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Recurrent De Novo Mutations in PACS1 Cause
Defective Cranial-Neural-Crest Migration and Define
a Recognizable Intellectual-Disability Syndrome

Janneke H.M. Schuurs-Hoeijmakers,1,8 Edwin C. Oh,2,8 Lisenka E.L.M. Vissers,1,8

Mariëlle E.M. Swinkels,3 Christian Gilissen,1 Michèl A. Willemsen,4,5 Maureen Holvoet,6

Marloes Steehouwer,1 Joris A. Veltman,1 Bert B.A. de Vries,1,5 Hans van Bokhoven,1,5

Arjan P.M. de Brouwer,1,5 Nicholas Katsanis,2,7,9 Koenraad Devriendt,6,9 and Han G. Brunner1,9,*

We studied two unrelated boys with intellectual disability (ID) and a striking facial resemblance suggestive of a hitherto unappreciated

syndrome. Exome sequencing in both families identified identical de novo mutations in PACS1, suggestive of causality. To support

these genetic findings and to understand the pathomechanism of the mutation, we studied the protein in vitro and in vivo. Altered

PACS1 forms cytoplasmic aggregates in vitro with concomitant increased protein stability and shows impaired binding to an iso-

form-specific variant of TRPV4, but not the full-length protein. Furthermore, consistent with the human pathology, expression of

mutant PACS1 mRNA in zebrafish embryos induces craniofacial defects most likely in a dominant-negative fashion. This phenotype

is driven by aberrant specification and migration of SOX10-positive cranial, but not enteric, neural-crest cells. Our findings suggest

that PACS1 is necessary for the formation of craniofacial structures and that perturbation of its functions results in a specific syndromic

ID phenotype.
Intellectual disability (ID) affects 1%–3% of the pop-

ulation and has a strong genetic component. Despite

technical progress, establishing a genetic diagnosis

remains challenging, in part because of substantial genetic

heterogeneity and clinical variability.1 Recent data have

indicated a high rate of de novo events in ID,2 suggesting

that family-based exome sequencing can be an efficient

tool for identifying genetic causes of ID and thus for

probing its molecular etiology.

We recruited two unrelated boys with unexplained ID

and a remarkable facial resemblance (Figure 1A). This study

was approved by the Medical Ethics Committee of the

Radboud University Nijmegen Medical Centre, and all

participants signed informed consent. The first boy (indi-

vidual 1) is the only child of unrelated Dutch parents. A

paternal cousin of individual 1 also has developmental

delay, but it is of a different severity and physical appear-

ance. He was therefore considered to have an unrelated

clinical condition. Individual 1 was born at term by

vacuum extraction after an uncomplicated pregnancy.

The mother was treated with mesalazine for Crohn disease

throughout the pregnancy. His birth weight was 3,250 g

(25th percentile), and his Apgar (appearance, pulse,

grimace, activity, respiration) score was 5, 6, and 8 at 1,

5, and 10 minutes, respectively. A single umbilical artery

was noted. On the second day of life, he developed
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seizures, which were successfully treated with antiepileptic

medication. Four weeks after birth, the boy developed

volvulus by intestinal malrotation. Resection of a large

part of the small intestine was performed upon emergency

laparatomy. He developed short-bowel syndrome, for

which he received total parenteral feeding until age 4

years, and was tube fed thereafter. A vesicourethral reflux

grade II resolved spontaneously. Left-sided cryptorchidism

was surgically corrected by orchidopexy. During this

operation, a streak testis was observed on the right side.

Development was delayed: he was able to sit with support

at age 10 months, walked at age 3 years and 4 months, and

spoke his first words at age 3 years and 6months. Language

production was more delayed than verbal understanding,

and dyspraxia was noted. His intelligence quotient (IQ)

was measured as <50. On physical examination, we saw

a friendly boy with some stereotypic movements. When

he was 3 years and 6 months old, his weight was 15 kg

(16th percentile), his length was 102 cm (50th percentile),

and his orbitofrontal cortex (OFC) was 49 cm (16th percen-

tile). His facial features were characterized by a low anterior

hairline, hypertelorism with downslanting palpebral

fissures, mild synophrys with highly arched eyebrows,

long eyelashes, a bulbous nose, a flat philtrum, and large,

low-set ears (6 cm [97th percentile]). He has a wide mouth

with downturned corners, a thin upper lip, and diastema
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Figure 1. Photographs and Genetic Data
of Two Unrelated Individuals with an
Identical De Novo Mutation in PACS1
(A) Upper photograph: individual 1 at 4
years of age with a low anterior hairline,
highly arched eyebrows, synophrys, hy-
pertelorism with downslanted palpebral
fissures, long eyelashes, a bulbous nasal
tip, a flat philtrum with a thin upper lip,
downturned corners of the mouth, dia-
stema of the teeth, and low-set ears.
Bottom photograph: individual 2 at 12
years of age. Note the remarkable facial
similarity.
(B) Sequence reads from exome se-
quencing and chromatograms of Sanger
confirmation show the identical de novo
occurrence of the c.607C>T mutation in
PACS1 (RefSeq NM_018026.2) in individ-
uals 1 and 2.
(C) Protein structure of PACS1. The posi-
tion of the p.Arg203Trp substitution is
indicated in the furin (cargo)-binding
region (FBR) of the protein and is directly
adjacent to the CK2-binding motif.
of the teeth (Figure 1A). Widely spaced nipples, slender

fingers (but broad and short thumbs), clubbed nails,

a single transverse palmar crease on the left hand, and

pes planus were also noted. Neurological examination

showed simple motor patterns without specific pyramidal,

extrapyramidal, cerebellar, or neuromuscular abnormali-

ties. Cerebral MRI showed a cavum septum pellucidum

but was otherwise normal. Conventional karyotyping, as

well as SNP array testing (Affymetrix, 250K), showed

a normal male karyotype. Because of some facial similari-

ties to Cornelia de Lange syndrome (MIM 122470), NIPBL

(MIM 608667), SMC1A (MIM 300040), and SMC3 (MIM

606062) were sequenced for mutations, but none were

found.

The second boy (individual 2) is the second child of

healthy, unrelated parents of Belgium origin. There was

one previous miscarriage. Family history is negative with

regard to developmental delay or congenital malforma-

tions. The boy was born at term by caesarian section

because of breech presentation. His birth weight was

4,250 g (90th percentile), his length was 54 cm (97th

percentile), and his OFC was 36 cm (90th percentile). His
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development was delayed. He walked

at the age of 2 years and 6 months.

His IQ was measured as 53. Currently,

at age 19 years, he functions well in

a special school and, except for mild

scoliosis, has no medical problems.

When first seen at the age of 6 years

and 3 months, he appeared friendly

and outgoing. His weight was 22 kg

(50th percentile), his length was

119 cm (50th percentile), and his

OFC was 51.7 cm (50th percentile).
When he was seen at 19 years of age, his measurements

were a weight of 64.5 kg (16th percentile), a length of

181 cm (50th percentile), and an OFC of 55.1 cm (16th

percentile). His facial features were characterized by hyper-

telorism with downslanting palpebral fissures, strabismus,

long eyelashes and mild ectropion, highly arched eye-

brows, downturned corners of the mouth, a narrow upper

lip (especially in its middle part), and a flat philtrum (Fig-

ure 1A). His teeth were widely spaced, and his ears were

low set. He had a short neck, widely spaced nipples, and

a mild pectus excavatum. He had clinodactyly and short-

ness of the fifth fingers and mild cutaneous webbing of

the fingers. The skin showed multiple pigmented nevi.

He had a small umbilical hernia, hypoplastic scrotum,

and cryptorchidism on the right side. Neurological exami-

nation showed balance problems and mild dysarthric

speech. He was hypotonic. A conventional karyotype

and array comparative genomic hybridization (Agilent

180K) showed a normal male karyotype. A computed-

tomography scan of the brain revealed a partial agenesis

of the vermis and hypoplasia of the cerebellar hemi-

spheres, which was more pronounced on the right side.
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Because of their striking similar facial dysmorphisms,

which were unique among our cohort of >5,000 individ-

uals with ID, we considered this a distinct dominant

syndrome with plausibly a common genetic defect. Aim-

ing at the identification of a causal de novo mutation, we

therefore performed exome sequencing on DNA from

both index-parent trios by using the ABI SOLiD 4 platform

(Life Technologies, Carlsbad, CA, USA) (described previ-

ously by Vissers et al.2) (Table S1, available online). Seven

potential de novo nonsynonymous variants were identi-

fied in individual 1, and six were identified in individual

2 (Table S2). Sanger validation confirmed two as de novo

in individual 1 and one in individual 2. Remarkably, the

same de novo c.607C>T mutation in PACS1 (RefSeq

accession number NM_018026.2 [MIM 607492]) was iden-

tified in both individuals (Figure 1B). This mutation is

predicted to result in an arginine-to-tryptophan substitu-

tion, p.Arg203Trp (Figure 1C), at an evolutionarily

invariant position in both PACS1 and its close paralog

PACS2 (Figure S2). The c.607C>T mutation was absent in

150 alleles of control individuals of the Dutch population,

in 2,304 alleles present in our local variant database (which

is derived from exome-sequencing experiment), and in

7,020 alleles of European American origin from the

National Heart, Lung, and Blood Institute (NHLBI) Exome

Sequencing Project.

PACS1 is a trans-golgi-membrane traffic regulator3,4 that

directs protein cargo and several viral-envelope proteins.4–6

PACS1 mRNA expression is upregulated during human

embryonic brain development and has low expression

after birth (see BrainSpan: Atlas of the Developing Human

Brain in Web Resources). PACS1 contains a furin (cargo)-

binding region (FBR) bearing a CK2-binding motif, an

autoregulatory domain, and N- and C-terminal ends of

unknown function. Our p.Arg203Trp substitution is

positioned in the FBR directly adjacent to the R196RKRY

CK2-binding motif that regulates the phosphorylation

status of the autoregulatory domain and PACS1 activa-

tion7,8 (Figure 1C).

The chance to observe an identical de novo base-pair

change in two individuals is extremely small, indicating

that our recurrent finding of the exact same de novo

base-pair change in these individuals with identical clin-

ical presentation and its absence from ~9,000 control

alleles strongly support causality. However, to provide

further evidence and to probe the mechanistic basis of

the dysmorphic phenotype, we studied the behavior of

the p.Arg203Trp substitution in craniofacial cartilaginous

structures in zebrafish embryos. We injected either wild-

type (c.607C [p.Arg203]) or mutant (c.607T [p.Trp203])

human PACS1 mRNA into 2- to 4-cell-stage zebrafish

embryos. On scoring Alcian-blue-stained 4-day-old

embryos injected with either 50 pg wild-type or 50 pg

mutant PACS1 mRNA (n ¼ 61 embryos per batch; scored

blind to injection cocktail), we observed that relative to

embryos expressing wild-type PACS1, embryos expressing

mutant PACS1 showed a significant reduction in cranial
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cartilaginous structures at the ventral aspect (p < 0.001);

embryos expressing wild-type PACS1 were indistinguish-

able from uninjected control zebrafish (Figure 2A and

Figure S4B). The induction of a craniofacial phenotype

upon overexpression of mutant human PACS1 mRNA

argues against a loss-of-function effect of the mutation

but cannot differentiate between a gain-of-function or

dominant-negative mechanism. To examine these possi-

bilities, we injected equimolar ratios of 50 pg wild-type

and 50 pg mutant mRNA together. We observed a signifi-

cant rescue of the mutant craniofacial phenotype (n ¼
55; p < 0.001), suggestive of a dominant-negative mecha-

nism (Figure 2A).

The loss of craniofacial structures upon expression of

mutant PACS1 mRNA might be the result of defective

migration of cranial-neural-crest cells (CNCCs), progeni-

tors that give rise to themajority of skeletal and connective

tissues in the face.9–11 As an initial test of this hypothesis,

we injected wild-type or mutant RNA in 2- to 4-cell-stage

sox10::eGFP transgenic zebrafish embryos, which express

green fluorescent protein (GFP) in CNCCs. Analysis of

4-day-old embryos showed a significant reduction in the

migration of GFP-labeled cells (n ¼ 55; p < 0.001) in the

anterior-most region of the embryo (head), confirming

that the absence of Alcian-blue staining is at least in part

due to the loss of CNCC-derived progenitors (Figure 2B).

To examine the specificity of the CNCC-migration pheno-

type, we isolated RNA from the trunk and head regions of

injected embryos and analyzed sox10::eGFP-positive cells

harvested from enteric-neural-crest cells (ENCCs) and

CNCCs. We observed a significant reduction in GFP

mRNA levels in the head. The phenotype was specific to

this region; we observed no differences in GFP mRNA

levels in the trunk of injected embryos (Figure S3).

Together, these data suggest that PACS1 can promote the

specification and migration of CNCCs, although fate-

mapping studies will be required for substantiating these

observations.

To assess whether the phenotypes observed in the two

affected individuals and zebrafish embryos might be the

result of misfolding and/or mistrafficking of the protein,

we studied GFP-tagged wild-type (p.Arg203) and altered

(p.Trp203) PACS1 in ARPE-19 cells. We examined the local-

ization of the constructs in cells grown to confluence.

Analysis of ~150 cells showed that 32% of cells with the

altered construct contained cytoplasmic GFP aggregates,

a phenotype seen in <4% of cells with the wild-type

construct (Figure 3A). Because aggregates of the altered

GFP-tagged p.Trp203 PACS1might be the result of misfold-

ing, we next queried whether altered PACS1 stability might

also be perturbed. We transfected wild-type and altered

PACS1 constructs into human embryonic kidney (HEK)

293FT cells (given that transfection efficiency is >90%).

Whereas GFP expression of wild-type PACS1 diminishes

over time, expression of altered PACS1 remains constant,

indicating that the altered protein remains more stable

than the wild-type protein (Figure 3B and Figure S4A).
mber 7, 2012
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Figure 2. In Vivo Functional Characterization of the p.Arg203Trp Substitution in PACS1
(A) Alcian-blue staining of 4-day-old zebrafish larvae expressing either 50 pg wild-type (c.607C [p.Arg203]) or 50 pg mutant (c.607T
[p.Trp203]) PACS1 RNA. Left panel: craniofacial cartilaginous structures visualized in both lateral and ventral views of the embryo. Right
panel: craniofacial phenotypes in embryos expressing wild-type PACS1, mutant PACS1, and both wild-type andmutant PACS1 are quan-
tified. White arrows and asterisks highlight Meckel’s cartilage in the lateral and ventral perspectives of the embryos. Human wild-type
and mutant PACS1mRNAwas transcribed in vitro with a mMESSAGE mMACHINE SP6 Kit (Ambion), and 0.5 nl was microinjected into
2- to 4-cell-stage zebrafish embryos.
(B) Imaging of 4-day-old sox10::eGFP zebrafish larvae expressing either 50 pg wild-type or mutant PACS1 RNA. Left panel: migration of
eGFP-labeled cranial-neural-crest cells (CNCCs). Right panel: CNCC-migration phenotype scored in embryos expressing wild-type
PACS1, altered PACS1, and both wild-type and altered PACS1.
Given that we observed cellular aggregates, as well as

defects in protein stability, we next asked whether the

altered variant changes the formation of PACS1-dependent

complexes. We observed no significant effect of altered

PACS1 on two known interactors, AP3D1 and CLCN7

(data not shown). However, we observed a significant

phenotype for a third interactor, TRPV4. Specifically, we

cotransfected GFP-tagged PACS1 with V5-tagged full-

length TRPV4 (TRPV4v1; RefSeq NM_021625) and a

smaller TRPV4 (TRPV4v2; RefSeq NM_147204) isoform

that is missing residues 311–371, which are predicted to

encode an ankyrin repeat. Although both wild-type and

altered PACS1 bound to full-length TRPV4 at similar affin-

ities, we detected significantly less TRPV4v2 in the immu-

noprecipitate with the altered PACS1 (Figure 3C). TPRV4

has been implicated in the migration of tumor endothelial

cells,12 in visceral mechanosensation,13 and, more broadly,

in the F-actin-mediated regulation of the shape of cellular

surfaces.14 It is unclear how TRPV4v2 participates in

disease etiology, but we note that impairment of its known

role in visceral mechanosensation in the gastrointestinal

tract might have contributed to the volvulus that indi-

vidual 1 experienced in the neonatal period.13 Further-
The American Jou
more, the binding of full-length TRPV4 to wild-type and

altered PACS1 is consistent with the lack of anosmia in

individuals 1 and 2.15–17 Our data suggest that the intro-

duction of the p.Arg203Trp substitution triggers cyto-

plasmic aggregates, leads to protein-trafficking defects,

and most likely abrogates the ability of PACS1 to perform

its normal function.

All together, our data show that de novo mutations in

PACS1 cause a hitherto unknown syndrome of ID in

combination with distinct craniofacial features and

genital abnormalities. The most parsimonious model is

that of a dominant-negative mechanism that abrogates

the ability of PACS1 to mediate the specification and

migration of Sox10-positive cells in the neural crest.

This in turn would perturb the migration of cells along

the branchial arch, contributing to the striking craniofa-

cial phenotype of our affected individuals. Our findings

potentially implicate a splice isoform of TRPV4 in this

process; however, the function of this isoform is not

known, nor can we exclude that the mutation in the

affected individuals also affects other PACS1 roles. Our

findings highlight how the combination of detailed

clinical phenotyping, unbiased genomic analysis, and
rnal of Human Genetics 91, 1122–1127, December 7, 2012 1125
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Figure 3. In Vitro Functional Characterization of the p.Arg203Trp
Substitution in PACS1
(A) Localization of GFP-tagged wild-type and altered PACS1 in
transfected ARPE-19 cells grown to confluence and stained with
a GFP antibody. ARPE-19 cells were grown in Dulbecco’s Modified
Eagle Medium and Ham’s F-12 Nutrient 1:1 mixture (DMEM/F-12,
Invitrogen) with 10% fetal bovine serum (FBS) and 2 mM L-gluta-
mine. Transfection of wild-type and mutant PACS1 plasmids was
carried out with FuGene6 Transfection Reagent (Roche). Cells
were fixed with 4% paraformaldehyde 72 hr after transfection
and were probed with a GFP antibody (Santa Cruz, sc-8334) and
a secondary antibody, Alexa Fluor 488 IgG (Invitrogen).
(B) Quantification of wild-type and p.Trp203 PACS1 stability in
transfected cells treated with cycloheximide (CHX). The mean
measurement of triplicate experiments is shown, and the error
bar represents the SEM. HEK 293FT cells were grown in Dulbecco’s
Modified Eagle Medium (DMEM, Invitrogen) containing 10% FBS
(Invitrogen) and 2 mM L-glutamine (Invitrogen). Cells were
treated with 50 mM CHX (Sigma) for 6 hr and harvested in co-IP
buffer.
(C) Immunoprecipitation of GFP-tagged wild-type and altered
PACS1 and V5-tagged TRPV4v1 (RefSeq NM_021625) and
TRPV4v2 (RefSeq NM_147204). HEK 293 cells were transfected
with tagged constructs and harvested in co-IP buffer after 48 hr.
Immunoprecipitation was performed with a GFP antibody and
immunoblotted with a V5 antibody.
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functional dissection of variants informs diagnosis and

provides insight into fundamental biological processes

such as the migration of CNCCs.
Supplemental Data

Supplemental Data include four figures and two tables and can be

found with this article online at http://www.cell.com/AJHG.
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