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Anomalous anomalous scaling?
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Motivated by speculations about infrared deviations from the standard behavior of local quantum field
theories, we explore the possibility that such effects might show up as an anomalous running of coupling
constants. The most sensitive probes are presently given by the anomalous magnetic moments of the
electron and the muon, that suggest that αem runs 1.00047 ± 0.00018 times faster than predicted by the
Standard Model. The running of αem and αs up to the weak scale is confirmed with a precision at the %
level.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

The range of validity of Quantum Field Theory (QFT) may be
limited not only in the UltraViolet (UV), E � ΛUV, but also in the
InfraRed (IR), E � ΛIR ≡ 1/L, with a non-trivial connection be-
tween ΛUV and ΛIR. This possibility has attracted interest due to
the following reasons.

On the theoretical side, requiring that the entropy associ-
ated with the QFT degrees of freedom ∼ (ΛUV/ΛIR)3 saturates
the Bekenstein entropy [1] ∼ L2M2

Pl of a black hole with size
L leads to ΛIR ∼ Λ3

UV/M2
Pl. Alternatively, it has been suggested

that one should require that systems whose size L exceeds their
Schwarzschild radius ∼ m/M2

Pl do not appear in QFT. For m ∼
Λ3

UVL3, this requirement leads to ΛIR ∼ Λ2
UV/MPl [2].

On the phenomenological side, Refs. [2,3] discussed possible
connections of these ideas with the cosmological constant and the
supersymmetry breaking puzzles. Indeed, in standard QFT the val-
ues of the vacuum energy, scalar masses squared and dimension-
less couplings are given by their bare Planck-scale values plus a
quantum correction proportional to Λ4

UV, Λ2
UV and ln ΛUV, respec-

tively. Such non-local effects could change this power-counting,
solving or modifying the hierarchy problems associated with mas-
sive parameters [2,3].

We observe here that dimensionless couplings may be similarly
affected, leading to an anomalous Renormalization Group (RG) run-
ning, and we study how accurately present data test the standard
QFT prediction.
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2. Speculations

The above ideas about a non-local connection between the IR
and UV cutoffs do not have a very precise meaning, and one can
debate whether they would lead to any of the effects mentioned
above. Rather than arguing in any one direction, we present the
uncertain issues.

Firstly, when do these non-local phenomena appear in particle
physics? The weakest possibility is only when strong gravity effects,
such as those arising from black holes, are directly relevant. This
would practically mean never, as black hole phenomena (Hawk-
ing radiation, etc.) are quantitatively irrelevant in all processes we
can realistically observe (possibly unless the true quantum gravity
scale is much below MPl). The strongest possibility is that states
with energy E � ΛUV that propagate for more than L do not exist
and must be dropped from QFT. However, this possibility seems to
contradict experience. We see TeV γ rays from the galactic center,
particles with energies up to 1020 eV from extragalactic sources,
etc.

We envisage a scenario in which the bulk of the contributions
from (real of virtual) modes to quantities such as the energy den-
sity or the renormalized couplings is delimited by a scale that
depends on the IR cutoff. Individual very energetic modes may still
exist, but their effect on the above observables is negligible. For ex-
ample, one may limit the temperature T of a system of size L by
demanding that this system does not collapse into a black hole:
T 2 � MPl/L. States with energy much larger than this limit may
exist, but their contribution to the energy density is negligible. Our
basic, and possibly contentious, assumption is that gravity enforces
a similar constraint to the contributions from virtual fluctuations.
This leads to limits on the energy density, the quantum-corrected
vacuum energy density (i.e. the minimum of the potential) [2], the
Higgs mass (i.e. the curvature of the potential at its minimum) [3],
and possibly all couplings (i.e. the derivatives of the potential). The
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smallness of the cosmological constant is consistent with such an
assumption.

Secondly, what is the precise meaning of ΛIR? There are various
possibilities, and we mention two: (i) The IR cutoff can be defined
by imposing boundary conditions such that QFT lives “in a box”
with size 1/ΛIR. (ii) ΛIR is the minimal energy scale that appears
in loop integrations. In practical cases these choices can lead to
different answers. For example, only in the first case the IR cutoff
for the cosmological constant would be the Hubble distance 1/H
(possibly leading to a small ΛUV ∼ √

MPl H ∼ eV [2]). On the other
hand, H does not appear in the one-loop correction to the vacuum
energy, equal to the value of the potential V at its physical local
minimum

V � V bare + 1

2

ΛUV∫
ΛIR

d4k

(2π)4
Str ln

(
k2 + V ′′

bare

)
, (1)

unless ΛIR = H is imposed.
We finally arrive to the third issue: what is the precise meaning of

ΛUV if it is viewed as a function of ΛIR? As we explained above, we as-
sume that ΛUV sets the upper limit for the bulk of the fluctuations
that renormalize a quantum field theory. Modes with characteristic
momenta above ΛUV may exist, but they do not contribute signif-
icantly to the renormalization of the couplings. According to this
logic ΛUV (ΛIR) may be used as the upper bound of the momen-
tum integration is expressions such as (1).

If the quantum correction to the minimum of V is naturally
small thanks to an anomalous dependence of ΛUV on ΛIR [2], one
expects a similar anomalous running of the whole potential, and in
particular of its coupling constants. In standard QFT, the one-loop
corrections to any dimensionless coupling (e.g. the gauge boson
vertex g) has the form

g(p) = gbare − β
g3

bare

8π

[
ln

Λ2
UV

p2
+ finite

]
, (2)

where p is some combination of the external momenta that sets
the IR cutoff in the loop integration. In standard QFT the physical
coupling g(p) ‘runs’ with the energy p of the process, and the RG
coefficient β is a number that depends on the particle content of
the theory above p. (In Eq. (2) we assumed that all the masses are
negligibly small.)

If, instead, non-QFT effects produce some physical UV cutoff
ΛUV that depends on ΛIR ∼ p, one generically obtains an anoma-
lous RG running of g(p). For example, in the one-loop approxima-
tion the running is proportional to

β → β

(
1 − ∂ ln ΛUV

∂ ln ΛIR

)
≡ β(1 − δ). (3)

The correction appears because fewer UV modes contribute to
quantum corrections when the IR cutoff is lowered. The running
does not arise only because of the integration of modes around
the IR cutoff, but also because the influence of the UV modes is al-
tered. This is the essence of the non-local mechanism we assume
in this work.

Even within this framework, it is still possible for the anoma-
lous running not to arise. For example, the Standard Model (SM)
at energies below MPl and above a scale Λ f may be replaced by
some other model where couplings do not run (e.g. an UV-finite
theory, or some fixed point of the RG flow). If the values of ΛUV
that correspond to the range of ΛIR of interest are above Λ f , no
anomalous running appears. Similar behaviour is expected if the
SM couplings come from a scalar field (e.g. the dilaton in string
theory) whose vacuum expectation value is determined by low en-
ergy dynamics.
By using the β function of Eq. (3) within the dimensional reg-
ularization formalism, we get for the one-loop RG running of a
gauge coupling α

1

α(μ′)
− 1

α(μ)
� β ln

μ1−δ

μ′ 1−δ
+ · · · . (4)

This is equivalent to the standard expression, with the Minimal
Subtraction mass scale μ replaced by μ1−δ . In theories with sev-
eral particle masses and sizable RG corrections, the factor δ gener-
ically can become some unknown function of the energy. In order
to compute it, we would need to know the physics around ΛUV.

In the next sections, we explore the most sensitive experimen-
tal probes of anomalous RG running, assuming for definiteness that
all Standard Model formula get modified as in Eq. (2), with a con-
stant δ to be extracted from data.

3. Running of αem from me to mμ

The measurements of the anomalous magnetic moments of the
electron [4]

ge/2 = 1.00115965218085(76) (5)

and of the muon [5]

gμ/2 = 1.00116592080(63), (6)

together with the assumption of the validity of the Standard
Model, allow us to infer the electromagnetic coupling αem(μ) at
the scales μ = me and mμ , in view of the theoretical prediction

gi = 2 + αem(mi)/π + · · · , (7)

where · · · denotes higher-order effects. We recall that ge gives the
most precise determination of αem, that is consistent with lower-
energy probes from atomic physics [4]. Assuming the anomalous
running

1

αem(me)
− 1

αem(mμ)
= 1 − δ

3π
ln

mμ

me
+ · · · (8)

one gets the presently most precise determination of δ:

δ = −(0.047 ± 0.018)%. (9)

The central value of δ is about 3σ below zero, because, for δ = 0,
gμ is about 3σ above the SM prediction, (gμ − gSM

μ )/2 = (23 ±
9) × 10−10, with the precise number depending on how one deals
with the theoretical uncertainties on higher-order QCD corrections
to gμ: relying on e−e+ data and/or on τ -decay data [5].

The usual new-physics interpretation of the gμ − 2 anomaly is
that new particles with heavy mass M , like supersymmetric parti-
cles, affect gμ giving an extra contribution �gμ ∼ α2m2

μ/M2. They
also affect precision data at higher energies, but have a negligible
influence on ge in view of mμ 	 me .

We point out that the relative incompatibility between gμ and
ge could instead be due to a ‘too fast’ RG running of αem. We show
that ge and gμ presently give the most sensitive probes to δ: this
kind of new physics is best seen with higher precision than with
higher energy.

4. Running of αem from mμ to M Z

Precision tests at the Z pole offer another precision determi-
nation of the electromagnetic coupling. By performing a global fit
within the SM with Higgs mass mh [6] we find

1 = 128.92 + 0.23 ln
mh ± 0.06. (10)
αem(M Z ) M Z
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This value can be compared with the RG extrapolation from
me,mμ up to M Z [7]

1

αem(M Z )
= 128.937 + 8.1δ ± 0.028, (11)

where the uncertainty comes from QCD thresholds. So

δ =
(

−0.2 + 2.9 ln
mh

M Z
± 0.9

)
%. (12)

The precise measurement of the muon lifetime does not give an-
other probe of δ, as the anomalous dimension of the associated
Fermi operator

[μ̄γμ P Lνμ][ν̄eγμ P Le]
is zero: indeed, the electromagnetic current is not renormalized,
and this operator can be related to it, times a neutrino current not
affected by electromagnetic interactions.

5. Running of αs from mτ to M Z

Another sensitive probe to δ comes from the running of the
strong coupling αs: in view of its large value, αs runs fast. The
strong coupling constant has been measured at various scales, and
the two most precise determinations are at mτ and M Z . By per-
forming a global fit of electroweak precision data within the SM
with Higgs mass mh [6] we find

αs(M Z ) = 0.121 + 0.0008 ln
mh

M Z
± 0.0023. (13)

On the other hand, the measurement of the strong coupling from
τ decays, αs(mτ ) = 0.334 ± 0.009, extrapolated up to M Z gives [8]

αs(M Z ) = 0.1212 + 0.08 δ ± 0.0011. (14)

So

δ =
(

−0.4 + 1.1 ln
mh

M Z
± 3.3

)
%. (15)

Finally, flavor-physics observations allow us to test the QCD run-
ning of various operators from the weak scale down to the bottom
or charm mass. However, the uncertainty on δ is at the level of
several tens of percent.

6. Conclusions

Motivated by possible deviations from the standard QFT predic-
tions for the RG running of couplings, we rescaled β functions by
1 − δ and studied how data probe the new-physics parameter δ

that parameterizes an anomalous running. Unlike in ordinary new
physics, the most sensitive probe to δ is given by precision experi-
ments at low energies E � me: the measurements of the magnetic
moments of the electron and the muon determine δ with a 0.018%
uncertainty, excluding order-one effects. However, the anomaly in
the anomalous magnetic moment of the muon indicates a best fit
value for δ which is 3σ below zero. Running of αem and αs up to
M Z is confirmed with a 1% and 3% precision, respectively.
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