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1. INTRODUCTION AND STATEMENT OF RESULTS 

1.1. Letf(z) be regul ar on an unbounded connected subset E of the complex 
plane. If 

then 

M,*(r) = sup If(s)1 (1) 
Iz[=r.zEE 

p = lim+yp 
log log M,*(Y) 

log r (2) 

is said to be the order off(z). The order of a bounded function is 0, by con- 
vention. It is clear that p > 0 if MT(r) is unbounded. If 0 < p < co we define 
the type off(z) to be 

7 = lim+Fp Y-” log M?(r). 

A function of order not exceding p and of type at most T if of order p is said 
to be of growth (p, 7). A function of growth (1, T), T < co, is called a function 
of exponential type 7. 

Iff(z) is of exponential type in a sector 

s: 1 z 1 2 0, (4) 
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its indicator function is defined as 

S(0) = lim+trp r-l log jf(re”O)j , ff<e</% (5) 

For properties of the indicator function we refer the reader to Chapter 5 of 
[l]. One additional property which is not mentioned in [l] but which we shall 
need is that for a function of order 1 and type r < co in the sector (4), we have 

(6) 

1.2. It was proved by Carlson ([2], 1 a so see [5, pp. 185-1861) that iff(z) is 
of exponential type 7 < v in Re x > 0, andf(z) = 0 for z = 0, 1, 2, 3 ,..., then 
f(a) G 0. This result has been extended and generalized in various ways. For 
example 

THEOREM A. 1jf( ) ’ f p z zs o ex onential type <rnrr in Re z > 0, and 

f(n) = 0, f’(n) = O,..., f (+l)(n) = 0, (n = 0, 1, 2,...) (7) 

then f (2) = 0. 

THEOREM B. Let {A,)=,, be an increasing sequence of positive numbers and 
let A(t) denote the number of A, not exceeding t. Iff(z) is of exponential type in 
Re a > 0, f (An) = 0, n = 0, 1,2 ,..., 

44 3 x + w> (8) 
and 

log If(ti)f(+)l < 2w{!Y I + 4Ir IN, ad - s 
1R u(t) dt < O(F) 

thzf(z) = oif 
(9) 

l$+yp ~R~-p(S(y) - U(Y)) dy = +m. (10) 

Theorem A is implicitly contained in [4]. Later in the paper we will give a 
short proof of this result. For a proof of Theorem B we refer the reader to 
[l, p. 1551. Theorem B generalizes Carlson’s theorem in two different ways. On 
the one hand, functions of order 1 type v are allowed if a supplementary hypo- 
thesis is satisfied. On the other hand, f ( ) z need not be assumed to vanish at all 
the positive integers-indeed the zeros off(z) do not have to be at the integers. 

In connection with our study of (0, m)-interpolation by entire functions of 
exponential type in points on the real axis we wanted to know to what extent an 
entire function of exponential type is determined by its values and those of its 
m-th derivative at the set of integers. We obtained [3] the following results. 
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THEOREM C. Iff( ) z is an entire function of exponential type T < 2~ such that 

f(n) =f”(n) =O, (n = 0, +1, i2,...) (11) 

then f (.z) = c sin(rz) where c is a constant. Here 7 = 277 is inadmissible. 

THEOREM D. Let m be an even integer 34. If f (z) is an entire function of 
exponential type 7 < T sec(r/m) such that 

f(n) =f(“)(n) = 0, (n = 0, *I, &2,...) (12) 

then f(z) = c sin(rx) where c is a constant. Here 7 cannot be allowed to be 
57 sec(rr/m). 

THEOREM E. Let m be an odd integer 33. If f(x) is an entire function of 
exponential type 7 < rr sec(r/2m) such that 

f(n) = f lm)(n) = 0, (n = 0, &I, *2,...) (12’) 

then f (z) = 0. Here T = T sec(nj2m) is inadmissible. 

THEOREM F. Let m be an integer 32, and h an arbitrary number in [0, 1). If 
f(z) is an entire function of exponential type 277 such that 

(i) 1 f(x)1 < A + B 1 x IA for all real x and certain constants A, B, 

(ii) f(n) = f(“)(n) = 0, (n = 0, 31, 12 ,...) 

then 

where C, , C, and C are constants. Here h cannot be allowed to be equal to 1. 

Now a number of questions come to mind. 

QUESTION No. 1. Is it necessary to assume in i Theorems C, D, E and F that 
f(z), f cm)(z) vanish at all the positive and negative integers? 

We shall see that in the case of Theorems C, D, and E the hypothesis about 
the zeros off(z) and f(“)(z) can be considerably relaxed. For example, it is 
enough to assume that f (z), f tm)(z) vanish at all the positive integers. Thus under 
the growth restrictions of these three theorems, f(z), f(“)(z) vanish at the 
positive integers only if they vanish at all the positive and negative integers. The 
situation is different as far as Theorem F is concerned. Here we cannot say 
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that f(z) is of the form (13), unless we really know thatf(n), f’“‘)(n) vanish at all 
the integers n = 0, &I, +2 ,.... This is one of the consequences of the following 

THEOREM 1. For a $xed integer m > 2, let 

x S:_&exp i -m( cot z j H(5) d[ 

where 

NV=--‘---, 

i 
77 cot v” 

1 

(v= 1,2 ,..., m- I), 
w ’ 

w(z) = g (2 - ?r cot -=j , 

m (15) 

and 

H(z) = (- l)m+l -$+T sin(mz) - (16) 

An entire function F,,,( z 0 ex ) f p onential type 2~ satisjes the conditions 

(i) 1 Fu,m(x)i is bounded on the real axis 

(ii> F,,,(n) = Ln (n = 0, fl, f2,...) (17) 

(iii) F$J(n) = 0 (n = 0, fl, f2,...) 

if and only if it has the form A,,,(z) + C, sin(?rz) + C, sin(2rrz) or A,,,(z) + 
C sid(nz) according as m is even or odd. Here as usual 

6 L(.n = 
I 

0 if n#p 
1 if ?l=p 

and C, , C, , C are arbitrary constants. 
Further, let 

= (-1)” sin(7rz) /‘El - IV, exp ~(2 - p) cot c) ( 
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+ mfl 
v=[m/21+1 

NV exp ( ?T(Z - p) cot z) I-IU exp ( ---rrc cot z) y d5 

(p = 0, il, 1L.). 

An entire function GU,m(z) f o ex p onential type 237 satisfies the conditions 

(a) 1 G,,,(x)\ is bounded on the real axis 

lb) G,&) = 0 (n = 0, &l, *2,...) 

Cc) GZa(4 = Ln (n = 0, fl, f2,...) 

(18) 

(19) 

if and only if it is of the form B,,m(z) + C, sin(rrz) + C, sin(2nz) OY B,,,(z) + 
C sins(nz) according as m is even or odd. 

QUESTION No. 2. Is it necessary to assume in Theorems C, D, and E that f (z) 
is entire, OY is it perhaps enough to assume f (z) to be regular in the right half-plane 
and of the same growth as before? 

It turns out (see Corollary 1) that the conclusion of Theorem C remains 
unchanged under this more general hypothesis. As for Theorems D and E we 
will see (see Corollaries 3, 4) that f( z must be a linear combination of certain ) 
functions f”(z) of the form 

sin(9rz) exp (97s cot c) . 

QUESTION No. 3. Does it make any d$ference if we assume f(z) to be regular 
and of exponential type in the half-plane Im(ze-iu) < 0,O < (Y < 7~12, which is not 
symmetrical with respect to the positive real axis on which the zeros off(z) and 
those off (“Q(z) are supposed to lie? 

It is interesting that the conclusions of Theorems D and E remain unchanged 
(see Corollaries 3’, 4’) if f (z) instead of being entire is regular and of the same 
growth as before in the half-plane lm(ze-ia) < 0 where n/4 < a: < z-/2, pro- 
vided m is sufficiently large. This, along with various other results answering 
the preceding questions will be deduced from Theorem 2 below. In order to state 
the theorem we need to introduce a 

DEFINITION. Given a sequence of complex numbers {wk}~=r, such that 

Wu,l~lW,I~~~~~lW,I~~Ww,+,1~~~~, pywk:=cq 

let n,(r) denote the number of wlc)s in ) z 1 < r. We shall say that ‘f(z) and f (m)(z) 
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vanish at almost all the positive integers ” if there exist two sequences of positive 
integers {&.)~=r , &.}~=r satisfying 

(20) 

such that f(z) vanishes at all the positive integers except possibly at the A,‘s 
and f’“‘)(z) vanishes at all the positive integers except possibly at the pLk’s. 

By considering the union of the sets {A, , Aa ,..., A, ,... } and {pr , pe ,..., pk ,... 1 
we may suppose that the two sequences fAd~=r, {~Llc}~Sh;l in the above definition 
‘are the same. Thus the statement “f(z) and f(“)(z) vanish at almost all the 
positive integers” means that f(z) =f’“)(z) == 0 at all the positive integers 
except possibly for a sequence (A&?=r of positive integers such that 

Hereafter oi will be a real number such that 0 < 01 < 42. 

THEOREM 2. Let f(z) be regular and of exponential type in the half-plane 
Im(ze-i”) ,( 0 such that 

max(h,(a), &(ol - w)} = T, < 257 sin 01. (21) 

If, for an integer m > 2, f(z) and f (m)( ) z vanish at “almost all” the positive 

integers, then 

f(z) = c Clf”(4 (22) 
(~/2)(1-(2a/o))<v<(w/2)(1+(2a/n)) 

where 

f”(z) = {sin(rz)} exp ( c~Z cot z ), +$)<v<~(l+;) (23) 

and c,‘s are constants. 

In the case m = 2, the conclusion of Theorem 2 takes a particularly simple 
form. 

COROLLARY 1. Let f(z) be regular and of exponential type in Im(ze-ia) < 0 
such that (21) holds. If f (z) and f “( x vanish at “almost all” the positive integers, ) 
then f (z) = c sin(nz) where c is a constant. The function f (.z) = sin(2rz) shows that 
here T, = 2rr sin cz is inadmissible. 

It is clear that the functions f,,(z) are entire. In fact, f,,(z) is of order 1 and of 
type 7” = r cosec(r,yr/m). Hence taking (Y. = 7r/2 in Theorem 2 we can conclude 
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COROLLARY 2. Iff( ) z is an entire function of exponential type <27r such that, 
fbr an integer m 2 2, f (.z) and f (m)( ) .z vanish at “almost all” the positive integers, 
then 

f(4 = c C”f”W 
rn/6<v<5rni6 

where 

f”(z) = (sin(nz)> exp (7rz cot z) , T < v < F 

and q’s are constants. 

Note that Theorems D and E can be readily deduced from the preceding 
corollary. 

If r,* denotes the type of the function 

f&x) = {sin(77z)} exp (?rz cot G) 

in Im(ze-ia) < 0, then 

* 
7” = a-~&y9 

7-f cosec ” if 
zzz 

~sint2~~(cot~)cos~ if 

Now we have to distinguish two cases. 

O<v+z(l--) 

m(l-%,<v<y(l+F). 

Case I. If m is an even integer 24, then 

for all v in (0, m(1 - CX/T)] except for Y = m/2 as well as for all Y 3 [e,] where 
f?* is the smallest root of the equation 

sinol-((cot%)cosa--secs=O 

in (m(l - (Y/V), co). Thus we have 



592 GERVAIS AND RAHMAN 

COROLLARY 3. Let m be an even integer 34. If f (z) is regular and of expo- 
nential type <rr set r/m in the half-plane Im(zeb”) < 0 such that (21) holds, and 
f(z), f cm)(z) vanish at “almost all” the positive integers, then 

f(x) = Gnl, sin(r.z) + sin(nz) C c, exp 
rn(l-(d77))<v<B* ( 

rrz cot E- 
m ) 

where cmi2 , cV(m(l - or/~) < v < 0,) are constants. 

Case II. If m is an odd integer >3, then 

for all Y in (0, m(1 - a/77)] as well as for all v 3 [d*] where 0* is the smallest 
root of the equation 

sina-(cot$)cosa-sec&=O 

in (m(l - U/T), co). Hence we have 

COROLLARY 4. Let m be an odd integer 23. If f (z) is regular and of exponential 
type <T set r/2m in the half-plane Im(ze+) < 0 such that (21) holds, and f (z), 
f cm)(z) vanish at “almost all” the positive integers, then 

f(2) = sin(mz) 1 
nz(l-(aln))<v<O* 

c, exp 7rz cot $- 
i 1 

where c,‘s are constants. 

Note that if m 3 27r/(7r - 2~y) in Corollary 3, then m(1 - cu/a) > 8* , whereas 
if m > T/(W - 2~) in Corollary 4, then m(l - c+r) > 0*. Consequently we have 

COROLLARY 3’. Let m be an even integer >~T/(TT - 20~). If f (z) is regular and 
of exponential type <V set r/m in the half-plane Im(ze-io) < 0 such that (21) 
(which is automatically satisfied if m/4 < 01 < n/2) holds, and f (z), f lna)(z) vanish 
at “almost all” the positive integers, then f (z) = c sin(?rz) where c is a constant. 

COROLLARY 4'. Let m be an odd integer &r/(~ - ZX). If f (z) is regular and of 
exponential type <rr set 7F/2m in the half-plane Im(se-io) < 0 such that (21) 
(which is automatically satisfied if ~14 < IY < r/2) holds, and f (z), f cm)(z) vanish 
at “almost all” the positive integers, then f(z) E 0. 
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2. SOME LEMMAS 

Notation. Let n be a positive integer. The plane region (a rhombus) 

I 1 
z=x+iy:--sinol<xsinol-ycosol< 

2 ( 1) 
n+- sinol,Iy/ <Tsina 

2 I 

will be denoted by W, . 

LEMMA 1. On the boundary %A?, of 9, we have 

1 sin(77x)I > sin ($ sin a) . (24) 

Proof. Using the infinite product representation of sin(nz) it can be shown 
that (24) holds on circles yi centred at the points j = 0, fl, &2,... and radius 
l sin (Y. Besides, it is easily seen that if N is an integer, then on all the four sides 
Ef the square C, with corners at the points f(N + +) -f i(N + 4) we have 

1 sin(7rz)l 3 1. 

Hence by the minimum modulus principle (24) holds in the region DN bounded 
by C’N and yj , j = 0, f I, f2 ,..., *N. If N 3 n(1 + + cos a) then ZZ, lies 
in D,,, and so (24) holds on 89, as well. 

LEMMA 2. Let f(z) b e re u ar g I and of exponential type in the half-plane 
Im(zf+) < 0. If 

f(n) = 0, n = 1, 2,... 

then 
. 

f(z) = C(z) sin(7rz) 

where 4(z) is regular and of exponential type in Im{(z - 1) e-i”} < 0. 

Proof. Let f(z) b e o ex f p onential type 7, i.e. for every E > 0 there exists a 
constant K(E) such that 

I f (4 < K(E) exp{(T + c) I z II . 

if Im@+) < 0. In view of the preceding lemma, we have on M?, 

I+(41 G If( z cosec(+sinor) )I 
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By the maximum modulus principle the same estimate holds inside L%?~ . Hence, 
if z E 9?,+,\9?, , then 

< K(E) cosec ($sin,) 

< K(E) cosec T sin 01 exp{7(cosec a) (T + C) 1 z I}. 
r 1 cm 

Besides, on 9%‘i 

<K(c)cosec(;sina)exp /(T+c)(~++-cosa)liP/ 

< K(E) cosec ($sina)exp [(~+~)(+++cos~,““*/ 

<K(E)cosec(~sinrr)exp{4(cosecu)(~+e)lzj}. (26) 

Inequalities (25) and (26) show that $( ) x is of exponential type in Im((z - Q) e+} 
< 0 and a fortiori in Im{(.z - 1) eeiti} < 0. 

Remark 1. We have shown above that if 1 f (.z)j < K(E) exp{(T + e) [ z I} in 
Im(.z&“) < 0 then I d(z)1 < K(E) cosec((rr/2) sin a) exp{7(cosec a) (T + e) I z I} 
in Im{(z - 1) e-‘“} < 0. From this it can be easily deduced that if f(z) is 
regular in the half-plane Re z 2 - 1 where 

. I f WI < KC4 exp{(T + 4 I 25 11, 

and f (n) = 0 for n = 0, 1, 2 ,..., then 

< e’(‘+‘)K(E) eXp{7(T + c) 1 z I} 
in the right half-plane. Thus, if f( z is an entire function of exponential type ) . 
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vanishing at all the positive and negative integers, then applying the above 
conclusion to the functionf(-z) as well we conclude that 

f(z) = 4(z) sin(r.z) 

where +(.z) is an entire function of exponential type. 

LEMhlA 3 ([l], see 6.2.3). lfff(z) is regular and of exponential type in the$rst 

quadrant, If( < M (0 <y < co), and If(x)\ < AeC” (0 < x c: co), then 

I f(x + +)I B m&M, A) eCx, o<y<co, o<x<m (27) 

LEMMA 4. Let Q(z) be regular and of exponential type in the$rst quadrant. If 

I @WI = We9 o<y<co 

then for a given positive a 

1 !W)(a + iy)l < C,etV, 0 <y < co, k =O, 1, 2 ,..., 

where C, depends on a but not on y. 

Proof. Consider the function 

f(z) = eitz@(z) 

which is of exponential type in the first quadrant. Besides, there exist constants A, 
c and M such that ) f(iy)j < M (0 < y < co), and ) f (x)1 < Aecz (0 < x < co). 
Hence by the preceding lemma 

If (x + +)I < max(M A) ecx, o<x<co, o<y<aL 

Consequently, 

I @(x + iy)l < max(M, A) e2acetv, O<x<2a, O<y<co. (28) 

For y > a, we have by Cauchy’s integral formula 

1 @Ya + iy)l = 1 &J,,-, +. ), 
a ZY -a 

(5 _ (~~~i,)rk+l 4 1 

< $ max(M, A) ezacet(Y+a) 
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where C’ depends on a. Since 

max / @)(a + iy)j < C” 
O<Y@ 

for some constant C”, the desired result follows. 
From Lemma 4 we can easily deduce 

LEMMA 4'. Let Q(z) be of exponential type in Im((z - 1) e-ia} < 0. If 

then 

1 @(l + re”“)] = O(etr), (B = a, a - 7r) 

/ Wk)(2 + reds)1 = O(etr), (e = a, a - ?r)# 

LEMMA 5. If f (z) is an even entire function of exponential type given by 

f(Z) = fi (1 - +, > 
?l=l 

and if 

lim %(‘) 2B --= , 
T’-= r 

then 

lim log If (ye”“)i = rB 1 sin 0 1 
9 e # 0,77. 

I’oc Y 

For a proof of this lemma we refer the reader to [I, p. 1371. 

3. PROOFS OF THEOREMS 1 AND 2 

Proof of Theorem 1. Let us construct a function Fa,Jz) of exponential type 
2~ such that 

(i) I Ft,Jx)j is bounded on the real axis 

(ii) Fa,,(0) = 1, Fa,&) = 0 (n = It17 f2, f3,...) (29) 
(iii) F;%(n) = 0 (n = 0, &l, f2, &3 I... ). 

Since F,,J.z) is supposed to vanish at all the positive and negative integers 
except at the origin where it assumes the value 1 it should be (see Remark 1) of 
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the form sin(?rz)/?rz + sin(mz) +(z) where $( x is entire and of exponential type. ) 
Using Leibnitx’s theorem we obtain 

I 
[(m+1) /!A1 

+ 2 (-l)v--l+--1 

“=l (2"" 1) 
x 

i 

(-l)m-2"+1(~ - 2v + 111 z2"-1 + .p+lp-2v+l) 

77 
(4 )I co+=+ 

Since Fiz(z) is required to vanish at all the positive and negative integers the 
entire function 

I 
(-1)m-2"~ - 2v)! z2V,/ sin(vx) 

I 
t(m+l) /21 

+ ,F;, w1+‘(2Ym 1) 
x 

( 

(-l)m-2"+1(m - 2v + 111 z2v-1 + Zm+l+(m-2v+l) 

77 
(.,)/ cos(4 

should be divisible by sin(nz) and its Maclaurin series expansion should be of 
the form C,“=m+, agk. It is easily verified that this will be the case if 

t(m+l)/21 

,r; w--17+-1(2v~ 1) 

x 

I 

(-w2"+1(m - 2v + 1Y $-l + .p+lp-2"+1) 
77 

= (-l)“+’ m! sin(7cz) . 
(30) T 

Setting 

H(s) = ‘-~~+~m! sin(7rz) - 
I 

‘z”’ (-1)y-1 (742”-1 
(2v- I)! 1 

we may write this differential equation in the form 

[bn+1) /21 
,c, (-l)‘-1+-+-1( 2vtn_ 1 j p2v+yz:) = H(z). (31) 
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Note that H(x) is an enitre function of order 1 type n and is bounded on the 
real axis. The general solution of the above differential equation is 

m-1 

4(,x) = C c,exp rz cot EL 
v=l ( m 1 

+ *Fll N, exp (TLX cot %) J],’ exp (--~5 cot z) H(5) d<, 

where cy’s are arbitrary constants and NY’s are as defined in (15). If we choose 

m 
c, = -N,, 

s ( exp --vrc cot z j H(5) d[ for v = I, 2 ,..., [m/2], 
0 

and 

c,=N,~-~exp( -d’ cot c j H(c) d< forv -= [m/2] + l,.... m - 1, 

then the function 4(x) becomes 

hZ/Zl 
,F; - NVexp(~zcot~jJ’:.exp(--rr{cot~)H([)dl, 

+ wfl N, exp ( 
v=[m/Z]tl 

7rzcotz)J-:exp( -n[ cot %) H(l) dc, 

which is of order 1 type r and is bounded on the real axis. Thus the function 

q + {sin(rz)} /‘y’ - N, exp (~2 cot z) 1” exp (-n[ cot z) H(c) dc 
"=l 

+ T1 N”exp( 
“=[miz]+l 

,zcotz)J-L,exp( i -ml cot z) H(5) d<( 

which is A o,WL(z) as defined in (14), possesses the required properties (29). Since 
A,,,(z) is simply Ao,J~ - p) it satisfies conditions (17). By Theorem F any 
other function F U,m(.z) satisfying the conditions (17) must be of the form 
A,,Jz) + C, sin(rz) + C, sin(2r.z) or A,,,(z) + C sin2(r,z) according as m 
is even or odd. 

Now we will construct a function G o,m(z) of exponential type 2~ such that 

(a) 1 GoJ~)] is bounded on the real axis 

(b) GoAn) = 0 (n = 0, Al, &2,...) (32) 

(cl G;%O) = 1, GA$(n) = 0 (n = iI, f2,...). 
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Since G,,,(n) = 0 for FZ = 0, f 1, &2 ,... the function Go,,(z) should be of the 
form {sin(~z)}$(z) where #( I is entire and of exponential type. Again using ) 
Leibnitz’s theorem we obtain 

[(m+1) 121 

+ z1 (-l)‘-’ 7+-r ( 2Vm_ *)l’+~~+“(dj cos(7rz). 

Since GkyA(z) is supposed to vanish at all the positive and negative integers 
except at the origin where it assumes the value 1 we must have 

I(m+1) i21 
z1 (-l)v-W~--1(2y~ 1)@@+r)(z) =#(a)+$ (33) 

where 4(z) is an entire function of exponential type such that #(O) = 1. Let 4(z) 
be identically equal to 1. Then the genera1 solution of the differential equation 
(33) has the form 

Wh-1 

+(z) = C c, exp 7rz cot : 
l-1 ( ) 

where c,‘s are arbitrary constants and NV’s are as in (15). Choosing 

cc 
c, = -NV s ( exp 

0 

-vicot~ 
1 

for v = 1, 2 ,..., F , 
[ I 

and 

c,=N”~~~EXP(--llicot~)~d5’ forv=[F]+l,..., m-1, 

we obtain 

4(z) = ‘g’ - NV exp (WZ cot -!$) J: exp (-~5 cot F) 9 dl 

+ mfl N,exp ( 
v=[rn/Z]+l 

nzcot~)/-~exp(--7r{cot~)@od<. 
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It is easily seen that +( z 1s an entire function of order 1 type r and is bounded ) . 
on the real axis. As a function Go,,(z) possessing the properties (32) we obtain 

{sin(7r.z)} j’y’ - 
V=l 

N,exp(712cot~)S^*exp(-rr5cot~)~di 

+ 5’ N,exp( 
v=[rn/2]+1 

m.zcotc)/-~exP(nlcot~)~d[~ 

which is BO,,,(x) as defined in (18). Since BU,m(x) is simply B,,,(z - p) it 
satisfies conditions (19). By Theorem F any other function G,,,(z) satisfying 
the conditions (19) must be of the form B,,,(z) + C, sin(n,z) + C, sin(2rz) or 
BU,&z) + C sin2(?rz) according as m is even or odd. With this the proof of 
Theorem 1 is complete. 

Remark 2. Let m be a positive integer. In the study of (0, m)-interpolation 
by entire functions of exponential type it is important to know if for given T,, > 0 
there exist entire functions r r&z), Pi,&) of exponential type 70 such that 

~k.rn(~) = 4wl (n = 0, fl, f2,...) 

$i(?l) = 0 (n = 0, i-1, &2,...) 

whereas 

Pk.&) = 0 (n = 0, fl, f2,...) 

&i(4 = % 12 (n = 0, &l, f2 ,... ). 

These functions may be called “fundamental functions of (0, m)-interpolation”. 
From Corollary 2 it follows that there are no fundamental functions of (0, m)- 
interpolation which are of exponential type <27r. On the other hand, Theorem 1 
characterizes all fundamental functions of (0, m)-interpolation which are of 
exponential type 27~ and are bounded on the real axis. 

Proof of Theorem 2. According to the hypothesis f (z) and f im)(z) vanish at 
all the positive integers except possibly for a sequence {hk}& such that 
lim,,, n,(r)/r = 0. Now let 

w = jj (1 - --&) . 
By Lemma 2, 

P(z) f (z) = d(x) sin(rz) 

where C(z) is regular and of exponential type in Im((z - 1) e--(OL) < 0. Hence 

f(z) = D(z) sin(rrz) 
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where @p(z) = +(z)/P( z is regular in Im((z - 1) e@) < 0 except possibly for ) 
poles at the points A, . Consequently, 

{P(z)}“+lf ‘“‘(z) 

=t 

h /21 

z. (- 1)” 7r2” (,!J (P(z))“” @‘“-2’)(z)! sin(7rz) 

1 
[(m+1) /21 

+ 2 w-‘+1(2y: 1) (P(z))“+’ m-+yz)/ cos(?%z). 

Since {P(z))~~~~(“)(z) vanishes at all the positive integers, it follows that the 
function 

[h+1) /21 

G(z) = C (-l)v-i~F-1 
(2”“” 1) 

@y,))“” @m-2vi-lyZ) 

V=l 

vanishes too at all the positive integers and by Lemma 2, 

[(m+1) 121 
G(z) = C (-1),-i ~~“-1 

(2”” 1) 
(P(z))“+l @(m-2v+1)(z) = i)(z) sin(7r.z) 

V=l 
(34) 

where 4(z) is regular and of exponential type in Im((z - 2) e-ia) < 0. Here 
#(z) must be identically zero. Suppose, if possible, that #(z) $ 0. Then by a 
property of the indicator function ([ 11, see 5.4.4) 

lim sup log I #(2 + rf+)l log 1 $(2 + rei(“-“))l > o 
Y’rn r + lim sup - PKC r , > 

so that 

I log 1 G(2 + reia)j max lim sup __ , lim sup log I G(2 + rei(“-“))l 
r-33 I r-,30 r 

With the help of Lemmas 4’ and 5 we conclude that 

max 

I 

‘irn sup log 14C1 + re9l , ]im sup log I d(l + yei(a-R))l 

r-30 Y r t 
> 77 sin (Y, I--trn 

and thus max{h?(a), /?,(a - n)} > 2 rr sin LY which is a contradiction. Therefore 
#(z) = 0. Consequently Q(z) being a solution of the differential equation 

[h+1) /21 

g1 (-1)+-l+-I(,,” 1) @(m-av+r)(z) = 0, 

409/69/z-21 
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should be of the form 

Q(Z) :== C c, exp rrz Cot + , 
v=l I I 

where cr , ca ,..., c,-r are constants. But only the constants c, , (m/2) (1 - (2&r)) 
< v < (m/2) (1 + (2c+)), can be different from zero since max{h,(ai), h,(cr - n)} 
< T sin 01. Hence 

CD(z) = c 
~m/2~~1~~2a,‘n~~<v<~~/2~~1+~2a/n~~ 

c,exp 7rz cot -r , 
( 1 

and the theorem is proved. 
As promised earlier we will now give a short proof of Theorem A. 

Proof of Theorem A. Let &o(z) =f(z)/sin(rz), &(z) = $j-,(z)/sin(Tz), 
jz- I,2 ,..*, m - 1. Applying Lemma 2 (with 01 = 7r/2), successively to the 
functions&(z), j = 0, 1, 2 ,..., m - 1 we conclude thatf(z)/{sin(rrz)}m = &+r(z) 
is of exponential type in Re(z - m) 3 0. If &-r(z) + 0, then, again by 5.4.4 

of [II 

max lim sup 
I 

log I bm-dm + =+(~i2))l , lim sup log I 4m-l(m + re-i(a/2))l a o 

y-cc Y r+m r I 

and hence 

max jlim sup log If@ + rei(fl/2))l , *im sup log If@ T r+n’291/ b mT, 
r-m r 1-100 

which in view of Lemma 4, contradicts the fact that f(z) is of exponential 
type Crn5-r. 
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