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Abstract

Purpose: To determine whether functional proteomics improves breast cancer
classification and prognostication and can predict pathological complete response
(pCR) in patients receiving neoadjuvant taxane and anthracycline-taxane-based
systemic therapy (NST).

Methods: Reverse phase protein array (RPPA) using 146 antibodies to proteins
relevant to breast cancer was applied to three independent tumor sets. Supervised
clustering to identify subgroups and prognosis in surgical excision specimens from a
training set (n = 712) was validated on a test set (n = 168) in two cohorts of patients
with primary breast cancer. A score was constructed using ordinal logistic regression
to quantify the probability of recurrence in the training set and tested in the test set.
The score was then evaluated on 132 FNA biopsies of patients treated with NST to
determine ability to predict pCR.

Results: Six breast cancer subgroups were identified by a 10-protein biomarker panel
in the 712 tumor training set. They were associated with different recurrence-free
survival (RFS) (log-rank p = 8.8 E-10). The structure and ability of the six subgroups to
predict RFS was confirmed in the test set (log-rank p = 0.0013). A prognosis score
constructed using the 10 proteins in the training set was associated with RFS in both
training and test sets (p = 3.2E-13, for test set). There was a significant association
between the prognostic score and likelihood of pCR to NST in the FNA set (p =
0.0021).

Conclusion: We developed a 10-protein biomarker panel that classifies breast cancer
into prognostic groups that may have potential utility in the management of
patients who receive anthracycline-taxane-based NST.
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Introduction
To inform decisions about therapy, it is necessary to have a better understanding of

the molecular mechanisms underlying the heterogeneity of breast cancer. Transcrip-

tional profiling revealed that breast cancer represents at least six molecular subtypes

associated with different clinical features [1-3]. However, comprehensive analysis of

breast cancer transcriptomes does not capture all levels of biological complexity;

important additional information may reside in the proteome [4-7].

Proteins are the direct effectors of cellular function. Protein levels and function

depend on translation as well as on post-translational modifications [6], which influ-

ence protein stability and activity [7]. Although many proteins have been studied as

prognostic and predictive factors in breast cancer, only three alter current practice:

estrogen receptor (ER), progesterone receptor (PR) and HER2. Thus, a systematic

study of expression and activation of multiple proteins and signaling pathways may

facilitate more accurate classification and prediction in breast cancer.

Neoadjuvant systemic therapy (NST) allows for in vivo assessment of chemosensitiv-

ity. Attaining a pathologic complete response (pCR) following NST provides a surro-

gate marker for improved long-term outcome. Conversely, patients with residual breast

cancer after NST are at increased risk for recurrence and may have therapy-resistant

disease [8-12].

The objective of this study was to apply functional proteomics to breast cancer clas-

sification and prognosis, and to develop a predictor of pCR in a group of primary

tumor samples obtained by fine needle aspirations (FNA) from patients who subse-

quently received NST.

Material and Methods
Tumor tissues

Three sets of frozen breast cancer tissues were used: Training set (n = 712) was col-

lected at M. D. Anderson Cancer Center (MDACC), Hospital Clinico Universitario de

Valencia, Spain, University of British Columbia, Vancouver, BC, and Baylor College of

Medicine, Houston, TX. Complete clinical information was available for 541 patients.

Test set (n = 168) was obtained from an independent group of patients enrolled in the

Danish DBCG 82 b and c breast cancer studies [13,14]. All tumors in the training and

test sets were collected by excision during their primary surgery. Tumor content was

verified by histopathology. The third set consisted of 256 FNAs obtained from primary

breast cancers prior to NST of which 132 belonged to patients who subsequently

received uniform taxane and anthracycline-based NST at MDACC (12 cycles of weekly

paclitaxel or 4 cycles of every 3-week docetaxel, followed by 4 cycles of FAC or

FEC100). All tissues were collected under Institutional Review Board-approved labora-

tory protocols.

Tumors were characterized for ER and PR status by immunohistochemistry (IHC),

ligand-binding dextran-coated charcoal assay or reverse phase protein lysate array

(RPPA). ER/PR positivity was designated when nuclear staining occurred in ≥10% of

tumor cells, with ligand binding of ≥ 10 fmol/mg, or with a log2 mean centered cutoff

of -1.48(ER) or +0.52(PR) by RPPA. Hormone receptor (HR) positivity was designated

when either ER or PR was positive. HER2 status was assessed by IHC, fluorescent in

situ hybridization (FISH) or RPPA. HER2 positivity was designated when 3+
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membranous staining occurred in ≥10% of tumor cells, with a HER2/CEP17 ratio of >

2.0 or with a log2 mean centered cutoff of +0.82 by RPPA [15].

Reverse phase protein lysate microarray (RPPA)

RPPA was completed independently and at different time points for training and tests

sets using individual arrays. Protein was extracted from human tumors and RPPA was

performed as described previously [16-19]. Lysis buffer was used to lyse frozen tumors

by homogenization (excised tumors) or sonication (FNAs). Tumor lysates were nor-

malized to 1 μg/μL concentration as assessed by bicinchoninic acid assay (BCA) and

boiled with 1% SDS. Supernatants were manually diluted in five-fold serial dilutions

with lysis buffer. An Aushon Biosystems 2470 arrayer (Burlington, MA) created 1,056

sample arrays on nitrocellulose-coated FAST slides (Schleicher & Schuell BioScience,

Inc.). Slides were probed with 146 validated primary antibodies (Additional File 1,

Table S1) and signal amplified using a DakoCytomation-catalyzed system. Secondary

antibodies were used as a starting point for amplification. Slides were scanned, ana-

lyzed, and quantified using Microvigene software (VigeneTech Inc., Carlisle, MA) to

generate spot signal intensities, which were processed by the R package SuperCurve

(version 1.01) [18], available at “http://bioinformatics.mdanderson.org/OOMPA“. A

fitted curve ("supercurve”) was plotted with the signal intensities on the Y-axis and the

relative log2 concentration of each protein on the X-axis using the non-parametric,

monotone increasing B-spline model [18]. Protein concentrations were derived from

the supercurve for each lysate by curve-fitting and normalized by median polish. Pro-

tein measurements were corrected for loading as described [15-17,19]. For the selec-

tion of the 146 antibody set, we focused on markers currently used for breast cancer

classification due to their value in treatment decisions (ER, PR, HER2). We then added

additional antibodies to targets implicated in breast cancer pathophysiology, followed

by antibodies to targets implicated in the pathophysiology of other cancer lineages.

Final selection of antibodies was also driven by the availability of their high quality

that could pass a strict validation process as previously described [20].

Statistical Methods

Detailed statistical methods are described in Additional File 2.

Identification of Prognostic Groups

To develop a set of markers for breast cancer classification and outcomes prediction,

we used a hypothesis-driven approach, selecting markers according to their functional

assignments and subsequently performing supervised proteomic clustering analysis to

optimize the selection of groups with the most distinct recurrence-free survival (RFS)

outcomes. We hypothesized that three functions would strongly affect the behavior

and therapy responsiveness in breast cancer: ER function, grade/proliferation, and

receptor tyrosine kinase activity. From the initial 146 antibodies, we selected markers

within these three functional categories. We tested multiple combinations requiring

that a minimum of one marker per functional category remain in each model. Unsu-

pervised clustering analysis, using the uncentered correlation distance metric [21] and

Ward’s linkage rule [22], was applied to the training set to define groups and allow

correlation with previously defined breast cancer subtypes. We then visualized the RFS
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curves to select the marker set that was associated with the clearest differences in RFS

between the groups identified in the training set. Because of multiple testing and the

possibility of false discovery, this model was locked and then applied to an independent

test set to which the statistical analysis team was kept blinded. The selected protein

groups were as follows: ER function (ER, ERpS118, ERpS167, PR, AR, EIG121, Bcl2,

GATA3, IGF1R, and IGFBP2), grade/proliferation (CCNB1, CCND1, CCNE1, CCNE2,

and PCNA), and receptor tyrosine kinase activity (cKit, EGFR, EGFRp1045, EGFRp922,

HER2, HER2p1248, FGFR1, FGFR2, IGF1R, IGFRpY1135/Y1136).

RFS was estimated according to the Kaplan-Meier method and compared between

groups using the log-rank statistic. Cox proportional Hazard Models were fitted using

proteomic subgroups, selected markers and clinical variables.

Decision trees

We constructed a statistical model to predict the classes discovered by hierarchical clus-

tering using a binary decision tree with a logistic regression model at each node. The

split at each node was a union of two of the classes. Protein-by-protein two-sample t-

tests between the two halves of the split were computed. The proteins were ordered by

p-value and then added one at a time into a logistic regression model until the desired

prediction accuracy was achieved. In order to avoid overfitting data, a default precision

accuracy of 95% was set for each node. Finally, the Akaike Information Criterion (AIC)

was used to eliminate redundant terms from the logistic regression model [23].

Validation of Prognostic Groups for RFS

The coefficients of the model, which used logistic regression at each node of a decision

tree to place samples in one of six classes (or prognostic groups) were finalized and

locked. An implementation of the model was provided to an independent analyst,

along with the class predictions. The independent analyst was provided with the

unblinded clinical data after implementation of the model. Cox proportional hazards

models were then constructed using the predicted classes as covariates to test their

association with RFS.

Validation of Prognostic Groups for pCR

We applied the algorithm to the last sample set (132 FNAs) and correlated the groups

with response to NST. We clustered the samples as above and compared these clusters

to the class labels predicted by the decision tree model with Cohen’s kappa statistic

[24,25]. Using the predicted prognostic groups, we developed a Bayesian model to esti-

mate the posterior probability of pCR in each group. We modeled the pCR rates as

coming from a beta-binomial distribution [26].

Development of a Prognostic Score and its Application to Prediction of pCR

We next converted the six prognostic groups into a continuous prognostic score (PS)

by fitting an ordinal regression model on the training set [27]. PS is a weighted linear

combination of the relative protein concentration of the markers:

PS = -0.2841*ER - 1.3038*PR + 0.0826*Bcl2 -0.6876*GATA3 + 0.5169*CCNB1 +

0.1000*CCNE1 + 0.4321*EGFR + 0.5564*HER2 + 0.8284*HER2p1248 +

0.2424*EIG121.
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We used this formula to compute PS on the test set; PS was associated with RFS

estimates by the Cox proportional hazards model. We also used the same formula to

compute PS on the NST treated FNA set. We fitted a logistic regression model using

the NST response as the binary response variable (pCR vs. residual disease) and PS as

a predictor. The prediction of response was evaluated by a receiver operating charac-

teristics (ROC) curve.

Models for Recurrence-Free Survival and Likelihood of Pathologic Complete Response

A Cox proportional hazards model to estimate association with RFS was fit using each

of the following covariates: prognostic group, tumor size, histologic grade, node status,

each of the 10 protein markers, and PS. Using the same covariates, a logistic regression

model was fit to estimate the association of each covariate with pCR. Stepwise multi-

variate model selection [28,29] was used to determine the combination of covariates

for the multivariate models.

All statistical analysis was performed in R 2.8.1. (R Development Core Team (2008).

R: A language and environment for statistical computing (R Foundation for Statistical

Computing, Vienna, Austria). http://www.R-project.org.

Results
Unsupervised Proteomic Clustering

Table 1 summarizes the clinical characteristics of each set. Training set (n = 712) was

analyzed for 146 proteins (Additional File 1, Table S1) using RPPA. Proteins were cho-

sen based on a literature search of important targets and proteomic processes in breast

cancer for which robust antibodies binding to a single or dominant band on western

blotting could be identified and validated for RPPA as described [1-3,30-32]. Unsuper-

vised clustering of the proteomic profiles is shown in Additional file 1: Figure S1. The

146 proteins stratified breast cancers into six major groups with different RFS out-

comes (Additional file 1: Figure S2). The six groups included a predominantly HER2-

positive group, a HR-negative and HER2-negative (triple receptor-negative) group with

poor outcomes, a HR-positive group with a good outcome and three groups with inter-

mediate outcome: an HR group with overexpression of proteins including cyclins B1

and E1 as well as components of the protein synthesis machinery including phosphory-

lated S6 ribosomal protein and 4EBP1, a group with overexpression of stromal markers

including collagen VI, CD31 and caveolin1, and a group defined by up-regulation of a

large number of proteins and phospho-proteins in several mechanistic pathways.

Supervised Proteomic Clustering

The hypothesis-driven approach described in Methods was applied to the training set

and identified 10 markers in three functional groups known to be important to breast

cancer behavior: ER function (ER, PR, Bcl2, GATA3, EIG121), tyrosine kinase receptor

function (EGFR, HER2, HER2p1248), and cell proliferation (CCNB1, CCNE1). These

markers separated the breast cancers into six subgroups (PG1 to 6) with markedly dif-

ferent RFS outcomes, (Log-rank p = 8.8 E-10), (Figures 1A and 1D). A decision tree

model was developed (Figure 1C) that recovered the six subgroups of breast tumors

identified by clustering with the 10 markers with an overall accuracy of 89%. Full

description of the model is presented in Additional File 3. We then confirmed the
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Table 1 Clinical characteristics of all sets

Characteristic Training
(n = 712)

Test
(n = 168)

FNA
(n = 256)

FNA subgroup
(n = 132)

Age

Median 62 56 50 50

Range 23-89 30-69 23-85 23-77

T stage (n = 542) (n = 166) (n = 255) (n = 132)

Tis 6 0 5 0

T1 165 49 22 14

T2 268 97 135 76

T3 37 20 42 24

T4 66 0 51 18

N stage (n = 541) (n = 166) (N = 255) (n = 132)

N0 280 0 102 47

N1 198 11 84 52

N2 39 75 15 13

N3 24 80 54 20

Stage (n = 541) (n = 166) (n = 254) (n = 132)

0 6 0 2 0

I 105 1 8 4

II 315 83 141 79

III 94 82 86 49

IV 21 0 18 0

Histology (n = 576) (n = 166) (n = 255) (n = 132)

Ductal 446 132 212 113

Other 130 34 43 19

Grade (n = 457) (n = 132) (n = 251) (n = 132)

1 65 29 12 8

2 149 69 72 39

3 243 34 167 85

Estrogen Receptor Status (n = 709) (n = 165) (n = 255) (n = 132)

Positive 447 126 149 79

Negative 262 39 106 53

Progesterone Receptor Status (n = 709) (n = 168) (n = 255) (n = 132)

Positive 336 82 108 56

Negative 373 86 147 76

HER2 Status (n = 709) (n = 128) (n = 254) (n = 132)

Positive 142 18 53 121

Negative 567 110 201 11

Clinical Subtype (n = 709) (n = 128) (n = 254) (n = 132)

Hormone receptor-positive 383 106 139 80

HER2-positive 142 40 53 11

Triple receptor-negative 184 22 62 41

Systemic Treatment (n = 598) (n = 168) (n = 255) (n = 132)

Adjuvant hormonal therapy 341 97 136 78

(Neo)Adjuvant chemotherapy 188 71 253 132

CMF-based 188 71 0 0

Anthracycline-based 0 0 21 0

Taxane-based 0 0 14 0

Anthracycline and Taxane-
based

0 0 184 132

Trastuzumab-based 0 0 34 0

None 111 0 2 0

Note that numbers may not add up to the total in each category due to missing data. Tumors are assigned to the
HR-positive group only if they are HER2-negative; tumors that are HER2-positive and HR-positive are classified in the
HER2-positive group. FNA: Fine needle aspirates.
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presence of the six subgroups as well as their RFS in an independent test set, (Log-

rank p = 0.0013), (Figures 1B and 1E). Table 2 summarizes the 5-year RFS estimates

for each of the prognostic groups in the training and test sets.

We applied this classification approach to 256 FNAs from MDACC. In order to con-

firm that the same clusters were present, we compared the patient groups obtained by

direct hierarchical clustering of the 256 FNA samples to the prognostic groups pre-

dicted in the FNA samples by the decision tree model derived from the training set

(Cohen’s � = 0.70, p < 1E-20). The decision tree predictions were also applied to the

subset of 132 FNAs from patients who received uniform anthracycline and taxane-

based NST, and the same six clusters were found (Cohen’s � = 0.66, p value < 1E-20,

Figure 2A). The association between pCR rates and the (predicted) prognostic groups

did not quite reach statistical significance (c2 = 10.3076 on 5 degrees of freedom; p =

0.067). However, a Bayesian analysis of the pCR rates indicated that there was at least

a 70% posterior probability that groups PG2 and PG3 have pCR rates at least 5% lower

than those in PG4 or PG6 (Figure 2B).

Prognostic Score Predicts pCR

As described in Methods, we computed a continuous prognostic score (PS) based on

the grouping defined in the training set. A Cox proportional hazards model on the

training set (CoxTrain) using PS to predict RFS was significant (Wald test; coefficient

= 0.128, p = 3.2E-13). A second Cox model, fit on the test set (CoxTest), was also sig-

nificant (Wald test; coefficient = 0.084, p = 1.1E-05) (Figure 3A). Of 132 patients who

received anthracycline-taxane-based NST, 32 (24%) had a pCR. We computed the

prognostic score PS for each FNA sample; the values ranged from -8.16 to 10.16. A

C D E

A B

P=8.8E-10 P=0.0013

Training Test

Figure 1 Supervised clustering of breast cancers with quantification data for 10 proteins derived
using reverse phase protein arrays. The 712 breast tumor samples (Training set, 1A) were clustered with
the 10 markers using an “uncentered correlation” distance metric along with the Ward linkage rule. This
analysis yielded six subgroups (BG1-6). The 168 breast tumor samples (Test set, 1B) were subgrouped into
one of 6 groups (PG1-6) using the decision tree (1C) that was derived from the training set. Patients in the
six subgroups differed significantly in their recurrence-free survival in both training (1D) and test (1E) sets.
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logistic regression model showed that PS was also significantly associated with pCR (p

= 0.0021, Figure 3B). Further, an unequal variance t-test comparing the prognostic

scores between patients with pCR and residual disease also revealed a significant differ-

ence between mean scores (p = 0.00024 Figure 3C). The area under the curve (AUC)

in a ROC curve analysis was 0.7 with a specificity of 98% and a negative predictive

value of 76% (Figure 3D).

Models for Recurrence-Free Survival and Likelihood of Pathologic Complete Response

Univariate models for RFS (Cox proportional hazards on the test set; CoxTest) and

pCR (logistic regression on the uniformly treated FNA dataset; LR-FNA) are

Table 2 Five-year DFS estimates for each of the prognostic groups in both the training
and test sets

5-year Recurrence-Free Survival Estimates Training Set
Median follow-up 42.23 months (1.45-246.40 months)

No. at Risk No. of Events 5-Year Estimate 95% Confidence Interval P-Value

All 446 106 0.699 (0.65, 0.751)

Prognostic Group 1 108 17 0.809 (0.730, 0.896)

Prognostic Group 2 84 7 0.876 (0.793, 0.968)

Prognostic Group 3 44 8 0.758 (0.620, 0.926)

Prognostic Group 4 73 22 0.595 (0.464, 0.763)

Prognostic Group 5 109 36 0.576 (0.472, 0.703)

Prognostic Group 6 28 16 0.299 (0.152, 0.589) 8.88E-10

5-year Recurrence-Free Survival Estimates Test Set
Median follow-up 217 months (180-259 months)

No. at Risk No. of Events 5-Year Estimate 95% Confidence Interval P-Value

All 166 92 0.446 (0.376, 0.528)

Prognostic Group 1 33 18 0.455 (0.313, 0.661)

Prognostic Group 2 45 17 0.622 (0.496, 0.781)

Prognostic Group 3 15 5 0.667 (0.466, 0.953)

Prognostic Group 4 22 16 0.273 (0.138, 0.540)

Prognostic Group 5 20 14 0.300 (0.154, 0.586)

Prognostic Group 6 31 22 0.290 (0.167, 0.503) 0.0013

A B

Figure 2 The 132 fine needle aspirates from patients who received anthracycline and taxane-based
neoadjuvant systemic therapy were subgrouped into one of the 6 groups using the decision tree
from the training set. Six true patient groups were obtained (2A), Cohen’s kappa score = 0.66. Beta-
binomial distribution and computed joint posterior probabilities were used to evaluate the association of
the prognostic groups with pCR, the posterior distribution estimates of pCR by prognostic group are
shown in 2B.
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summarized in Table 3. All clinical and molecular variables, except for EGFR, were sig-

nificantly associated with RFS. The addition of the prognostic score to the model with

clinical covariates reduced the residual deviance with a X2
1 = 2.96, p = 0.09. Stepwise

model selection using AIC retained all clinical covariates and the prognostic score for

the final model:

log(h(t)/h0(t)) = 0.414Size + 1.34Node + 0.803Grade + 0.070PrognosticScore.

For response (pCR vs. residual disease), grade was the only clinical covariate signifi-

cantly associated with response. All protein markers except EGFR, HER2, pHER21248

and EIG121 were significantly associated with response. The addition of the prognostic

score to grade reduced residual deviance with a X2
1 = 5.39, p = 0.02. Stepwise model

selection using AIC showed that both grade and prognostic score were retained in the

final model:

logit(pCR) = -2.61 + 0.902Grade + 0.2210PrognosticScore.

We compared ROC curves for predicting pCR by the prognostic scores and the step-

wise selected model and found that AUC, as well as the specificity and negative

DC

BA

p=0.00024 

Figure 3 A ten-protein prognosis score by ordinal regression modeling was derived from the
training set. 3A. Probability of recurrence as a continuous function of the score. The rug plot shows the
prognosis score for individual patients in the study. Dashed curves indicate the 95 percent confidence
intervals. 3B. Probability of pCR as a function of the prognostic score. 3C. Stripcharts showing the level of
prognostic score by response to anthracycline and taxane-based neoadjuvant systemic therapy. 3D.
Receiver operating characteristics curves for the performance of the prediction of pCR versus residual
disease by the logistic model using the prognostic score. AUC: area under the curve.
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Table 3 Models for Recurrence-Free Survival and likelihood of pathological complete
response

RFS pCR

Univariate Models

Variable Hazard
Ratio

95% CI Log-rank
P-value

Odds
Ratio

95% CI Wald’s
P-Value

Prognostic Group 1 1.59 (.87, 2.90) 3.54 (.06, 28.14)

Prognostic Group 2 1.00 (1.0, 1.0) 1.00

Prognostic Group 3 1.15 (.51, 2.60) 2.16 (.32, 17.82)

Prognostic Group 4 3.12 (1.64, 5.90) 7.19 (1.77, 48.89)

Prognostic Group 5 3.01 (1.67, 5.41) 4.24 (.90, 30.76)

Prognostic Group 6 7.00 (3.53,
13.86)

<.0001 11.50 (1.40,
123.05)

.0519

Tumor size (</ = 2 cm vs. >
2 cm)

1.85 (1.16, 2.96) .0094 1.30 (.56, 2.94) .5364

Node status (positive vs.
negative)

2.93 (1.99,4.29) <.0001 1.11 (.50, 2.56) .7981

Histologic grade (1 and 2 vs.
3)

3.70 (2.45, 5.60) <.0001 4.35 (1.67, 13.62) .0052

ER 0.82 (.76, .88) <.0001 .73 (.56, .93) .0180

PR 0.75 (.66, .85) <.0001 .67 (.45, .91) .0235

Bcl2 0.75 (.65, .86) <.0001 .63 (.39, .96) .0435

GATA3 0.77 (.66, .90) .0010 .58 (.33, .95) .0411

CCNB1 1.23 (1.12, 1.36) <.0001 1.32 (1.00, 1.76) .0449

CCNE1 1.40 (1.11, 1.76) .0039 2.52 (1.32, 5.05) .0062

EGFR 1.04 (.81,1.36) .7437 1.54 (.90, 2.88) .1333

HER2 1.21 (1.08, 1.36) .0015 1.37 (.72, 2.57) .3253

HER2p1248 1.18 (1.11, 1.26) <.0001 1.09 (.74, 1.56) .6528

EIG121 0.389 (.29, .52) <.0001 .53 (.26, 1.05) .0712

Prognostic score
(continuous)

1.14 (1.10, 1.18) <.0001 1.32 (1.12, 1.61) .0021

Multivariate Models

Variable Hazard
Ratio

95% CI Log-rank
P-value

Odds
Ratio

95% CI Wald’s
P-Value

Clinical Characteristics
Model

1.87E-12* .021*

Size 1.63 (.94, 2.85) .0836 1.10 (.45, 2.63) .8237

Node 3.90 (2.25, 6.75) <.0001 1.07 (.56, 2.58) .8732

Grade 2.75 (1.55, 4.85) .0005 4.29 (1.64, 13.51) .0057

Clinical Model +
Prognostic Score

2.48E-12* .004*

Size 1.51 (.86, 2.65) .1489 1.18 (.47, 2.88) .7192

Node 3.83 (2.22, 6.61) <.0001 1.02 (.42, 2.51) .9657

Grade 2.23 (1.21, 4.13) .0106 2.41 (.80, 8.27) .1332

Prognostic score 1.07 (.99, 1.16) .0895 1.24 (1.03, 1.52) .0327

Tumor Grade + Prognostic
Score

.01*

Grade 2.46 (.83, 8.40) .1198

Prognostic score 1.23 (1.03, 1.51) .0283

RFS: Recurrence-free survival; pCR; pathologic complete response. * X2 test.
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predictive values were the same (0.7, 98% and 76% respectively), suggesting that the

prognostic score may be a more powerful predictor than clinical information.

Discussion
We have identified and validated a 10-protein panel that accurately and reproducibly

classifies patients with breast cancer into six subgroups with significantly different 5-

year RFS times. These six groups included two HR positive groups differentiated pri-

marily by PR levels with the PR high group having the best outcome, a HER2, pHER2

and EGFR positive group with the worst outcome (pre-trastuzumab treatment) and

three triple negative groups, one with high cyclins and two groups without well defined

selectors. Further, in an independent set of FNAs from patients who underwent NST,

we were able to reproduce this classification and to use it to predict response to

neoadjuvant anthracycline and taxane-based therapy. Further, in three independent

sets, the 10-protein signature had a higher predictive value than clinical variables

including tumor size, nodal status and grade in Cox models for RFS and in a logistic

regression model to predict pCR.

Several studies using transcriptional profiling have classified breast cancer into differ-

ent subtypes with implications in patient prognosis [1,30-32], frequency of genomic

alterations [33,34], and therapy response [31,35,36]. Since proteins are the immediate

effectors of cellular behavior, interrogation of the functional proteome is likely to com-

plement data derived from transcriptional profiling. Thus, the integrated study of the

expression and activation of multiple proteins and signaling pathways has the potential

to provide powerful classifiers and predictors in breast cancer. As protein levels and

function depend not only on translation but also on post-translational modifications,

functional proteomic profiling may theoretically yield more direct answers to func-

tional and pharmacological questions than transcriptional profiling alone. However,

practical, high-throughput approaches to the study of the functional proteome have

not been available until recently. RPPA is a useful tool to identify and validate protein

and phospho-proteins [19-23]. Our data suggest that RPPA has the potential to

advance our understanding of breast cancer biology and to aid in the identification and

validation of useful biomarkers. Our findings validate the importance of ER, PR and

HER2. However, seven additional markers including other tyrosine kinase receptors

and proliferation markers involved in therapy resistance (EGFR, CCNB1, CCNE1) are

part of the 10-protein panel. The combination of 10 markers and the power of the 10

markers as compared to ER/PR and HER2 is novel. The ER, PR and HER2 and the

proliferation markers correspond to other breast cancer classifiers such us the intrinsic

subtypes or the Oncotype DX Recurrence Score which have also shown that ER, HER2

and proliferation are the most important classifiers, prognostic and predictive markers

in breast cancer [1,31]. This demonstrates that RPPA can capture prognostic and pre-

dictive differences associated with breast cancer subtypes.

Several factors are important in selection and validation of biomarkers: The analysis

platform must be sufficiently robust to detect subtle changes between tumors. Sample

sets must be robust enough to reduce pre-analytical data biases and must reflect the

intended use of the marker or marker set. Independent sample sets must be used to

validate the prognostic and predictive power of biomarkers particularly when many

biomarkers are assessed on small sample sets. Lastly, bioinformatics support is essential
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at all steps in any project. The current study has satisfied all of the requirements men-

tioned above. RPPA is a robust platform able to detect minimal changes in protein

levels [15]. Three large independent sample sets with adequate clinical and outcome

information were used for training and testing. Bioinformaticians were closely involved

in study design as well as data analyses.

Our findings also have limitations. Patient cohorts received diverse types of systemic

treatments and limiting the ability to dissect effects on prognosis from variables that

predict endocrine and/or chemotherapy sensitivity. When looking at pCR predictors,

all prognostic signatures can reasonably predict pCR, however patients predicted to

obtain pCR may have significantly worse survival than those predicted not to respond

due to different prognostic variables i.e. HR positivity. So, if our signature is primarily

prognostic, its potential utility for selecting chemotherapy sensitivity would be limited;

for this reason, validation studies in independent cohorts are needed.

The issues of tumor heterogeneity and the utility of laser captured microdissection

were considered in our previous work focusing on the technical assessment of the uti-

lity of RPPA for the study of the functional proteome in non-microdissected human

breast cancers [20]. This approach used captures information contained in the tumor

cells, the stroma and in particular the tumor stroma interaction. The approach of

using the complete tumor including interactions of tumor and stroma to classify

patients and predict outcomes is the basis for the current transcriptional profiling

approaches such as Oncotype Dx or Mammaprint. We have attempted to develop and

implement RPPA approaches on microdissected tumors. However, due to a number of

technical challenges, this approach is not as robust as study of complete tumors which

captures information from the tumor and the stroma as well as tumor stroma

interactions.

In summary, we have developed a 10-protein biomarker panel that may have poten-

tial utility in the management of patients with breast cancer. Today, it is clear that we

should view breast cancer as several distinct diseases. Thus, further work is needed to

identify predictors of response to individual therapies that target different clinical and

molecular subgroups of breast cancer.
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