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1 Introduction

In the 1990s, it was demonstrated [1–3] that in five dimensions (5D) a Chern-Simons term

is generated in a supersymmetric Yang-Mills theory by integrating out massive hyper-

multiplets and keeping only the gauge field of the vector supermultiplet. In a manifestly

supersymmetric setting, which takes into account the entire vector supermultiplet, a re-

lated one-loop calculation was given in [4], both in the Coulomb and non-Abelian phases.

Using the covariant harmonic supergraphs [5, 6] and the heat kernel techniques in har-

monic superspace [7, 8], it was shown [4] that the hypermultiplet effective action contains

a supersymmetric Chern-Simons (SCS) term.

Within the component approach, the off-shell non-Abelian SCS action (in the presence

of conformal supergravity) in five dimensions was first constructed by Kugo and Ohashi [9].

Their approach, however, was not systematic. They started with the Abelian SCS action,1

which was efficiently derived using the linear supermultiplet action, and then extended it by

adding appropriate non-Abelian structures, order by order in the coupling constant, in such

1The off-shell Abelian SCS action in five dimensions was constructed for the first time by Zupnik in 5D

N = 1 harmonic superspace [10].
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a way as to make the action supersymmetric. In the flat space limit, the non-Abelian SCS

action is superconformal, which makes this theory very interesting for various applications.

Unlike the component construction of [9], a closed-form expression for the non-Abelian

SCS action has never been given in a superspace setting. In the Abelian case, the SCS

action was derived in the 5D N = 1 harmonic [10] and projective [11] superspaces,2 and

also in terms of 4D N = 1 superfields [19].3 As concerns the non-Abelian case, there exists

a unique definition [10] for the variation of the SCS action with respect an infinitesimal

deformation of the analytic gauge prepotential, V ++ → V ++ + δV ++, which describes the

Yang-Mills supermultiplet within the harmonic-superspace approach.4 However, it is not

yet known how to integrate this variation in a closed form (see the erratum to [10]). In the

projective-superspace approach, the variation of the non-Abelian SCS action can be defined

similar to [10] using the formalism of [11]. But it is also unclear how to integrate it. For

completeness, it is worth mentioning the attempt to construct a non-Abelian SCS action

in terms of 4D N = 1 superfields [20, 21]. But their action is valid only in a Wess-Zumino

gauge, and therefore it is hardly useful.

In this paper we present a closed-form expression for the non-Abelian SCS action in

the conventional 5D N = 1 superspace setting described in [11]. To achieve this, we do

not define the action as an integral over the superspace or its analytic subspace. Instead,

we adopt the superform construction of supersymmetric invariants [22–26], also known as

the rheonomy approach [22] or the ectoplasm approach [24–26]. More specifically, we will

build on the recent papers [27–29] in which N ≤ 6 conformal supergravity actions in three

dimensions have been constructed efficiently and elegantly via the superform approach

by making use of the Chern-Simons form together with a curvature induced form. This

method is a generalization of the superform formulation for the linear supermultiplet in

four-dimensional N = 2 conformal supergravity given in [30].5 Such an approach can

be adapted to five-dimensions and we endeavor to demonstrate this for the non-Abelian

SCS theory.

The superform approach can also be used to describe the dynamics of 5D off-shell

supermultiplets with an intrinsic central charge. Of course, such theories have been studied

in components [9, 35, 36] and in harmonic superspace [11, 37]. In the component setting,

however, one has to use rather different ideas in order to describe (i) the non-abelian

Chern-Simons theory and (ii) the models for off-shell supermultiplets with an intrinsic

2The relationship between the 4D N = 2 harmonic [12, 13] and projective [14–16] superspace formula-

tions is spelled out in [17] (see also [18] for a recent review). The same relationship holds in the case of 5D

N = 1 supersymmetry.
3The action given in [19] was derived using an ad hoc procedure; this action is trivially deduced from

the systematic projective-superspace construction of [11].
4The one-loop calculation in [4] consisted of demonstrating that varying the hypermultiplet effective

action produces a SCS action [10] as the leading quantum correction.
5This is an example of a known construction where an invariant derived from a closed super d-form can be

generated from a closed, gauge-invariant super (d+1)-form provided that the latter is Weil trivial, i.e. exact

in invariant cohomology (a concept introduced by Bonora, Pasti and Tonin [31] in the context of anomalies

in supersymmetric theories). Examples of this include Green-Schwarz actions for various branes [32], as

well as some higher-order invariants in other supersymmetric theories which were studied, e.g., in [33, 34].
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central charge. As will be shown below, if the superform approach is employed the two

types of theories are formulated uniformly in superspace.

This paper is organized as follows. In section 2, we introduce the superform formulation

of the Yang-Mills supermultiplet and use it to construct the Chern-Simons action. To do so

we use both the Chern-Simons form and a curvature induced form that we will introduce.

In section 3, we turn to supermultiplets with central charge. We provide both the superform

formulations for a gauge two-form supermultiplet and the linear supermultiplet with central

charge. This immediately leads to the action principle based on the linear supermultiplet.

Concluding comments are given in section 4. Finally, in the appendix we analyze the

possibility to have a gauge connection that is not annihilated by the central charge.

Throughout the paper, we follow the 5D notation and conventions of [11].

2 Non-abelian Chern-Simons theory

In this section, we describe the non-Abelian SCS theory based on a Yang-Mills supermul-

tiplet and derive the corresponding action via the superform approach.

2.1 Yang-Mills supermultiplet

Conventional 5D N = 1 Minkowski superspace R
5|8 may be parametrized by the coordi-

nates zÂ = (xâ, θα̂i ). One can introduce flat covariant derivatives D
Â

= (∂â, D
i
α̂) which

obey the algebra

[D
Â
, D

B̂
} = T

ÂB̂
ĈD

Ĉ
, (2.1)

with

T i
α̂
j

β̂

ĉ = −2iεij(Γĉ)
α̂β̂

(2.2)

the only non-vanishing torsion component.

The non-Abelian vector supermultiplet may be described in superspace by introducing

the gauge covariant derivatives6

D
Â
= (Dâ,D

i
α̂) = D

Â
+ iV

Â
(z) , {D

Â
,D

B̂
} = T

ÂB̂
ĈD

Ĉ
+ iF

ÂB̂
, (2.3)

where V
Â
is a gauge connection taking values in the Lie algebra of the gauge group. The co-

variant derivatives and field strength may also be written in a coordinate-free way as follows

D = d + iV , F = dV − iV ∧ V , (2.4)

where

D := dzÂD
Â
, V := dzÂV

Â
, F :=

1

2
dzB̂ ∧ dzÂF

ÂB̂
. (2.5)

The covariant derivatives possess the gauge transformation law

D
Â
→ eiτ D

Â
e−iτ , τ † = τ , (2.6)

6Keep in mind that the operation of complex conjugation acts as (Di
α̂F )∗ = −(−1)ε(F )Dα̂

i F
∗, where

ε(F ) is the Grassmann parity of F , see [11] for details.
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where the Lie-algebra-valued gauge parameter τ(z) is arbitrary modulo the reality condition

imposed. This implies that the gauge connection and field strength transform as follows

V → eiτ V e−iτ − ieiτ de−iτ , F → eiτ F e−iτ . (2.7)

The field strength satisfies the Bianchi identity

DF = dF + iV ∧ F − iF ∧ V = 0 , D[ÂFB̂Ĉ} − T[ÂB̂
D̂F|D̂|Ĉ} = 0 . (2.8)

Upon constraining the lowest mass dimension component of the field strength tensor

as [10, 11, 38]

F i
α̂
j

β̂
= −2iεijε

α̂β̂
W , (2.9a)

the remaining components are found to be

Fâ
j

β̂
= (Γâ)β̂

γ̂Dj
γ̂W , F

âb̂
=

i

4
(Σ

âb̂
)α̂β̂Dk

(α̂Dβ̂)kW . (2.9b)

Here the superfield W is Hermitian, W † =W , and obeys the superfield Bianchi identity

D
(i
α̂D

j)

β̂
W =

1

4
ε
α̂β̂
Dγ̂(iD

j)
γ̂ W . (2.10)

From the above constraint one can derive identities involving products of spinor derivatives

acting on W . We list these below:

Di
α̂D

j

β̂
W = −

1

2
εijDk

(α̂Dβ̂)kW +
1

4
ε
α̂β̂
Dγ̂(iD

j)
γ̂ W − iεijD

α̂β̂
W , (2.11a)

Di
α̂D

γ̂(jD
k)
γ̂ W =

1

3
εijDα̂lD

γ̂(kD
l)
γ̂W +

1

3
εikDα̂lD

γ̂(jD
l)
γ̂W

= 8iεi(jDα̂γ̂D
γ̂k)W − 8εi(j [W,D

k)
α̂ W ] , (2.11b)

Di
α̂D

k

(β̂
Dγ̂)kW = 4iε

α̂(β̂Dγ̂)δ̂D
δ̂iW − 4iD

α̂(β̂D
i
γ̂)W . (2.11c)

As a result of the above identities, we may define the independent fields contained in

W as

ϕ :=W | , Ψi
α̂ := −iDi

α̂W | , F
α̂β̂

:=
i

4
Dk

(α̂Dβ̂)k
W | , Xij :=

i

4
Dα̂(iD

j)
α̂W | , (2.12)

where the bar projection of a superfield U(z) = U(x, θ) is defined by the standard rule

U | := U(x, θ)|θ=0. The component gauge field is identified with Vâ| and we will drop the

bar projection when it is clear that we are referring to the component field. The component

field strength F
âb̂

can be expressed in terms of the gauge field as follows

F
âb̂

= 2∂[âVb̂] + i
[

Vâ, Vb̂
]

. (2.13)

It is seen that the vector supermultiplet consists of the following component fields: ϕ, Ψi
α̂,

Vâ and Xij .
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The supersymmetry transformations of the fields ϕ, Ψi
α̂, Vâ and Xij may be obtained

by evaluating the component projection of the identities (2.11). This gives

δξϕ = iξγ̂kΨ
k
γ̂ , (2.14a)

δξΨ
i
α̂ = −2ξβ̂iF

α̂β̂
+ ξα̂jX

ij + ξβ̂iD
β̂α̂
ϕ , (2.14b)

δξX
ij = −2iξα̂(iDα̂

β̂Ψ
j)

β̂
− 2ξα̂(i[ϕ,Ψ

j)
α̂ ] , (2.14c)

δξVâ = ξ
β̂
j F

j

β̂
â| = −iξ

α̂
j (Γâ)α̂

β̂Ψj

β̂
, (2.14d)

where we have used Dâ to mean its projection, Dâ| = ∂â + iVâ|, when acting on a compo-

nent field.

2.2 Superforms and the Chern-Simons action

The SCS action may readily be found in the Abelian case with the use of the action

principle based on a linear supermultiplet without central charge. However, a general-

ization of the action principle to the non-Abelian case is not straightforward. In com-

ponents, the non-Abelian SCS action was constructed by Kugo and Ohashi [9] by first

starting with the Abelian Chern-Simons action. They added non-Abelian structures to

the action and checked supersymmetry with the supersymmetry transformations of the

non-Abelian theory.

There is a more elegant alternative offered by the superform approach to construct

supersymmetric invariants. In conventional 5D superspace R
5|8, the formalism makes use

of a closed five-form

J =
1

5!
dzÊ ∧ dzD̂ ∧ dzĈ ∧ dzB̂ ∧ dzÂJ

ÂB̂ĈD̂Ê
, dJ = 0 . (2.15)

Under an infinitesimal coordinate transformation generated by a vector field ξ = ξA∂A, the

five-form varies as

δξJ = LξJ ≡ iξdJ + diξJ = diξJ . (2.16)

If we assume that the components ξA vanish at infinity in R
5|8 then we have the super-

symmetric invariant

S =

∫

R5

i∗J , (2.17)

where i : R5 → R
5|8 is the inclusion map. This can be represented as

S =

∫

d5x ∗J |θ=0 ,
∗J =

1

5!
εâb̂ĉd̂êJ

âb̂ĉd̂ê
. (2.18)

A suitable action must also be invariant under all gauge symmetries of a dynamical

system under consideration. If the closed five-form J also transforms by an exact form

under the gauge transformations,

δJ = dΘ , (2.19)

then the functional (2.17) is a suitable candidate for an action.

– 5 –
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For the Chern-Simons action, following [27, 28], we will construct a gauge invariant

closed five-form by first finding two solutions, ΣCS and ΣR, to the superform equation

dΣ = 〈F 3〉 := tr
(

F ∧ F ∧ F
)

. (2.20)

The first of which is the Chern-Simons form ΣCS. The existence of the second solution,

the curvature induced form ΣR, is a direct consequence of the constraints we imposed on

the geometry, eq. (2.9a). If they transform by an exact form under the gauge group then

their difference

J = ΣCS − ΣR (2.21)

will yield an appropriate closed five-form that describes the action.

2.2.1 Chern-Simons five-form

Representing 〈F 3〉 = dΣCS yields the Chern-Simons form

ΣCS = tr

(

V ∧ F ∧ F +
i

2
V ∧ V ∧ V ∧ F −

1

10
V ∧ V ∧ V ∧ V ∧ V

)

. (2.22)

Since ΣCS has been constructed by extracting a total derivative from the gauge invariant

superform 〈F 3〉 it must transform by a closed form under the gauge group. In fact, one

can show it transforms by an exact form,

ΣCS → ΣCS − d tr

(

dτ ∧

(

V ∧ F +
i

2
V ∧ V ∧ V

))

. (2.23)

2.2.2 Curvature-induced five-form

To construct the curvature-induced five-form we need to find a gauge-invariant solution to

dΣ = tr
(

F ∧ F ∧ F
)

(2.24a)

or, equivalently,

2D[AΣBCDEF} −5T[AB
GΣ|G|CDEF} = 30 tr

(

F[ABFCDFEF}

)

, (2.24b)

where the gauge covariant derivative DA is defined by eq. (2.3). Note that since Σ is a

gauge singlet we have

DAΣ = DAΣ . (2.25)

Keeping this in mind, we will use gauge covariant derivatives everywhere in this section.

On dimensional grounds, it is natural to impose the constraint7

Σ
α̂β̂γ̂δ̂ǫ̂

= 0 . (2.26)

7We denote pairs of spinor and isospinor indices, e.g. i
α̂ by underlined spinor indices, e.g. α̂.
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Then analyzing the superform equation (2.24) by increasing mass dimension and using the

identities (2.11) yields all the remaining components of the curvature induced five-form.

One finds the following components:

Σâ
i
α̂
j

β̂

k
γ̂
l

δ̂
=− 4

(

εijεkl
(

(Γâ)α̂β̂εγ̂δ̂ + (Γâ)γ̂δ̂εα̂β̂
)

+ εikεjl
(

(Γâ)α̂γ̂εβ̂δ̂ + (Γâ)β̂δ̂εα̂γ̂
)

+ εilεjk
(

(Γâ)α̂δ̂εβ̂γ̂ + (Γâ)β̂γ̂εα̂δ̂
)

)

tr(W 3) , (2.27a)

Σ
âb̂

i
α̂
j

β̂

k
γ̂ = − 4i

(

εjkε
β̂γ̂
(Σ

âb̂
)α̂

δ̂Di

δ̂
+ εijε

α̂β̂
(Σ

âb̂
)γ̂

δ̂Dk

δ̂
+ εkiεγ̂α̂(Σâb̂

)
β̂
δ̂Dj

δ̂

)

tr(W 3) , (2.27b)

Σ
âb̂ĉ

i
α̂
j

β̂
=−

3

4
εijε

α̂β̂
ε
âb̂ĉd̂ê

(Σd̂ê)γ̂δ̂tr(W 2Dk
γ̂Dδ̂k

W + 4WDk
γ̂WDδ̂k

W )

−
3

2
ε
âb̂ĉd̂ê

(Σd̂ê)
α̂β̂

tr(W 2Dγ̂(iD
j)
γ̂ W + 4WDγ̂(iWD

j)
γ̂ W ) , (2.27c)

Σ
âb̂ĉd̂

i
α̂ =−

i

8
ε
âb̂ĉd̂ê

(Γê)α̂
β̂tr

(

6W{Dj

(β̂
Dγ̂)jW,D

γ̂iW}+ 3W{Dγ̂(iD
j)
γ̂ W,Dβ̂j

W}

+ 16Dγ̂(iWD
j)
γ̂ WDβ̂j

W
)

− iε
âb̂ĉd̂ê

(Γê)β̂γ̂tr
(

D
(i

β̂
WD

j)
γ̂ WDα̂jW

)

+ 3ε
âb̂ĉd̂ê

(Σêf̂ )α̂
β̂tr

(

WD
f̂
{W,Di

β̂
W}

)

+
3

2
ε
âb̂ĉd̂ê

tr
(

WDê{W,Di
α̂W}

)

. (2.27d)

The final component

Σ
âb̂ĉd̂ê

=−
3

32
ε
âb̂ĉd̂ê

tr
(

WDγ̂(kD
l)
γ̂WD

δ̂
(kDδ̂l)W − 2WD(γ̂kD

δ̂)
k WD

l
(γ̂Dδ̂)lW

+ 4Dγ̂(kD
l)
γ̂WD

δ̂
kWDδ̂l

W − 8D(γ̂kD
δ̂)
k WD

l
γ̂WDδ̂l

W

− 16WDf̂{W,D
f̂
W}+ 16iW [D

γ̂δ̂
Dγ̂kW,Dδ̂

kW ]

− 32W 2Dγ̂kWDγ̂kW
)

(2.27e)

is the most important from the point of view of constructing the action. It is obvious that

the superform constructed is gauge invariant. The last term in (2.27e), which is quartic in

W , disappears in the Abelian case.

Once all components are determined there still remains the final superform compo-

nent equation

5D[âΣb̂ĉd̂ê]α̂ −Dα̂Σâb̂ĉd̂ê
− 90tr

(

F[âb̂Fĉd̂
Fê]α

)

= 0 . (2.28)

However, this only remains as a check as it will always be identically satisfied (see appendix

of [39]).

2.2.3 The component non-abelian Chern-Simons action

Making use of the superforms ΣCS and ΣR one can construct a closed five-form

J = ΣCS − ΣR , (2.29)

– 7 –
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from which one can derive a supersymmetric action. The gauge invariance of the action,

modulo total derivatives, is guaranteed by the fact that ΣCS transforms via an exact form

while ΣR is invariant.

In components we have

J
âb̂ĉd̂ê

= 30tr

(

V[âFb̂ĉ
F
d̂ê] − iV[âVb̂VĉFd̂ê] −

2

5
V[âVb̂VĉVd̂Vê]

)

− Σ
âb̂ĉd̂ê

, (2.30a)

or, equivalently,

∗J =
1

4
εâb̂ĉd̂êtr

(

VâFb̂ĉ
F
d̂ê
− iVâVb̂VĉFd̂ê

−
2

5
V[âVb̂VĉVd̂Vê]

)

−
1

5!
εâb̂ĉd̂êΣ

âb̂ĉd̂ê
. (2.30b)

Applying eq. (2.17) to the above results and dividing out an irrelevant factor of 3 gives the

Chern-Simons action

S =

∫

d5x tr

{

1

12
εâb̂ĉd̂êVâFb̂ĉ

F
d̂ê
−

i

12
εâb̂ĉd̂êVâVb̂VĉFd̂ê

−
1

30
εâb̂ĉd̂êVâVb̂VĉVd̂Vê

−
1

2
ϕF

âb̂
F âb̂ +

1

2
ϕXijXij −

i

2
F
âb̂
(ΨkΣâb̂Ψk)

−
i

2
Xij(Ψ

iΨj) +
i

2
ϕΨk←→6D Ψk − ϕD

âϕDâϕ− ϕ
2ΨkΨk

}

, (2.31)

where we integrated by parts and defined

ϕΨk←→6D Ψk := ϕΨk 6DΨk − ϕ 6DΨ
kΨk . (2.32)

The above action may be compared to the action in [9]. The supersymmetry transforma-

tions of the component fields are given by eq. (2.14).

In the Abelian case the Chern-Simons action simplifies to8

S =

∫

d5x tr

(

1

12
εâb̂ĉd̂êVâFb̂ĉ

F
d̂ê
−

1

2
ϕF

âb̂
F âb̂ +

1

2
ϕXijXij −

i

2
F
âb̂
(ΨkΣâb̂Ψk)

−
i

2
Xij(Ψ

iΨj) + iϕΨk 6∂Ψk − ϕ∂
âϕ∂âϕ

)

. (2.33)

In the next section we will derive the above action with the use of the linear supermultiplet.

3 Off-shell supermultiplets with central charge

In this section, we provide a superform description for certain supermultiplets with gauged

central charge. Firstly, we discuss how to gauge the central charge in 5D N = 1 super-

space following [37]. We then give the superform formulation for the linear supermultiplet

with central charge and immediately derive the action. Finally, we give the superform

formulations for a gauge two-form supermultiplet and for a large tensor supermultiplet.

8Due to a typo in [11], the first term in the action differs from the one in [11] by a factor of 4.
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3.1 Gauging a central charge in superspace

Let ∆ denote a central charge. It can be gauged using an Abelian vector supermultiplet

associated with a gauge connection V . The procedure is similar to the one used in sub-

section 2.1. We simply need to replace the gauge connection V and field strength F in

eqs. (2.3) and (2.4) with those associated with the central charge ∆ as follows:

iV → V∆ , iF → F∆ . (3.1)

The central charge commutes with the covariant derivatives and annihilates both V and F

[∆,D
Â
] = 0 , ∆V = 0 , ∆F = 0 . (3.2)

Gauge transformations of the covariant derivatives are replaced by

δD
Â
= [Λ∆,D

Â
] =⇒ δV

Â
= −D

Â
Λ , (3.3)

where the gauge parameter is inert under the central charge, ∆Λ = 0. The possibil-

ity of allowing the central charge to not annihilate the gauge connection is discussed in

the appendix.

The field strength F is constrained to be formally the same as eq. (2.9) but with W

replaced by W. For later reference, we list the components of F here. They are

F i
α̂
j

β̂
= −2iεijε

α̂β̂
W , (3.4a)

Fâ
j

β̂
= (Γâ)β̂

γ̂Dj
γ̂W , (3.4b)

F
âb̂

=
i

4
(Σ

âb̂
)α̂β̂Dk

α̂Dβ̂k
W , (3.4c)

with W constrained by the Bianchi identity

D
(i
α̂D

j)

β̂
W =

1

4
ε
α̂β̂
Dγ̂(iD

j)
γ̂ W . (3.5)

3.2 Linear supermultiplet

Here we construct a superform formulation for the 5D linear supermultiplet9 with gauged

central charge which will naturally lead to the action for the supermultiplet.

3.2.1 Superform formulation for the linear supermultiplet

To construct a superform formulation for a supermultiplet with intrinsic central charge one

usually makes some modifications to superspace. In rigid supersymmetry with a central

charge, it is well known that one can treat the central charge as a derivative with respect

to an additional bosonic coordinate. In fact, this approach was used in 4D to construct

9In 4D N = 2 supergravity, the linear supermultiplet was introduced by Breitenlohner and Sohnius [40]

(see also [41]) building on the rigid supersymmetric construction due to Sohnius [42]. The 5D N = 1 linear

supermultiplet [43, 44] is a natural generalization of its 4D ancestor.
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a superform formulation for the linear vector-tensor supermultiplet [45–47].10 For certain

supermultiplets, e.g. the linear supermultiplet, the approach is equivalent to dimensional

reduction of supermultiplets from higher dimensions. However, the situation is more com-

plex in the presence of a gauged central charge. For the linear supermultiplet with gauged

central charge in 4D supergravity one finds that it is natural to extend the vielbein to

include the central charge gauge one-form [30]. The resulting formulation turns out to

be equivalent to a system of superforms. Here we will begin with a generalization of the

system of superforms found in [30] and introduce some useful notation that will help us

solve certain constraints.

We introduce a five-form Σ̃ and a four-form Φ which are coupled by the

superform equations

DΣ̃ = F ∧ Φ , DΦ = −∆Σ̃ (3.6)

and transform as scalars under the central charge gauge transformations (3.3)

δΣ̃ = Λ∆Σ̃ , δΦ = Λ∆Φ . (3.7)

The superforms Σ̃ and Φ may be related to the linear supermultiplet with central charge

by imposing certain constraints. It will prove useful to first introduce some notation to

deal with the superform equations (3.6).

We introduce indices that range over not just Â but an additional bosonic coordinate,

Â = (Â, 6). Then we may rewrite eq. (3.6) in components as

D[ÂΣB̂ĈD̂ÊF̂} −
5

2
T[ÂB̂

ĜΣ|Ĝ|ĈD̂ÊF̂} = 0 , (3.8)

where we have made the identifications

T
ÂB̂

6 = F
ÂB̂

, T6B̂
Â = T

B̂6
Â = 0 , D6 = ∆ (3.9)

and

Σ̃ =
1

5!
dzÊ ∧ dzD̂ ∧ dzĈ ∧ dzB̂ ∧ dzÂΣ

ÂB̂ĈD̂Ê
,

Φ =
1

4!
dzD̂ ∧ dzĈ ∧ dzB̂ ∧ dzÂΣ6ÂB̂ĈD̂

. (3.10)

We now impose simple constraints on the lowest mass dimension components

Σ
α̂β̂γ̂δ̂ǫ̂

= Σ
âα̂β̂γ̂δ̂

= Σ
âb̂α̂β̂γ̂

= Σ6α̂β̂γ̂δ̂ = Σ6âβ̂γ̂δ̂ = 0 ,

Σ6âb̂α̂β̂ = 4i(Σ
âb̂
)
α̂β̂
Lij , (3.11)

10The superform formulation and action for the linear supermultiplet with rigid central charge in 5D was

given in [48]. However, the case of a gauged central charge was not studied.
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and analyze eq. (3.8). The remaining components are fixed as follows:

Σ
âb̂ĉα̂β̂

= 2iε
âb̂ĉd̂ê

(Σd̂ê)
α̂β̂
WLij ,

Σ6âb̂ĉα̂ = −
1

3
ε
âb̂ĉd̂ê

(Σd̂ê)α̂
β̂D

β̂j
Lji ,

Σ
âb̂ĉd̂α̂

= −
1

3
ε
âb̂ĉd̂ê

(Γê)α̂
β̂(WD

β̂j
Lji + 3D

β̂j
WLji) ,

Σ6âb̂ĉd̂ =
i

24
ε
âb̂ĉd̂ê

(Γê)α̂β̂Di
α̂D

j

β̂
Lij ,

Σ
âb̂ĉd̂ê

=
i

24
ε
âb̂ĉd̂ê

(WDγ̂iDj
γ̂Lij + 3Dγ̂iDj

γ̂WLij + 8Dγ̂iWDj
γ̂Lij) , (3.12)

where Lij satisfies the constraint for the linear supermultiplet

D
(i
α̂L

jk) = 0 . (3.13)

In the above we did not assume anywhere that Lij is annihilated by the central charge.

However, if Lij is inert under the central charge, ∆Lij = 0, we have

dΦ = 0 (3.14)

and Lij becomes a gauge three-form supermultiplet, also known as the O(2) supermultiplet.

3.2.2 Action principle

Making use of the components ΣÂB̂ĈD̂Ê one can construct a closed five-form. The appro-

priate closed form is simply given by

J = Σ̃− V ∧ Φ . (3.15)

All that one must check is closure,

dJ = dΣ̃− V ∧ dΦ− dV ∧ Φ = DΣ̃− V ∧∆Σ̃− V ∧ DΦ−F ∧ Φ = 0 , (3.16)

and the transformation law under central charge transformations,

δΛJ = δΛΣ+ δΛV ∧ Φ+ V ∧ δΛΦ

= Λ∆Σ− dΛ ∧ Φ+ V ∧ (Λ∆Φ) = d(Λ∆Φ) . (3.17)

In components we have

J
âb̂ĉd̂ê

= Σ̃
âb̂ĉd̂ê

− 5V[âΦb̂ĉd̂ê] , (3.18a)

which gives
∗J =

1

5!
εâb̂ĉd̂êΣ̃

âb̂ĉd̂ê
−

1

4!
εâb̂ĉd̂êVâΦb̂ĉd̂ê

. (3.18b)

The action is then

S = −
i

24

∫

d5x
(

WDγ̂iDj
γ̂Lij + 3Dγ̂iDj

γ̂WLij + 8Dγ̂iWDj
γ̂Lij + Vâ(D

iΓâDj)Lij

)
∣

∣

∣

= −
1

2

∫

d5x
(

ϕG+Xijℓij + 2Ψγ̂kχγ̂k − 2Vâφ
â
)

, (3.19)
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where the component fields of W are defined as in eq. (2.12) and we have defined the

component fields of the linear supermultiplet as follows:

ℓij := Lij | , χi
α̂ :=

1

3
Dα̂jL

ij | , G :=
i

12
Dγ̂iDj

γ̂Lij | , (3.20a)

φâ :=
i

24
(Γâ)α̂β̂Di

α̂D
j

β̂
Lij | = Φâ| , Φ

âb̂ĉd̂
= ε

âb̂ĉd̂ê
Φê . (3.20b)

The supersymmetry transformations for the linear supermultiplet follow from the con-

straint (3.13) and are found to be

δξℓ
ij = −2ξα̂(iχ

j)
α̂ , (3.21a)

δξχ
i
α̂ = −

i

2
ξiα̂G+ iξβ̂iφ

α̂β̂
+ iξβ̂j Dβ̂α̂

ℓij , (3.21b)

δξG = −2ξα̂i Dα̂
β̂χi

β̂
− 2iξα̂i Ψα̂j∆ℓ

ij , (3.21c)

δξφâ = 2ξα̂i (Σâb̂
)α̂

β̂Db̂χi

β̂
− iξα̂i (Γâ)α̂

β̂Ψ
β̂j
∆ℓij − ξα̂i (Γâ)α̂

β̂ϕ∆χi

β̂
. (3.21d)

The action (3.19) and the supersymmetry transformations (3.21) agree with those given

in [35]. These results hold for the linear multiplet both with or without central charge.

It is worth noting that checking invariance of the component action (3.19) under the

central charge is nontrivial and requires having to derive some nontrivial identities. How-

ever, within the superform approach invariance follows much more easily. Furthermore,

the superform formulation for the linear supermultiplet tells us more than just the action.

For instance, taking the component projection of the Bianchi identity

5D[âΦb̂ĉd̂ê} = ∆Σ̃
âb̂ĉd̂ê

, (3.22)

gives the differential constraint on the component field φâ

2Dâφâ = ∆(ϕG+Xijℓij + 2ψγ̂kχγ̂k) . (3.23)

The supersymmetry transformations are also encoded in the Bianchi identities (3.8). This

provides an efficient means of computing some of the supersymmetry transformations. In

particular, the supersymmetry transformation of φâ, eq. (3.21d), follows directly from the

component projection of the Bianchi identity

Di
α̂Φâb̂ĉd̂

= −4D[âΦb̂ĉd̂]
i
α̂ +∆Σ̃

âb̂ĉd̂
i
α̂ . (3.24)

Using the action for the linear supermultiplet, one can derive the Abelian Chern-Simons

action by taking [11]

Lij = iDγ̂(iWD
j)
γ̂ W +

i

2
WDγ̂(iD

j)
γ̂ W . (3.25)

Using the above choice of Lij and the action principle for the linear supermultiplet one

derives (after removing a total derivative from the Lagrangian and dividing out an irrelevant

factor of 6) the Abelian action (2.33).
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3.3 Gauge two-form supermultiplet

We have seen how to derive the Abelian Chern-Simons action both by constructing a

curvature induced form and by making use of the linear supermultiplet. The vector su-

permultiplet turns out to be dual to a gauge two-form supermultiplet, which possesses an

intrinsic central charge and may be coupled to additional vector supermultiplets via Chern-

Simons terms. The supermultiplet is also called the gauge tensor multiplet or small tensor

multiplet in [36].11 In superspace, it is described, similar to the 4D N = 2 vector-tensor

supermultiplet [53], by a constrained real superfield L coupled to the vector supermultiplet

gauging the central charge [37]. In this subsection, we will turn to deriving a superform

formulation for this supermultiplet.

We start with the superspace setting of subsection 3.1 in which the central charge

is gauged by a vector supermultiplet W. However, we will also include coupling to an

additional Yang-Mills supermultiplet W (see subsection 2.1). Therefore in this subsection

we will make use of covariant derivatives which include both gauge connections12

D = d + V∆+ iV , D
Â
= D

Â
+ V

Â
∆+ iV

Â
. (3.26)

We introduce a gauge two-form, B = 1
2E

BEABAB and its three-form field strength H

defined by13

H := DB − tr

(

V ∧ F +
i

3
V ∧ V ∧ V

)

, (3.27)

where V and F is the Yang-Mills connection and field strength corresponding to the su-

perfield W .14 Here we do not assume B to be annihilated by the central charge. The

(infinitesimal) transformation law for the system of superforms is

δV = −dΛ , ∆Λ = 0 ,

δV = −dτ , ∆τ = 0 ,

δB = Λ∆B − tr(τ ∧ dV ) + dΓ , ∆Γ = 0 , (3.28)

where Λ, τ and Γ generate the gauge transformations of V , V and B respectively. The field

strength H transforms covariantly

δH = Λ∆H (3.29)

and satisfies the Bianchi identity

DH = F ∧∆B − tr(F ∧ F ) . (3.30)

11On-shell tensor multiplets in 5D gauged supergravity were introduced by Günaydin and Zagermann [49]

(see also [50]) as a generalization of the earlier work by Günaydin, Sierra and Townsend [51, 52] on 5D

supergravity-matter systems with vector supermultiplets.
12The central charge commutes with the Yang-Mills gauge group.
13Both B and H are Yang-Mills singlets.
14The special case of n Abelian vector supermultiplets may be obtained by taking tr(V ∧F ) → ηIJV

IF J ,

where η is a symmetric, ηIJ = ηJI , coupling constant and V I and F I are the gauge connections and field

strengths of the Abelian vector supermultiplets.
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Using the notation that was introduced in subsection 3.2.1, it is possible to extend the

Bianchi identity by introducing an additional bosonic index, Â = (Â, 6). To do this we

first note that we also have the additional superform equation

∆H = D(∆B) . (3.31)

We then extend the Bianchi identity (3.30) and the additional equation (3.31) to

D[ÂHB̂ĈD̂} −
3

2
T[ÂB̂

ÊH|Ê|ĈD̂} +
3

2
tr(F[ÂB̂FĈD̂}) = 0 , (3.32)

where we have defined

H6ÂB̂
:= ∆B

ÂB̂
, F6Â = FÂ6 = 0 , (3.33a)

T
ÂB̂

6 := F
ÂB̂

, T
Â6

B̂ = T6Â
B̂ = 0 , D6 := ∆ . (3.33b)

We now impose simple constraints on the lowest components of HÂB̂Ĉ

H
α̂β̂γ̂

= 0 , H6α̂β̂ = −2iεijε
α̂β̂
L . (3.34)

The remaining components of HÂB̂Ĉ can be found by analyzing eq. (3.32) subject to the

constraints (3.34) and the identifications (3.33). They are found to be:

H
âβ̂γ̂

= −2iεjk
(

Γâ)β̂γ̂(WL− tr(W 2)
)

, (3.35a)

H6â
j

β̂
= (Γâ)β̂

γ̂Dj
γ̂L , (3.35b)

H
âb̂

k
γ̂ = 2(Σ

âb̂
)γ̂

δ̂Dk

δ̂
(WL− tr(W 2)) , (3.35c)

H6âb̂ =
i

4
(Σ

âb̂
)α̂β̂Dk

α̂Dβ̂k
L ,

H
âb̂ĉ

= −
i

8
ε
âb̂ĉd̂ê

(Σd̂ê)α̂β̂
(

Dk
α̂Dβ̂k

(

WL− tr(W 2)
)

+ 2Dk
α̂WDβ̂k

L− 2tr(Dk
α̂WDβ̂k

W )
)

, (3.35d)

where L satisfies the constraints

D
(i
α̂D

j)

β̂
L =

1

4
ε
α̂β̂
Dγ̂(iD

j)
γ̂ L , (3.36a)

Dγ̂(iD
j)
γ̂

(

WL− tr(W 2)
)

= −2Dγ̂(iWD
j)
γ̂ L+ 2tr(Dγ̂(iWD

j)
γ̂ W ) . (3.36b)

The constraints derived from the geometry precisely agree with those in [37]. The remark-

able feature of this analysis is that it highlights how the constraints (3.36) follow from

requiring the presence of a two-form and simple constraints on its field-strength.

The corresponding superfield Lagrangian may be taken as [37] (formally the same as

that of a vector supermultiplet)

Lij =
i

2

(

2Dα̂(iLD
j)
α̂ L+ LDα̂(iD

j)
α̂ L

)

. (3.37)

The equation of motion for this model proves to be ∆L = 0.
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The off-shell component action for the gauge two-form supermultiplet (in supergravity)

together with its Chern-Simons couplings was constructed in [36]. The formulation of the

Chern-Simons couplings was inspired by the general form of vector-tensor supermultiplet

couplings in the superconformal framework [54].

3.4 Large tensor supermultiplet

In [36] it was discovered that there also exists the large tensor supermultiplet, which consists

of 16 (boson) + 16 (fermion) component fields. The large tensor supermultiplet can also

be seen to naturally originate in superspace. It may be viewed as a generalization of the

gauge two-form supermultiplet in which the constraints (3.36) are weakened. To show this

let L be a superfield constrained in the same way as eq. (3.36a),

D
(i
α̂D

j)

β̂
L =

1

4
ε
α̂β̂
Dγ̂(iD

j)
γ̂ L . (3.38)

Requiring only the above constraint, it is possible to show that consistency requires us to

have [37]

0 = ∆
{

Dγ̂(iD
j)
γ̂ (WL) + 2Dγ̂(iWD

j)
γ̂ L

}

= Dγ̂(iD
j)
γ̂ (W∆L) + 2Dγ̂(iWD

j)
γ̂ ∆L , (3.39)

which is automatically satisfied for the gauge two-form supermultiplet. Here we will take

eq. (3.39) as a second constraint on L. The constraints (3.38) and (3.39) allow us to

construct a superform framework describing the large tensor supermultiplet.

We begin by introducing a two-form B, transforming homogeneously under the local

central charge transformations

δB = Λ∆B , (3.40)

and an associated three form H

H = DB . (3.41)

Imposing the constraints

H
α̂β̂γ̂

= 0 , H6α̂β̂ = −2iεijε
α̂β̂

∆L (3.42)

and solving the Bianchi identities yields the components of H:

H
âβ̂γ̂

= −2iεjk
(

Γâ)β̂γ̂W∆L , (3.43a)

H6â
j

β̂
= (Γâ)β̂

γ̂Dj
γ̂∆L , (3.43b)

H
âb̂

k
γ̂ = 2(Σ

âb̂
)γ̂

δ̂Dk

δ̂
(W∆L) , (3.43c)

H6âb̂ =
i

4
(Σ

âb̂
)α̂β̂Dk

α̂Dβ̂k
∆L ,

H
âb̂ĉ

= −
i

8
ε
âb̂ĉd̂ê

(Σd̂ê)α̂β̂
(

Dk
α̂Dβ̂k

(

W∆L
)

+ 2Dk
α̂WDβ̂k

∆L
)

, (3.43d)
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where L is constrained by eqs. (3.38) and (3.39) and H6ÂB̂
= ∆B

ÂB̂
. There are still too

many component fields and to eliminate them we impose the constraint on B

Biα̂
j

β̂
= −2iεijε

α̂β̂
L , (3.44)

which fixes the remaining components via eq. (3.41) as

Bâ
j

β̂
= (Γâ)β̂

γ̂Dj
γ̂L , B

âb̂
=

i

4
(Σ

âb̂
)α̂β̂Dk

α̂Dβ̂k
L . (3.45)

At the highest dimension eq. (3.41) gives

3D[âBb̂ĉ] = −
i

8
ε
âb̂ĉd̂ê

(Σd̂ê)α̂β̂∆
(

Dk
α̂Dβ̂k

(

WL
)

+ 2Dk
α̂WDβ̂k

L
)

. (3.46)

The conditions (3.39) and (3.46) correspond to the ones imposed in [36] from requiring

closure of the supersymmetry transformations. In contrast with the gauge two-form super-

multiplet, which was based on the stronger constraints (3.36), the component fields of the

large tensor supermultiplet

∆Di
αL| , ∆2L| (3.47)

are no longer composite. We should remark that the above constraints can naturally be

generalized to include couplings to the Yang-Mills supermultiplet.

We can construct an action for an even number of large tensor supermultiplets LI . To

do so we make use of the superfield Lagrangian

Lij = Lijkin + L
ij
mass , (3.48)

where

Lijmass =
i

2
mIJ

(

2Dα̂(iLID
j)
α̂ L

J + LIDα̂(iD
j)
α̂ L

J
)

, mIJ = mJI , (3.49a)

Lijkin =
i

4
kIJ

(

2Dα̂(iLI
←→
∆D

j)
α̂ L

J + LI
←→
∆Dα̂(iD

j)
α̂ L

J
)

, kIJ = −kJI . (3.49b)

The constant matrices mIJ and kIJ are assumed to be nonsingular. The Lagrangian

Lij may be seen to be a linear supermultiplet. The component action in supergravity is

given in [36].

On-shell each large tensor supermultiplet describes 4 + 4 degrees of freedom [9].

The equations of motion for the large-tensor supermultiplets are given by the

superfield constraint

kIJ∆L
J +mIJL

J = 0 . (3.50)

Under the above constraint (3.46) becomes a duality condition on B,

1

2
kIJε

âb̂ĉd̂êDĉB
J

d̂ê
= −mIJ

(

WBJâb̂ + F âb̂LJ + i(Σâb̂)α̂β̂Dk
α̂WDβ̂k

LJ
)

. (3.51)

Furthermore, the 16 + 16 independent component fields

L| , Di
α̂L| , ∆L| , B

âb̂
| , Dγ̂(iD

j)
γ̂ L| , ∆Di

α̂L| , ∆2L| , (3.52)
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reduce to15

L| , Di
α̂L| , B

âb̂
| . (3.53)

These components correspond to only 4 + 4 degrees of freedom. To see this, we note that

the self-duality condition (3.51) implies that B
âb̂
| now possesses only 3 degrees of freedom.

Therefore we have 3 + 1 = 4 bosonic degrees of freedom. The remaining component field

Di
α̂L| contributes to the remaining 4 fermionic degrees of freedom.

4 Discussion

The closed-form expression for the non-Abelian SCS action in 5D N = 1 superspace is

one of the main results of this paper. The component action was constructed by Kugo

and Ohashi more than ten years ago [9]. However, our work has provided the first system-

atic, unambiguous and purely geometric derivation of this action. Our construction can

readily be generalized to the locally supersymmetric case by making use of the superspace

formulation for 5D N = 1 conformal supergravity [55]. Moreover, we believe our construc-

tion makes it it possible to address another long-standing problem — to formulate the 5D

N = 1 non-Abelian SCS action in terms of 4D N = 1 superfields. For this one has to use

the relations (2.27e) and (2.30b) in conjunction with the formalism of reduced superspace

introduced in [11]. We hope to elaborate on this issue elsewhere.

The idea of generalizing the gauge two-form supermultiplet in the way described in

subsection (3.4) may have an immediate application for the vector-tensor supermultiplet

in four-dimensions. To see this, we first recall that in superspace the vector-tensor super-

multiplet with gauged central charge L satisfies the constraint16

D(i
α D̄

j)
α̇ L = 0 . (4.1)

The above constraint can only be consistent if the following additional constraint is im-

posed [53]

0 = ∆
(

Dα(iDj)
α (WL) + D̄

(i
α̇ D̄

α̇j)(W̄L)− LDα(iDj)
αW

)

= Dα(iDj)
α (W∆L) + D̄

(i
α̇ D̄

α̇j)(W̄∆L)−Dα(iDj)
αW∆L , (4.2)

where W is the chiral field strength of the 4D N = 2 central charge vector supermultiplet,

Dα(iDj)
αW = D̄

(i
α̇ D̄

α̇j)W̄ . (4.3)

Although stronger constraints are usually chosen for L, our analysis of the large tensor

supermultiplet suggests that we could instead choose eq. (4.2) as a second constraint and

look for a consistent superform formulation. Furthermore, a similar possibility exists for the

variant vector-tensor supermultiplet [39, 56, 57].17 Whether the more general constraints

will lead to consistent supermultiplets is still an open problem.

15The component field Dγ̂(iDj)
γ̂ L| is composite as a result of eqs. (3.39) and (3.50).

16There are also additional constraints which are not important here.
17The analogue of (4.2) for the variant vector-tensor supermultiplet may be found in [39].
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A Alternative gauging of the central charge

In subsection (3.1) we made use of a vector supermultiplet to gauge the central charge.

This requires the gauge potential V to be inert under the action of the central charge,

∆V = 0. However, it was shown in [56, 57] that in 4D it is possible to gauge the central

charge with a gauge connection that is not annihilated by the central charge. To the best

of our knowledge, the possibility of gauging the central charge with a gauge connection

that is no longer inert under the central charge has never been properly analyzed in 5D. In

this appendix, we follow an approach similar to that given in [39, 58]. We do not assume

that the gauge one-form is annihilated by the central charge and analyze the possibilities

under reasonable constraints.

We begin as in subsection (3.1) by introducing gauge covariant derivatives

D
Â
= (Dâ,D

i
α̂) = D

Â
+ V

Â
∆ , [∆, D

Â
] = 0 , (A.1)

where V
Â
is a one-form gauge connection associated with the central charge ∆ and ∆V

Â
6= 0.

Here the gauge transformation of the gauge connection V
Â
becomes V

Â
to be

δV
Â
= −D

Â
Λ + Λ∆V

Â
=⇒ δD

Â
= [Λ∆,D

Â
] , (A.2)

where the gauge parameter is annihilated by the central charge, ∆Λ = 0.

The commutation relations for the gauged covariant derivatives are

[D
Â
,D

B̂
} = T

ÂB̂
ĈD

Ĉ
+ F

ÂB̂
∆ , (A.3a)

[∆,D
Â
] = F6Â∆ , (A.3b)

where we define the field strengths

F
ÂB̂

:= 2D[ÂVB̂} − TÂB̂
ĈV

Ĉ
, (A.4a)

F6Â := ∆V
Â
. (A.4b)

Here the field strengths F
ÂB̂

and F6Â are covariant with respect to gauge transformations

of V
Â

δF
ÂB̂

= Λ∆F
ÂB̂

, δF6Â = Λ∆F6Â . (A.5)
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The Bianchi identities satisfied by F
ÂB̂

and F6Â can be combined into one equation by ex-

tending the indices to include an additional bosonic coordinate, Â = (Â, 6). The extended

object FÂB̂ = (F
ÂB̂
,F6Â) satisfies the Bianchi identity

D[ÂFB̂Ĉ} − T[ÂB̂
D̂FD̂Ĉ} = 0 , (A.6)

where we have made the identifications

T
ÂB̂

6 = F
ÂB̂

, T6Â
6 = −TÂ6

6 = F6Â , T6Â
B̂ = −TÂ6

B̂ = 0 . (A.7)

We may now impose constraints on the field strength and analyze the consequences of

the Bianchi identities (A.6). We choose the simple constraint

F
α̂β̂

= −2iεijε
α̂β̂
M , (A.8)

where M is initially assumed to be an unconstrained superfield. Analyzing the Bianchi

identities yields the components

Fâ
j

β̂
= (Γâ)β̂

γ̂(Dj
γ̂M −MF6

j
γ̂) , (A.9a)

F6â =
i

8
(Γâ)α̂β̂D

α̂kF6
β̂
k , (A.9b)

F
âb̂

=
i

4
(Σ

âb̂
)α̂β̂(Dk

α̂Dβ̂k
M +MDα̂kF6

k

β̂
+ 2Dα̂kMF6

k
α̂) (A.9c)

and the constraints

Dk
γ̂F6

γ̂
k = −8i∆M , (A.10a)

D
(i
(α̂F6

j)

β̂)
= 0 , (A.10b)

D
(i
α̂D

j)

β̂
M =

1

4
ε
α̂β̂
Dγ̂(iD

j)
γ̂ M −

1

2
ε
α̂β̂
Dγ̂(iMF6

j)
γ̂ −

1

4
ε
α̂β̂
MDγ̂(iF6

j)
γ̂

+ 2D
(i
[α̂MF6

j)

β̂]
+MD

(i
[α̂F6

j)

β̂]
. (A.10c)

If we first assume that ∆M 6= 0 and all components of F
ÂB̂

are expressible in terms

of M and its covariant derivatives then the constraints (A.10a) and (A.10b) are solved by

F6
j

β̂
= Dj

β̂
lnM . (A.11)

Putting this expression into the last constraint gives the condition

D
(i
α̂MD

j)

β̂
M =

1

4
ε
α̂β̂
Dγ̂(iMD

j)
γ̂ M , (A.12)

which implies

D
(i
α̂MD

j

β̂
MD

k)
γ̂ M = 0 . (A.13)

The only sensible solution to the above constraint is

Di
α̂M = 0 . (A.14)
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However, this constraint implies that ∆M = 0, which is a contradiction.

Choosing ∆M = 0 reduces M to that of a vector supermultiplet

M =W , F6
j

β̂
= 0 (A.15)

with components given by eqs. (3.4) and (3.5).

The result of our analysis is in stark contrast to the situation in 4D. In 4D it was

pointed out by Theis [56, 57] that it is possible to gauge the central charge with the

use of a different supermultiplet whose novel feature is that its gauge one-form is not

annihilated by the central charge. The supermultiplet was later generalized to supergravity

in [39, 58] and called the variant vector-tensor supermultiplet. The component structure

of the supermultiplet is similar to that of the vector supermultiplet, possessing both a

one-form and a two-form gauge field.18 However, our analogous analysis in 5D shows that

(under the reasonable assumptions made) the only supermultiplet suitable to gauge the

central charge is the vector supermultiplet.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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