,9,11-161, mean flow time [5’] and maximum

lateness [1,2], respectively. Among these criteria the third has the strongest practical

motivation, which follows from many applications of computer control systems [7].

Unfortunately, most of the scheduling subproblems for the last criterion have been

proved to be NP-hard. In fact, in the case of nonpreemptive scheduling, a poly-

nomial time optimization algorithm has been constructed for unit processing times

and zero-one resource requirement concerning one resource type only [l]. All other

nonpreemptive scheduling problems, including two processor, one resource or several

resources and zero-one requirement cases, respectively, have been proved to be NP-

hard. This paper is concerned with the algorithms for solving these problems. It ap-

pears that two processor nonpreemptive scheduling of unit length tasks to minimize

maximum lateness is solvable in polynomial time, if all the resources are saturated.

The saturation property, defined more formally later, generally means that no idle

resource unit in an optimal schedule exists. This result, mainly of theoretical in-

terest, is quite surprising if we take into account previous complexity results con-

cerning three processors and schedule length criterion [9]. The last problem was

somehow symmetrical to the two processor case when maximum lateness was mini-

mized and the two problems usually were of the same complexity (cf. analysis car-

ried on in [3]). However, this is not the case of the saturation property. The three

processor schedule length minimization problem is NP-hard in both cases with

saturated and nonsaturated resources, respectively [9]‘. On the other hand, the two

processor maximum lateness minimization problem is NP-hard for nonsaturated

resources only [2]; the saturated case being proved to be solvable in polynomial time

in the present paper. (From the practical point of view we see that the last problem

is as frequent as 3-partition.) For a nonsaturated version of the latter problem two

heuristic algorithms are proposed and compared computationally with a branch and

bound approach. Before presenting the results we will set up the subject more

precisely.

We are given a set of n task.s .Y= {q, T2, . . . , T,} to be processed on a set of two

identical processors P= {P,,P2) with the use of certain amounts of additional re-
sourcesR,,R,,..., R, available in ml, m2, . . . , m, units, respectively. To be processed,

each task q requires an arbitrary processor and additional resources specified by the

vector [R(q)1 = [R,(T,),RA7;),R.(T,)l, where R,(Tj) is the amount of resource

Rk required by task ir;. In the following we will assume that all the tasks must be

processed in a nonpreemptive mode, i.e., once assigned to a processor, each task

must be processed until completion without any break. For task q (j = 1,2,. . . , n),
a processing time ~(7;) and a due date d(7;) are given. As is usually done in sched-

uling theorey we may assume that all p(q), d(Tj), mk, Rk(Tj) are nOnnegatiVe in-

tegers.

’ Let us note, that the saturated one resource case is simply the famous 3.partition problem [9].

Minimizing maximum lateness 125

A feasible schedule is a function f : J ci--+ Z+ which obeys the following conditions:

(a) For each integer U, ur0,

where +(u) = { 7; E R f(Tj) 5 u<f(Tj) +p(Tj)} is the set of tasks assigned to pro-

cessors at time u.

(b) For each integer U, ~20, and each k, k = 1,2, . . . ,s,

c Rk(Tj) 5 mk.
r, E Sf(U)

For a given schedule, let C(T,) denote the completion time of task q, i.e., C(q) =

f(T,) +P(Zj). Let the schedule length be defined as C,,, = maxj{ Cj}. Then, we say

that a schedule has the saturation property if

i p(7;)R,(7;)=m,C,,,, k-l,2 ,..., s.
j=l

It is easy to see that in a saturated schedule no resource unit is idle until C,,,,, is

reached.

The criterion we will use to evaluate schedules will be maximum lateness defined

as follows:

L max = maxj{C(Tj-d(q)}.

The paper is organized in the following way. In Section 2 an O(n log n) algorithm

for nonpreemptive scheduling of unit length tasks on two processors assuming

saturated resources, is presented. Section 3 is concerned with heuristic procedures

based on a greedy approach for an unsaturated case. Section 4 presents some basic

ideas of a branch and bound algorithm. Finally, Section 5 summarizes computa-

tional experiments with both approaches performed on HP 9000/840.

2. Minimizing maximum lateness with saturated resources

In this section we will consider the problem of minimizing maximum lateness on

two processors with unit length, nonpreemptable tasks on the assumption that an

optimal schedule has saturated resources. Slightly modifying the notation presented

in [6, lo] this problem may be denoted as P2 1 res . . . (sat),Pj = 1 (I,,,,. Firstly, a

problem with one resource type will be solved in O(n log n) time (this can be denoted

as P2 1 resl . . (sat),pj = 1 1 L,,). Then, a more general problem will be considered.

Observe that the number, say no, of tasks with zero resource requirement cannot

be greater than the number, say nl, of tasks requiring m, resource units. If n’<n’,
we add n’ - no dummy tasks with zero resource requirement and infinite due date.

The following algorithm then finds a schedule for P2 1 resl . . (sat),pj = 1 1 L,,.
(Obviously, this problem has a feasible saturated solution if the numbers of tasks

with complementary resource requirements (i.e., summing up to m,) are equal.)

126 J. Blazewicz et al.

1

Algorithm S.

Let {R,,R,, R,} be the set of distinct R,(q) values, sorted so that

Rj<Ri+i (i=l,*.*,A-1);

for i:=l to A do Zi:={Tj: R,(Tj)=J?j};

sort each set Zj in nonincreasing order of the task due dates, and denote

by ~j thejth task on the list in set Zj;

for i:=l to LA/~J do Zi’:={(~j,T,_;+l,j): lljl[Zil)

comment: R,(l$)+R,(Tn_;+,,j)=m,, for all i, j;
if A is odd then Zf,,zl :={(Tr~,21,2j_1,Tri1,21,2j): l<j< 1Zr,,211/2};

(EDD rule) construct a schedule f’ on one processor for the task set

g’= U[::‘l Zi, where each pair of tasks {T’, T”} is treated as com-

posite with due date d*(T) = min{d(T’), d(T”)}; composite tasks are

assigned in EDD order;

convert the schedule f’ into f on two processors replacing any composite

T by two tasks T’ and T” (if any).

We now prove a theorem concerning the optimality of Algorithm S.

Theorem 2.1. For any instance of the problem P2 1 resl . . (sat),pj = 1 1 L,,, Algo-
rithm S finds an optimal schedule.

Proof. Let the set of tasks gbe given. Because of the known properties of the EDD

rule, schedule f’ constructed in step 2 of Algorithm S is an optimal one for set $I’.

Let the value of maximum lateness in this schedule be equal to LL,,. We will show

that schedule f constructed in step 3 is an optimal saturated schedule for task set .K

To prove the theorem by contradiction, let us assume that there exists schedule

f0 for task set g having maximum lateness LL,, < L’,,,. Let o,, t = 1,2, . . . denote

the pair of tasks assigned to processors at moment t in schedule fO. Let 00 be a set

of all ot containing at least one task belonging to Zi, i= 1, . . . , [%‘21. Let OF=

10 1,,,...901,,k,}, where ti,i<...<ti,k,, observe that, since both f” and f’ are sat-

urated schedules, we have 1091 =K,= lZ:l (i=l,..., rfl/21). Hence, let Zl=

{zi,i, es.9 Zi,kj}, with d*(ZiJs ..~sd*(Z,,~,). Consequently, we have min,,O,,x {d(T)} 5

mkE Z,,k, {d(T)) Y so we can interchange tasks (or pairs of tasks) in 00 sd’as to ob-

tain a new schedule fi, with Op’= (0; ,,,, . . . , oi,, } such that o;,,~, = Zi,k, and LK,, 5

Lkw Repeating this procedure for i = 1, . . . , [A/21 we will get a schedule f{ for task

set g’ with LO’ max < L’,,w which is a contradiction. Thus, f is an optimal saturated

schedule. q

It is not hard to see that Algorithm S constructs schedules in O(n log n) time.

Note, in fact, that sorted sets Zi can easily be obtained by sorting the tasks accord-

ing to nondecreasing resource requirements, breaking ties by nonincreasing due

dates. As an example of its application let us consider the following instance of the

problem: n=8, m,=5, [R,(~)l=[3,4,2,1,2,3,5,01, [d(TJ)1=[5,2,1,3,4,2,2,031.

Minimizing maximum lateness 127

f’: G,Ts T7, Ts T,,Tz Ts,Tl

0 1 2 3 4 time

b:IIi
0 1 2 3 4 time

Fig. 1. Schedules to the example.

Performing step 1 of Algorithm S we get A = 6, [Rj] = [0, 1,2,3,4,.5], hence Zt’=

{(Ts, T,)}, Z;= {(T4, T’)}, Z;= ((Ts, T’,), (T,, 7’t)}. The due dates for the correspond-

ing composite tasks are [d*(T)] = [2,2,1,4]. From there we get schedules f' and f
as drawn in Fig. l(a) and (b), respectively. Note that L,, = 1 for f and this is at-

tained by T,.
Now, let us consider a more general problem, P2 1 res . . . (sat),Pj = 1 1 L,,. It is

not hard to see that by slightly modifying the transformation given by Garey and

Johnson [9] for the schedule length criterion, one may easily prove that this problem

polynomially transforms to P2 1 resl . . (sat),Pj = 1 1 L,, (the transformation pre-

serves the saturation property). Thus, we have the following corollary.

Corollary 2.2. Problem P2 I res . . . (sat),Pj = 1 I L,,, is solvable in O(n log n) time.

As already mentioned the saturation property is crucial here, since problem

P2 I res --*IPj=’ IL,,, is NP-hard. In the next sections heuristic, and branch and

bound approaches for this more general problem will be described.

3. Heuristic algorithms

3.1. The basic greedy approach

Let [Ajk] be an n x n symmetric matrix defined by

Aj, =
I, if j#k and R,(I;)+R,(T,)sm, for l=l,...,s;

0, otherwise.

128 J. Blazewicz et al.

The approximate algorithms we present are based on the following greedy approach:

1 Determine Aj, (j=l,..., n; k=l,..., n);

sort .Y so that

d(T,) 5 d(T,) I a*. 5 d(T,), (3.1)

2

breaking ties by maxl,l,, {R,(Tj)/m,}, then by the second

maxt,,,,(&(Tj)/m,);
t:=o;

repeat

t:=t+1;

assign to Pi, in time slot t, the first nonassigned task q;

assign to P2, in time slot t, the first nonassigned task Tk such that

A,=1 (if any)

until all tasks are assigned.

This approach has two interesting properties. First, the assignments to processor

PI are locally optimal in the following sense.

Theorem 3.1. In the schedule produced by the greedy approach, no interchange be-
tween a task T, assigned to PI and any other task Tb, b>a, can improve the value

of 4nax.

Proof. Let T, be assigned to PI in time slot t, i.e., L(T,)= t-d(T,) and L(Tb)=
t + d - d(T_,), with A > 0. Then, from (3. l), the interchange would produce L’(T,) =
t+d -d(T,)rmax(L(T,),L(Tb)}. 0

The second property of the greedy approach is that the assignments producing

nonidfe slots (i.e., time slots in which both processors perform a task) are pairwise

optimal, in the following sense.

Theorem 3.2. In the schedule produced by the greedy approach no single inter-
change involving only nonidle slots can improve the value of L,,,.

Proof. Let T, be assigned to P, and T, to Pz in time slot t, T, to P, and Td to

P2 in time slot t +A, d >O. From Theorem 3.1, the assignment of T, is locally

optimal, so we consider the possibility of interchanging T, and T4 (q= c or d).
If d(T,)>d(T,), the interchange is impossible, since due to the greedy approach,

T4 cannot be paired with T,. On the other hand, if d(T,)=d(T,) the operation

has no effect. Hence, assume d(T,)<d(T,). The interchange could improve the

value of L,,, only if L(T,) = L,,,. The lateness of Tb would become t + A - d(T,) >
t+d -d(T,)=L,,,. Cl

Minimizing maximum lateness 129

3.2. On-line interchanges and algorithm H1

The algorithm we consider in the present section is a modification of the greedy

approach, in which, in a first phase after the assignment of a task to Pi, only tasks

having the same due date are considered for possible assignment to Pz. When all

the tasks with equal due date have been assigned, interchanges are attempted be-

tween them and previously assigned tasks, in order to improve the current solution.

The algorithm works as follows.

Procedure Hl.

Determine Ajk (j=l,..., n; k=l,..., n);

subdivide the tasks, sorted according to (3.1), into consecutive blocks

B,, B, of tasks having the same due date;

for 1:=1 to q do

begin

repeat

assign to P, the first nonassigned task rJ E BI;

assign to P2 the first nonassigned task T, E B, such that Aj, = 1

(if no such Tk exists leave the current time slot idle for P2);

until all 7; E B, are assigned;

interchange tasks of B, with tasks of B,_, in order to improve the

current value of L,,,;

for each Tj E B, assigned to P, with idle time for P2 do

assign to P2 the first task T, E B,, , U ... U Bq such that AJlc = 1 (if

any)
end

The interchanges are determined as follows. Let d,_, and d, denote the due dates

of the tasks in B,_, and B,, respectively. Let I,_i be the set of the tasks Tj E B,_,

which are currently paired with another task of B,_,. Let 6 be the set of those tasks

Tk E B, which are currently not paired (according to Theorem 3.2, “single” inter-

changes between nonidle time slots do not improve the solution). Determine a subset

E, c I,, of even cardinality, containing pairs (T,‘,, Tkz) for each of which there is a

different nonidle time slot assigned, say, to q, and qz (q,, q, E I,_ i), such that q,

can be paired with Tk, and Tj, with T,,. Assuming, without loss of generality, that

the tasks in B,_l\I,_, precede those in I/-i, Fig. 2(a) shows the current schedule,

and Fig. 2(b) an interchange we can perform. The operation improves the current

value of C,,,. In order to establish whether the current value of L,, is also im-

proved, let c denote the completion time for B,_, and r the number of time slots

used for BI \ E,. Then the current maximum lateness for B,_ , and BI is, respectively,

L(B,p,) = c-d,-,, L(B,) = c+ lE,l +r-d,.

If L,,,= L(B,_,), then no improvement can be obtained, since the interchange

130 J. Biazewicz et al.

. . .

. . .

Tk, T*, 9,

9,

C time

. . .

. . .

T,,

4,

Ti, ‘G 9,

Th Tjl Tk,

c time

Fig. 2.

delays tasks of B,_,. If, instead, L,,, = L(B,) > L(B,_ 1) then, after the interchange,

the maximum lateness would be

L’(B[_,) = c+ iE,1/2-d,_,,

L’(B,) = cs IE,1/2+r-d,,

so the operation is profitable if

max{(-d,_i),(r-d[)} I IE,1/2+r-d,. (3.2)

(When in (3.2), the = sign holds, the interchange does not improve L,,, but C,,,

decreases.)

Example 3.3. Consider the situation of Fig. 3 with 1=2, d(7;;) =dl =3, d(Tki) =

d2 = 4. We have L(B,) = 0, L(BJ = 3.

(a) If E2 = {T,,, Tk2), i.e., r= 2, pairing q, with Tk, and q, with Tkz as in Fig. 2(b)

is profitable since, from (3.2), max{(-dJ,(r-d2)} =r-d2= -2< -1.

(b) If E2 = B,, i.e., r= 0, interchanging the tasks as in Fig. 4 is profitable since

max{(-d,), (r-d2)} = -dl = -3 < -2.

(c) If we had d2 = 6, then E2 = (Tkl, Tkz} would not change the local maximum

lateness, while El = Bz would increase it.

The initialization phase of Hl takes 0(n2s) time to determine [Ajk]. Apart from

the interchange phase, the time complexity of the iterative part is 0(n2), since O(n)

tasks are assigned to Pi and, for each of them, O(n) tasks are considered for possi-

ble pairing. The time required by the interchange phase depends on the method used

for determining E,. This can be done, in a greedy way, as follows:

Minimizing maximum lateness 131

I”:::“::~

0 3 time

Fig. 4.

E:=0;
for each nonidle time slot assigned, say, to 7;,, q2 E I,_, do

if 3 Tk, E 1, such that A,,, = 1 then

if 3 Tkz E I; \ { Tk,} such that Aj2,kZ = 1 then

begin

In this way O(n) operations are required for each time slot, so the overall time

complexity of Hl is O(n’s).

It is worth noting that the above interchange technique can easily be generalized

to interchanges between the current block BI and any block B,, q< 1. Computa-

tional experiments, however, indicated that such an extension produces very limited

improvements with considerably higher average computing times.

3.3. Off-line interchanges and algorithm H2

The second algorithm we consider operates on the final schedule produced by H 1,

in an attempt to reduce the final value of L,,, through an interchange technique

similar to that used in the previous section, but independent of the subdivision into

blocks.

Interchanges of this kind can be computationally very expensive, requiring rear-

rangement of a large portion of the final schedule. We adopted the following

strategy, which produces a comparatively simple rearrangement.

132

4

J. BIazewicz et al.

S . . . T. Td . . .

PZ . . . Tb

0 t t + A’ t + A” time

Q Q’ &”

. . . T. Tb

PZ . . . TC Td

0 t time

Q Q &”

Fig. 5.

Let T, and Tb be assigned to PI and P2, respectively, in time slot t. Let T, and Td

be nonpaired tasks assigned to PI in time slots t + A’ and t + A”, respectively, with
d”> d’> 0. Let Q, Q’ and Q” be the sets of tasks assigned to the time slots between
t and t + A’, between t + A’ and t + A”, and following t + A”, respectively (Fig. 5(a)).
Assuming A,, - -Abd = 1, Fig. 5(b) shows an interchange which decreases the value

of Glax by one unit. It also decreases the value of L,,, if L,,, is determined by
tasks in {T,} U {T,} U Q”, i.e., there is no task t outside {T,, Td} U Q” with L(t) =

L max. It cannot be performed, instead, if the lateness of some task in {Tb} U Q has
value L,,,. The resulting algorithm is as follows.

Procedure H2.
Execute procedure H 1;
for each nonidle time slot t (with T, assigned to PI and Tb to P2) do

if d(T,)<L,, then
begin

r:=t+l;
hope := “yes”;

foutid := 0;

while t I Cm, and hope = “yes” and found < 2 do
begin

if found=0 then
begin

let L = maximum lateness of a task in time slot r;
if L=L,, then hope : = “no”;

Minimizing maximum lateness 133

if time slot r is idle (with T, assigned to s)

then if A,, = 1 or A,, = 1 then found: = 1

end

else

if time slot Y is idle (with Td assigned to 5)

then if A,, = A,, = 1 or Abe = A,, = 1

then found := 2;

t:=r+l

end

if found = 2 then

if A.;=Abd= 1 then rearrange the schedule as in Fig. 5(b)

else

rearrange the schedule as in Fig. 5(b) with T, and Td inter-

changed

end

The off-line interchanges clearly require 0(n2) time. Hence the overall time com-

plexity of H2 is 0(n2s). The quality of the solutions obtained by algorithm H2 has

been evaluated experimentally. The results are presented in Section 5.

4. Branch and hound algorithm

We implemented a depth first branch and bound algorithm for the exact solution

of the problem. The execution starts by performing Procedure H2 of the previous

section, thus determining an initial feasible solution of value, say, LiaX. The enu-

merative phase is then applied.

4. I. Branching scheme

The algorithm generates decision nodes by assigning a task to one of the two pro-

cessors. Since the tasks are considered in the EDD order we have, by the same argu-

ment as used in the proof of Theorem 3.1, all the assignments to P, optimal, i.e.,

they need no branching on brother nodes. The node corresponding to an assignment

to PI (of task say, 7;) generates a son node for each nonassigned task Tk such that

Aj, = 1. These are explored according to the EDD order. The branching scheme is

shown in Fig. 6 (P, on a branch indicates assignment of the next feasible task to

processor P,).
At each node we determine a lower bound on the best solution obtainable from

the descending nodes. If this is less than the value Lo,,, of the best solution so far,

the next son node is generated. Otherwise we backtrack to the first ancestor node

(generated by an assignment to 5) whose associated bound is less than LLax, and

start a new branching process. The execution terminates when a backtracking

134 J. BIazewicz et al.

.

Fig. 6.

reaches the root node, or when a feasible solution is found whose value equals that

of the lower bound computed for the root node.

4.2. Lower bounds

At each decision node N, let gN be the set of those tasks which are currently

nonassigned, and D,,, = (d,, d2, . . . , d,) (6 = jONI) the set of different due dates of

tasks in 9JN. For k = 1, . . . ,6, let

&(k) = {q E gN: d(Tj)sdk}.

Let us assume, for the time being, that node N has been generated by assigning

a task to Pz in time slot C, (current completion time). We relax the current prob-

lem by assuming that, for a given k, all tasks in gN(k) have due date d,+ For each

k (k=l, 6) different lower bounds on the solution value obtainable from node

N can then be computed as follows.

A first bound immediately derives from the cardinality of gN(k):

Lb(k) = C, +
i 1

l%(k)1 _d
~

2 k.

A second lower bound can be obtained by recalling that, in each time slot, at most

mj units of resource R, (I= 1, . . . , s) are available:

L;(k) = C,,,+
c

max
T,e&(k) Rl(T,)

l<lCS ml 1

_d
k.

By noting that, for each resource RI, all tasks requiring more than m,/2 units of

Minimizing maximum laleness 135

resource R, must be assigned to different processors, we have a third lower bound:

L~(k)=c,+,~~~~{l{T,~~~(k): R,(T,)>m,/2}/}-&. <

None of the three bounds dominates the others as shown by the following

Example 4.1. Let n=7, s=2, [dj]=[1,1,1,1,1,2,2], [R,(?;)]=[4,4,4,4,4,8,8],

[R*(q)] = [5,5,5,5,5,8,8]. Consider the root node (i.e., gN= .!F, D,,,= (dl,d2} =

{1,2}, C,=O) and k=2 (i.e., .!&(k)=(T,, T7)).

(a) If m, = m2 = 15 we have L;(k) = 2 (optimal solution value), La(k) = 1, L:(k) = 0.

(b) If m, = m2 = 10 we have Lb(k) = 2, L;(k) = 3 (optimal solution value), L;(k) = 0.

(c) If m, =m2 = 9 we have Lk(k) =2, L>(k) = 3, L:(k) = 5 (optimal solution

value).

An overall lower bound for node N is thus

LN = I~;~8 {max(L~(k),La(k),L~(k))).

Determining L, apparently requires 0(n2s) time. Note however that, since the

tasks are sorted, given T,(k) = {T,, T,, ,, . . . , Tb}, we can obtain T,(k + 1) by adding

a set of consecutive tasks Tb+ ,, Tb +2, Hence it is not difficult to implement LN

through a series of updatings for k = 1, . . . , 6, so as to have the same time complexity

required for computing LN(B), i.e., O(ns).We have obtained L, by assuming that

decision node N derives from an assignment to P2. If it derives from an assignment

to PII the formulae above must be modified so as to take into account the possibili-

ty that one of the tasks in &(k) is assigned to the current time slot C,. We do not

give the details, which are straightforward.

4.3. Dominance relations

The number of decision node explorations can be decreased by eliminating nodes

which are dominated by previously explored nodes. One such situation arises when,

after a backtracking on a taks q, an identical task Tk (with d(T,) = d(q), R,(Tk) =

R,(q) for I= 1, S) is assigned to the same time slot.

Also when backtracking on the assignment to PI of the last task compatible with

that assigned to 5, the decision node generated by leaving the current time slot idle

for P2 is clearly dominated by any of its brother nodes.

::: pqq::: 1:: m::: 11: RI:::
4 b) Cl

Fig. 7. Schedule (a) dominates schedules (b) and (c).

T
ab

le

1:
 H

P
90

00
/8

40

se
co

nd
s.

A

ve
ra

ge

tim
es

(a

ve
ra

ge

er
ro

rs
)

ov
er

10

 p
ro

bl
em

in

st
an

ce
s

n
s=

l
s=

2
S

=
5

s=
lO

E
xa

ct

A
pp

ro
xi

m
at

e
(e

rr
or

)
E

xa
ct

A

pp
ro

xi
m

at
e

(e
rr

or
)

E
xa

ct

A
pp

ro
xi

m
at

e
(e

rr
or

)

10

0.
00

5
0.

00
4

(0
.0

20
0)

0.

00
5

0.
00

4

25

0.
01

0
0.

01
0

(0
.0

00
0)

0.

02
0

0.
01

6

50

0.
54

7
0.

03
1

(0
.0

03
2)

0.

17
3

0.
05

 1

10
0

0.
17

1
0.

10
1

(0
.0

03
5)

0.

18
3

0.
17

3

25
0

0.
57

7
0.

56
3

(0
.0

00
0)

0.

96
9

50
0

2.
23

1
2.

17
7

(0
.0

00
0)

3.

53
6

10
00

8.

42
3

8.
13

0
(0

.0
00

0)

13
.4

74

(0
.0

36
5)

0.

01
3

0.
00

5

(0
.0

00
0)

0.

11
4

0.
02

0

(0
.0

05
9)

0.

36
5

0.
07

4

(0
.0

00
0)

52

.7
91

0.

25
3

(0
.0

03
3)

1.

36
7

(0
.0

02
1)

5.

38
5

(0
.0

00
4)

19

.9
63

(0
.0

42
2)

(0
.0

74
4)

(0
.0

36
6)

(0
.0

17
1)

(0
.0

07
2)

(0
.0

05
1)

(0
.0

03
1)

E
xa

ct

A
pp

ro
xi

m
at

e
(e

rr
or

)
5

0.
01

1
0.

00
7

(0
.0

00
0)

2

0.
06

5
0.

03
3

(0
.0

20
2)

2

0.
42

0
0.

09
5

(0
.0

28
7)

5’

2.
44

0
0.

31
4

(0
.0

42
4)

Z

71
.0

07

1.
75

1
(0

.0
22

0)

F

6.
79

0
(0

.0
25

3)

25
.0

00

(0
.0

06
1)

Minimizing maximum lateness 137

Finally, dominances arise when the same set of four tasks (say To, Tb, T,, Td with

d(T,) rd(T,) rd(T,)sd(T,)) is assigned, in different order, to the same pair of

consecutive time slots. No branching being performed on the assignments to Pi,

this can happen in the three ways shown in Fig. 7. It immediately follows from

Theorem 3.2 that the first schedule produced by the algorithm ((a) in the figure)

dominates the following ones, (b) and (c).

5. Computational experiments

The branch and bound algorithm of the previous section and the approximate

algorithm H2 of Section 4 have been implemented in Fortran IV and run on an

HP 9000/840. Test problems have been obtained by uniformly randomly gener-

ating, for different values of n, values d(c) in the range (1, n + l), values ml in the

range (1,100) and values R,(T,) in the range (O,m,). For each pair (n,s), with s=

1,2,5,10, ten problems have been generated. The entries in Table 1 give the average

running times expressed in CPU seconds and, in brackets, an evaluation of the

average errors produced by H2. For the cases in which the branch and bound algo-

rithm could exactly solve the problem (producing the optima1 LzaX and a value

C&J, the error was evaluated as (L(H2)-L&J/C,*,,, where L(H2) denotes the

maximum lateness produced by H2. For the case in which the exact solution could

not be obtained, the error was evaluated as (L(H2) - L”)/C(H2), where Lo is the

value of the lower bound at the root node of the branch decision tree and C(H2)

the completion time produced by H2. (The choice of dividing the absolute error by

the completion time, instead of the optimal lateness is due to the possibility of

having zero (or even negative) optima1 lateness.)

The table shows that for problems with one resource the exact solution can be

determined efficiently, also for large values of n. Higher values of s clearly increase

the difficulty. The approximations obtained with H2 were always satisfactory. Also

the absolute error was always very small, never exceeding few units: the average ab-

solute error was between 0 and 0.2, and independent of .s or n. Also for the approx-

imate algorithm the running times increase with the value of s, but of course, not

as dramatically as for the branch and bound algorithm. The variance was moderate,

with the maximum running time never exceeding the average time by more than

20 percent.

Acknowledgement

This work was supported by Minister0 dell’universita e della Ricerca Scientifica

e Tecnologica (Italy) and by Ministerstwo Edukacji Narodowej (Poland). Thanks

are due to Guido Ognibeni for his assistance with programming.

138 J. Biazewicz et al.

References

[1] J. Blazewicz, Simple algorithms for multiprocessor scheduling to meet deadlines, Inform. Process.

Lett. 6 (1977) 162-164.

[2] J. Blazewicz, J. Barcelo, W. Kubiak and H. Rock, Scheduling tasks on two processors with dead-

lines and additional resources, European J. Oper. Res. 26 (1986) 364-370.

[3] J. Blazewicz, W. Cellary, R. Slowinski and J. Weglarz, Scheduling under resource constraints:

[41

[51

[61

[71

PI

[91

[lOI

Vll

1121

[I31

Cl41

[ISI

1161

[I71

deterministic models, in: Annals of Operations Research 7 (Baltzer, Basel, 1986).

J. Blazewicz and K. Ecker, A linear time algorithm for restricted bin packing and scheduling prob-

lems, Oper. Res. Lett. 2 (1983) 80-83.

J. Blazewicz, W. Kubiak and J. Szwarcfiter, Minimizing mean flow time under resource constraints,

Acta Inform. 24 (1987) 513-524.

J. Blazewicz, J.K. Lenstra and A.H.G. Rinnooy Kan, Scheduling subject to resource constraints:

classification and complexity, Discrete Appl. Math. 5 (1983) 11-24.

E.G. Coffman Jr, ed., Computer & Job/Shop Scheduling Theory (Wiley, New York, 1976).

D. de Werra, Preemptive scheduling, linear programming and network flows, SIAM J. Algebraic

Discrete Math. 5 (1984) 11-20.

M.R. Carey and D.S. Johnson, Complexity results for multiprocessor scheduling under resource

constraints, SIAM J. Comput. 4 (1975) 397-411.

R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Optimization and approxima-

tion in deterministic sequencing and scheduling theory: a survey, in: Annals of Discrete Mathe-

matics 5 (North-Holland, Amsterdam, 1979) 287-326.

J.Y-T. Leung, Bounds on list scheduling of UET tasks with restricted resource constraints, Inform.

Process. Lett. 9 (1979) 167-170.

E.L. Lloyd, Coffman-Graham scheduling of UET task systems with O-l resources, Inform. Process.

Lett. 12 (1981) 40-45.

E.L. Lloyd, Concurrent task systems, Oper. Res. 29 (1981) 189-201.

R. Mohring and F.J. Rademacher, The order theoretic approach to scheduling: Deterministic case,

in: R. SIowinski and J. Weglarz, eds., Advances in Project Scheduling (Elsevier, Amsterdam, 1989)

29-66.

H. Rock, Some new results in flow shop scheduling, Z. Oper. Res. 28 (1984) l-16.

R. Slowinski, Scheduling preemptible tasks on unrelated processors with additional resources to

minimize schedule length, in: G. Bracchi and P.C. Lockemann, eds., Lecture Notes in Computer

Science 65 (Springer, New York, 1978) 536-547.

J. Weglarz, J. BIazewicz, W. Cellary and R. SIowinski, An automatic revised simplex method for

constrained resource network scheduling, ACM Trans. Math. Software 3 (1977) 295-300.

