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Introduction 

In this paper we construct some new cohomologies and extensions in a 
symmetric monoidal category A, and investigate the connection between them. 

In Section 0 we give some preliminaries and notations. 
In Section 1 we construct cohomology groups H”(B, M) of a cocommutative 

Hopf monoid B with the coefficients in a left B-object commutative monoid M in 

the category A, and cohomology groups HE(B, A) of an abelian matched pair of 
Hopf monoids (B, A) in the same category. 

In Section 2 we define the notion of extensions in the category A. More 
precisely, there appear three kinds of extensions. We call them A-extension, 
%-extension and X-extension. In fact, %-extensions are dual to JU-extensions, 
and the notion of 5%extension is somehow the intersection of both above- 
mentioned notions. 

For example. let M be a commutative monoid and B a cocommutative Hopf 
monoid (>&I in A). Then the subject of A-extension theory is the following: 
How ‘many’ structures of a monoid exist on the product M C3 B, such that the 
arrows M M@'% M (8 B M@% M @ B 8 B are morphisms of monoids? We inves- 
tigate some properties of such extensions. Namely, similar to the classical 

group-extension theory, for an &extension there are induced an ‘action’ of B on 
M (i.e. an arrow Q: B @3 M + M) and a ‘twisting function’ Q, : B @ B-- M. 
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Main identities for such arrows (q,,. r,,,) are obtained (see Theorem 2.3 and 

Proposition 2.6). Unfortunately. these identities are not yet (on this level of 

generality) like the ‘cocycle condition’ for r,,,. For X-extensions the same is done. 

In Section 3 we put some additional conditions on extensions. For example, 

these assumptions on an &extension imply that it becomes a diagram of a 

cotensor product of B-coobjects; the notion of cotensor product is dual to the one 
from [12, p. 1981. These conditions enable us to transform the main identities for 

G-J=‘\,9 T,,,) in such a way that they become like the ‘cocycle condition’. As a 
consequence, we get a bijection between a set of equivalence classes of ,lu- 
extensions and the second group of cohomology H’(B, M). Similarly, a bijection 
between a set of equivalence classes of Z-extensions and the first group of 
cohomology #(B. A) is obtained. 

In Section 4 we show that our cohomologies and extensions give n-I particular 
cases several well-known theories, such as: group cohomology [2,6], cohomology 
of a group in an arbitrary category by Pareigis [ 111, Sweedler’s cohomology of 
coco,rr:nutative Hopf algebras [ 141, Singer’s cohomology of an abelian matched 
pair of Hopf algebras [13] and Doi’s cohomolcgies over commutative Hopf 
algebras [3]. 

0. Preliminaries 

Here we briefly recall the relevant definitions and facts from [7]. 
If B is a category, then the class of objects of B will be denoted by ]B] and if 

_4, B E ]B]. then the set of arrows (morphisms) of B from A to B will be denoted 

by B(A B). 
A monoidal category A consists of a category A, a bifunctor @ : A X A+ A, 

which is associative up to a natural isomorphism and an object e E IA], which 
is a unit object up to natural isomorphisms of the bifunctor 8 (i.e. 
e (8 A G A ,‘- A 63 e, A E I Al ) , plus several axioms on these isomorphisms [7]. If, 
additionally, A is equipped with the natural (in both variables) isomorphisms 
A 8 B G B 8 A, which, together with the above-mentioned ones satisfy several 
axioms, then A is called a symmetric monoidal category [7]. All diagrams in this 
paper are of the kind to which the coherence results of [7] can be applied. That is, 
we can omit all parentheses in big products; writing, for example, A @ B Qp C @ D 
instead of A (23 (B (23 (C 8 D)). Similarly, we can and will omit explicit references 
to isomorphisms derived from the associative, unitary, and permutation axioms. 

In what follows. (A, 8, e) denotes the fixed symmetric monoidal category. All 
objects and arrows considered in this paper, are assumed to be from A. 

We write permutation isomorphisms of the factors in the product of objects of 
A as in [5]. For example, 

(2,!.4,5,3):A@B@C@D@E+B@A@D@E@C. 



The symbol As” denotes the rrth power of A. i.e. AS” = A 0 @-times) 0 A. 

A @I = A and A;“’ = e_ 

0.1. Definitisn. A monoid (ir! A_) is a triple 

such that CL~(A@PJ=JLL,~(P~@A) and P,.~~&W= 1, =~..,(A@rl;,h 
The arrows p3 and Q are called a multiplication and a rutit, respectively. 
A set with an associative binary operation and with a unit element (i.e. a real 

monoid) will be called a set-monoid in order to distinguish this notion from the 

one of monoid objects in A. 

0.3. Remark. If (A, Pi. qJ and (A’, psqP. T,~.) are monoids, then, when we 
speak of the monoid structure on A 8 A’. we shall mean a multiplication 

and a unit r@qcl,:e-tA@A’. 

0.4. Definition. Let (A, p,.\, qA) be a monoid. We shall call it conzm/tcltiw. if one 
of the following equivalent conditions occurs: 

(0 P/4(2- I) = P.49 
(ii) the arrow pu, is a morphism of monoids. 

0.5. Remark. Let (A, pA , q.4) ix a monoid, a symbol & : A@” ---) A. rz 2 2. 
denotes any chain of arrows beginning a: A@” and going to A, built of ,FL~ and its 
@-products with itself or with A’s. Propositiort 1 from 17, p. 1671 guarantees that 
our description of pyl is unambiguous. The symbols pfi and $1 denote the arrows 
1, = A and qA, respectively. Moreover, if A is commutative, we have ~1 = 

p’:, ot, where t is any of the permutation isomorphisms (of factors in A’S 11th 

power). If A and A’ are commutative monoids, the monoid A @ A’ (see 0.3) is 
commutative too. 

The category of monoids (in A) and monoid x-rorphisms is denoted by s It(A). 

while the category of commutative monoids is denoted by C IU(A). 

0.6. Definition. Let (A, pti, q,.\ ) be a monoid, a left A-objecr is a pair 

W $1 : A 8 Ad-+ M), such that q,,(A @ CT,,) = CF,,( p,, @3 M) and u,,(T,, @ M) = 
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M. If (M, Q) and (M’, c+) are the left A-objects, we call f: M--* M’ a 
morphism of the left A-objects, iff fa;, = Q(A @f). 

The category of the left A-objects, and their morphisms is denoted by .A. 

0.7. Proposition. (Mac Lane [7]). Let (A, pA, qA ) be a monoid. Then there exists 

an adjunction 

(T,U):A+.A, 

where U is the forgetful ftrnctor and 

T(X)=(AC~X,/-Q~X:A@A@X-+A@JX), 

T(f)=A@f. Cl 

0.8. Definition. A comonoid (in A) is a triple 

such that (31s @B)& = (B @ q$$.,%~ and (Ed 0 B)eB = B = (B CD Em)&. 
The arrows & and Ed are called a comultiplication and a counit, respectively. 

Definition of morphisms of comonoids (or comonoid morphisms) is similar to 0.2. 

If (B, V& Ed) and (B’, 4+ +) are comonoids, then, when we speak of the 
comonoid structure on B 8 B’, we mean the duals to the formulas from 0.3. A 
comonoid (B, 3/8, Ed) is called cocommutative, iff lli, is a comonoid morphism, or 
equivalently, if ~4~ = (2, l)&. W e assume that we have made considerations dual 

to those from 0.5. The category of comonoids and comonoid morphisms is 
denoted by %(A), while the category of cocommutative comonoids is denoted by 
%%(A). 

If B is a comonoid, then the notions of a right B-coobject (N, pN : IV+ N 8 B) 
and of a morphism of right B-coobjects are defined dually to 0.6 and 0.7. The 
category of right B-coobjects and their morphisms is denoted by A”. 

Now we define a notion dual to that of a tensor product in [12, p. 1981. 

0.9. Definition. Let B be a comon.Jid and (N, pN : N + N 0 B) and 
(N’, P,~> : N’ ---) B 63 N’) be a right and a left B-coobjecr, respectively. The equd- 
irer (see [7]) of the pair of arrows ( pN C3 N’, N @ pNJ in A (if it does exist) is a 
cotensor product of B-coobjects N and N’ and is denoted by NBB N’. Thus we 
have the equalizer diagram in A 



All the following notions and propositions (0.10-0.22) are straightforward 
generalizations of well-known ones and are inspired by [8, 13, 141. 

0.10. Remark. If A is a monoid and B is a comonoid, then the set A(B. A) is 
equipped with a set-monoidal structure (denoted additively), which is determined 
by the following formulas: 

f+g=CCfJf@wh?~ f. gEA(B,A) and O=~,E~. 

The subgroup of all those elements of the set-monoid A( B, A), which have an 
inverse, is called a subgroup of regular arrows from B to A and is denoted by 

Reg(B,A)=(fEA(B,A)13gEA(B,A),f+g=O=g+f}. 

The inverse to f E Reg(B, A) is denoted by f *, so f + f* = 0 = f* + f. 

0.11. Remark. Let p : A + A’ be a monoid morphism and 4 : B ’ + B a comonoid 
morphism. Then for any f, g E A(B, A) we have the identities 

P(f +g)q=(pf +Pg)q=Pfq+Pgq=P(fq+gq)* 

If h E Reg(B, A), then we have the identities 

ph*q = (ph)*q = (phq)* = p(hq)* . 

Hence the mapping 

A(q, p): A(& A)-, A(& A’) , A(% P)(f) = Pf4 ’ 

is a homomorphism of set-monoids, and determines the homomorphism of the 
corresponding groups 

Reg( q, p) : Reg(B, A) + Reg( B’, A’) , R&q, P)(f) = PfS - 

If A is a commutative monoid and B is a cocommutative comonoid, then the 
set-monoid A(B, A) and the group Reg(B, A) are abelian. 

0.12. Definition. A Hopf morzoid (in A) is a 5-tuple (H, Pi. (cIHq rlH 9 Q )? such 

that 
(i) (H, Pi, qH) is a monoid, 

(ii) (H, &+, Q) is a comonoid, 
(iii) the arrows r,/+, and Q, are the monoid morphisms. 
The latter implies the identity 



which is called a Hopj conditiotz by many authors. 
of a morphism of Hopf monoids (Hopf monoid morphism) is 
sly. A Hopf monoid H is called commutative. iff pH is commuta- 

tive, and it is cocornmutative, iff &, is of the same kind. The categories of Hopf 
monoids, of cmmutative Hopf monoids and of cocommutative Hopf mtinoids are 
denoted by _Y? Q A), ,/4%(A) and %X\A), respectively. 

An aljtipode of H E 1 X(A)) is an arrow (if it does exist) 
S, : H+ H. such that S, + lH = 0 = 1 H + S,, in the set-monoid A(H, H). Thus, 
s, = (l/J. 

0.14. Remark. (i) If H is a Hopf monoid and M, M’ are the left H-objects, then, 
when we speak of the left -H-object structure on M 0 M’, we mean the action 

(ii) If H is a Hopf monoid and e is a unit object of A, then, when we speak of 
the left H-object or the right H-coobject structure on e, we mean the action 
+@e:H@e+e or coaction e@q,:e--,e@H. 

0.15. Remark. Let H be a Hopf monoid. -4 left H-object monoid is a 4-tuple 

(C such that 
(i) (C. q 1 is 2 Left H-object, 

(ii) (C, pc, Q.) is a monoid, 
(iii) the arrows p(- and qc are the left H-object morphisms. 
A morphism f : C * C’ of the left H-object monoids is an arrow f : C+ C’, 

such that f is a morphism of the left H-objects and of monoids, simultaneously. 
The category of left H-object monoids and their morphisms is denoted by J&A). 
The full subcategory of the left H-object monoids which are commutative as 
monoids, is denoted by .A%&A). 

0.16. Remark. Similarly defined are (H is a Hopf monoid): 
(i) The notion of a right H-coobject monoid 

here the come-on of H on D @ D is defined dually to 0.14(i); and the respective 
categories &(.%“‘) and JU&(AH). 

(ii) The norion of a left H-object comonoid 



and the respective categories V&A), Ft&,A). 
(iii) The notion of a right H-coobject comonoid 

(Y,py:Y+ Y@ H.&.:Y-+ Y@ Y,e,.:Y+e). 

and the respective categories %(A”), %%(Af’). 

0.17. Remark. As the reader has already noticed. every time considering the 
dual to any notion, we change not only the direction of arrows but the ordering of 
factors in @-products too, for example: a left H-object (M, a,, : H @ M ---) M) 
and its ‘dual’, a right H-coobject (N. paV : N ---) N C3 H). 

In what follows. every time, while speaking of the dual to any notion or 
consideration, we shall reverse all arrows and, simultaneously. reverse the 
ordering of factors in 8 -products, i.e. AQ9B@C+D@E becomes 
E@D-C@B@A. 

0.18. Definition. (Compare Definition 3.1 of [ 131.) An abelian matched pair of 
Hopf monoids (abelian pair) is a 4-tuple (B, A, o+ pB). such that 

(i) A is a commutative Hopf monoid and B is a cocommutative Hopf monoid, 
(ii) (A, uA) is a left B-object monoid and (B. pe) is a right A-coobject 

comonoid, 

0.19. Remark. let (B, A, Ok, ps) be an abelian pair, (M, CT,,) E IRAt and 
(N, ph’) E IA” I. Then we denote: 

0.20. Proposition. Let (B, A, a;3, pR) be an abelian pair and (M, a,,) E 1 BAl. 
Then (M C3 A, 6b,m,.l ) is a left B-object. 

Proof. Using the facts that (A, cr,,) is the left B-object moroid and (M g,,) is the 

left B-object, one can show that 
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On the other hand, using the Hopf condition on B and (v) from 0.18, one 
can show that the arrow 6 h,8A( pB (8, M C3 A) is equal to the right-hand composi- 

tion of the identity above. Thus we conclude that GblaA(B @ O,,,) = 

&3A( Pi3 @ M QD A). 
The verification of the identity &@&, @JM@A)=M@A can be done 

similarly. El 

We would like to mention that 0.20 is the generalization of Proposition 3.2 from 
[l3], and our proof follows step by step the proof of that original one. 

0.21. Definition. Let (B, A, CT~, pe) be an abelian pair. A (B, A) &object is a 
triple (M, on,, p,,,), such that 

(i) (M, qJ is a left B-object and (M, p,) is ZI right A-coobject, 

cii) &#%I = o,,,, (B @PM) = G?V @ A)p,*,* 

0.22. Definition. Let (B, A, o-~, pe) be an abelian pair. A (B, A)-biobject 
monoid is a 5-tuple (M, q,, pbf, p,,, q,J, such that 

(i) UK CQ,,, pM) is a (B, A)-biobject, 
(ii) the arrows p&, and q,,,, are both morphisms of left B-objects and right 

A-coobjects. 
The category of (B, A)-biobject monoids will be denoted by &((B. AjA) and the 

full subcategory of (B, A)-biobjects which are commutative as monoids, will be 
denoted by JH.I#X((~, AjA). 

1. Cohomologies 

The adjunction from 0.7 induces a new one. 

1.1. Proposition. Let B be a cocommutative Hopf monoid. Then there exists an 
adjunction 



Coinott~olo~ies ntrd emtuiotu in ttiotioidd ctmg~rt~~~ 113 

where U is a forgetful functor and T is deternuned by the formrlas 

Proof. If (C, & , EC j E 1 %%(A)I, then the identities 

show that T(C)E ]%%(,A)]. 
If f : C-, C’ is an arrow in %%‘(A), then the identities 

T(f)~qcj = I.c,@f = ar(,.,(BQP T(f)) + 

+ T(c’)T(f)=(B@f@ B~f)(1,3,2,4)(~B~cCr,-) 

= (T(f )@ T(f ))%,,, 9 

show that T(f) is from %%( BA). 
A bijection of the adjunction 

6 z %%(BA)(B@ CT D)s zv(A)(C, D) 

is determined as s(f)=f(q@C) and fi-‘(g)=q,(B@g). 0 

1.2. Remark. Any adjunction induces a comonad ]7]; the comonad induced by 
the adjunction from 1 .l is denoted by 

U=(U= T%: %%(BA)+ %‘%‘(BA), (Y IT+ l-8 :U+%‘). 

where cyc = q. :B@C+Cand S,= (B@qB@C‘):B@C*B@B%C. 

Let (M, O-,,,,, p,,,,, Q,) be a fixed left B-object commutative monoid. For any 

(C ‘) q-7 @CT ec)El(e(e(RA)landf,g~.A(C,M),thesumf +g=~,~(f@g)$& 
a morphism of B-obiects, i.e. f + g E B (C. M). The reason is that the arrows I,!+- 

and p, are morphisms of B-objects. Thus one can obtain the abelian group 
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,Reg(C. hi) = R A( C, M) n Reg(C, M ). Certainly, the correspondence of C and 

the abelian group R Reg( C, M ), determines the cotravariant functot 

sRe&. M): %%(BA)“P-+ Ab. 

1.3. Definition. Let us consider the right dew:: d iunctors 11 of the functor 
RReg(-, M), relative to the comonad B from 1.2. The values of these derived 
functor: on the unit object e (regarded, in an obvious sense, as an object of 
%%‘(,A)) shall be called the cohotztak~g~~ groldps of the cocommutative Hopf 
monoid B with the coefficients in the left B-object commutative monoid M and be 
denoted by H”(B, M), 12 ~0. 

The btjcction of the adjunction from 0.7 gives the isomorphism of abelian 
groups (recall. that the group structure is described by means of 0.3 and 0.10): 

AA(Bs”+‘, M) n Reg(B”” A ‘, M)S Reg(B@‘“, M) , IZ 2 0. 

The last ones enable us to identify the cohomology groups H”(B, M) with the 
hornpl*Jgy groups of the complex of abelian groups: 

I? = Reg(B@“, M) . d” :@‘a_> y+ , 

d”( ff = u,,(B @If) + 5 (- l)‘f(B@‘-’ @ fis 8 B@“+) 
1-I 

+ (-l)ri+‘f(B@tf 8 pR). t1~0. 

(1) 

Let us observe that here arises one interesting subgroup of the set-monoid 
A(B. M), namely the group of one-dimensional cocycles of the complex (l), i.e 

We call them ~gukzu derivnhms and denote them by 

Der(B, M) = Z’(B, M). 

By the normalization theorem for the cosimplicial abc’lian groups, the cohomol- 
ogy groups H”(B, M) also can be identified with the homology groups of the 
normalized htibcomplex of the complex (1): 

~‘*={r”E@‘lIf(B~i-i~~~~B~‘~-i)=O,l~i~n}, nrl, \ 

f$f’ = c’; _ (21 



We \Bould like to mention that complex ( I ) and its normalized subcomplex (2) 
are straightforward general zations of well-known ones (see 3.1-4.3) an 

inspired by (2,4, 11,1J]. 

Remark. Dual1 to 1. I- 1.3. rhc :ohLxmolopy 
defined, where is c‘p commutative Mopf monoid and N is a right A-ec;object 
cocommutative comono~i The cohomologf groups H;‘QV. A) can be identified 
with the ho~~olopy groups of the complex of abelian groups: 

-I- (- I)” “:g@A)j~,. . n 10. 

or with the homology grcups of the normalized subcomplex of (3): 

We would like to mention that complex (3) and its normalized subcomplex (4) 
a;-e straightforward genera!izations of well-known ones (see 4.3 and 4.5) and are 
inspired by [3]. 

1.5. Remark. In most of the proofs of our propositions we have to show several 
identities. We do this by the very simple machinery of commutative diagrams in 
the category A, i.e. both sides of an identity are transformed (identically) to one 
and the same expression. But, in this process, there appear tremendous calcula- 
tions, and to save space we shall show for every identIty only the form of the 
expression to which both sides of the identity are transformed. 

Now, we shall translate Proposition 3.8 from [13] into the context of monoidal 
category. 

1.6. Proposition. Let (B, A, CQ, ps) be WI nbelim pair. Thtz t!lere exists (111 

adjunction 

where the left adjoint % is the forgetfld fmctor and G is determined by the forrnrrlas 
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(J “or o,,, see 0.19). 

Proof. First, let us show that G has values in J~!X(,,. AjA)* If A4 E (AM(,A>I, 
then we have that (Ma A, pcc& E IA’1 and (MB A pG(M)y qG(& E IU(A)I- 
It remains then to show that: 

(i) (M@ A, GM&d E IRAI‘ 

(ii) PG(M)aG(M, = a,,,W’A@ @PC(M)) = @G(M) @ A)&3,G(,,~ 

(iii) (M @ A, oG(.V), PC(M), qG(M) ) E I~&?A)I ’ 
civ) CM@ A, PC(M) ~G(.%f)~ ?G(M)) E Idu(AA)/ ’ 

For (i) observe 0.20. 
For (ii) we have 

q 1, 7. 2, 4, 8, 3, 5. 6, 9) 

For (iii) it remains to memion that 

~,(JV,(~ @ p G(M))=(CLM~~IA)(~,,~~M~A~A~~A~~A) 

o (I, 7, 3, 9, 2, 4, 5, 8, 6, 10) 

o(p,@p,@LWW?C!9M@A@M@A) 

o(~J,@M@A@M@A) 

= PC(M) ( uG(M) 8 gG(M))(k 3, 4, 2, 59 6) 

o(&3@G(M)@G(M))9 

and o,(,)(B~~~G(M~)=(~~,~TIA)E~ =~G~M)&B* 

’ For (iv) it remains to observe that 

PG(M)pG(M) =(PM@PA@P,.~)(I~ 4, 2, 5, 3, 6) 
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Behaviour of G on the arrows of .&W(,A) is described similarly. 
Now let us define a natural (in M and N) bijection 

by putting 6(f)=(f@A)p,vand 6-‘(~)=(M@JE,)~. Cl 

The adjunction from 1.6 induces the monad 

(5) 

where &, = pnr and yM = (M 0 cA 0 A). 
Dually, the existence of an adjunction 

is proved, where the right adjoint 021 is the forgetful functor and S is determined 
by the formulas 

S(N, pN, $N, Ed) = (B @ h’, US(N) = PB @ NY PSCN, = &3SN q 

ICI S(N) = (1,3,2,4)(Ic/B 8 tlrJ* ES(.Vj = E/3 @ FL.)- 

S(f)= BC3f. 

The last adjunction induces the comonad 

where a,=~,* and sN=(R@nBQN)* 

1.7. Proposition. Let (B, A) be an abelian pair (we omit here o-~, pB). M E 

IM( (B /QA)i and N E [“((B 

-’ 
A) k)l, then the correspondence off and the compo- 

. . 
sltion a,@, (B QD f @ A)(B 8 p,> determines the natural (in M and /F 1 isomcrph- 
km of abelian set-monoids 

q : A(N M)-l, (B, ..&W’)~ G(M)) - 



Proof. The agreement of q(f) with B-action and A-coaction follows from the 

identities 

Preservation of sums: 

The inverse to cp is defined as 

1.8. Remark. As is shown in [ 11, every monad on a category induces a functor 
from the same category to the category of cosimplicial objects of the main 
category. Thus, for the monad G (see (5)) we have the functor 

G * : J@Jq(,. A) A) * Cosimpl(A& (B. AjA)) . 

Dually, the comonad s (see (6)) induces the functor to the category of 
simplicial objects, 

s* : %x( (R. A)A)-j SimPl(W,,. ,,A)) * 

Let us consider the bicosimplicial abelian group 
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(R. .,,A(%% &(4) n Reg(S*(e). G,(e)). 

where e is the unit object of A, considered, in the obvious sense. as the object of 
both categories. From this bicosimpliciat abelian group we induce the 
bicocomplex 

- “1 .‘I 
@ 

= (R. ArA(B@“l+ 1, Aa”+ ‘) n Reg(B~“l+ i_ As”+ i) . 

-1’1 .‘I 

4 

: (pr1.n 3 @?‘I+ I .‘l . &l.‘l : @“l.‘l ---) (p’l.‘l + I , 
ii?. I1 10 l 

“1 

d’;.‘*(f) = c (_l)‘f(fl@‘@p, @ B@“‘-‘) 

i=O 

+ (-l)“‘+‘f(BS”‘+’ Qo Ed) , 

d’,“.“(f) = (-l)“‘((qA QD A@‘+‘)f 

I1 + I 

+ c (-I)‘@@‘-‘8 +; @J A@“-j+’ )f) . 
j=l 

(7) 

Now, let us delete from (7) the first vertical and horizontal lines and make E 
dimensional shift of 1. We get the bicomplex 

- “1 .‘I 
@ 

= (p’l+l.‘l+l , g’l.‘l = q’l+l.“+I , 
i= 1.2, 171, 11 2 0 . (8) 

1.9. Definition. The cohomology groups Zf;:( B. A) of an abelian matched pair of 
Hopf monoids (B, A, oA, pe) are the homology groups of the total complex 
associated with the bicomplex of abelian groups (8). 

The restriction of the isomorphism from 1.7 induces the natural (in M and N) 
isomorphism of abelian groups 

cp : Reg(N, M)s ,,..,A(B@N,M@A)nReg(B@N.M@A). 

. . (9) 

1.10. Remark. The isomorphism (9) enables us to ideri b ify the cohomology 
groups Hi(B, A) with the homology groups of the totai cczplex asscciated with 
the bicomplex 

@ 
“1.” = Reg( B@“‘+ 1, A@l’+ 1 ) , 

:@ 
“l.‘l ~ @“l + t .‘l , ,;l.‘l : @t’l.‘l ---) @“l.‘? + 1 , 

1’1 + I 

+ z (_l)‘f(B@i-! @pR@Bs”f-i+! j 

ill 

+ (- l)“‘+2f(B”““+’ C3 q,) . 
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,y*“( f) = (- l)“‘+‘((qA @ A@"+')f 

?I + 1 

+ c (-l)‘(A@‘-’ 63 t,& 8 A@“-‘+l)f 
j=l 

(10) 

where the actions 6A~1, + I : B 63 (A@” ) 8 A + (A@“) 8 A and the coactions 

5 * B C3 (Pa”‘) 3 B @ ( B8”’ ) CO A are defined by induction: &?I + 1 . 

CQ = UA 9 PB = PB 9 

tTA~Il + 1 = ((A*” ) @ ,EL,4 )( c Az?3,r 63 A 0 crJ( 1,4,2,3,5) 

o(p&i3 B@(A”“)@A)(&&3(A@“)@A), 

-PB c+n+i = (B@(B@““)@g~)(B@(B@“‘)@A@q) 

o(1,4.2,3,5)(p,~B~l?ls~‘l’)(~~~(Bas”)). 

From the theory of spectral sequences and the theorem on the normalization of 
cosimplicial abelian groups, one can deduce that the cohomology groups 

Hi( B, A) (in the reduction ( 10)) can also be identified with the homology groups 
of the total complex associated with the subbicomplex of the last one in (10): 

N 0.0 = a=“.” , 

N “‘%{f (=@“‘*“I f(B@i@7)8@B@“‘-i)=()p ()sism}, 

N ‘.” = (f E@“.“I(A~j~_cA~Ag”-j)f =(), ().cj-~~}, 
(11) 

N t”~“={f~@“l~“)f(B~i~~B~B~“‘-i)=O, ()si-~m, 

(A@ @ EA @j) A@” -j )f=O, 0~j32)) 

tn, n 2 0 . 

We would like to mention that the bicomplex (10) and its normalized sub- 
bicomplex (11) are the straightforward generalizations (see 4 6) of the bicomplex 
(4.1) from [13] and are inspired by that one. 

2. Extensions 

2.1. ehition. An ~-extension ;5 of a cocommutative Hopf monoid B Sy a 
commutatrve monoid M is a commutative diagram in the category A 



E=MA 
P 

C-C@B 

such that 
(i) C is a monoid, 

(ii) cy and p are monoid morphisms. 
(iii) A is an isomorphism in the category A and ( pa,, @ B)(M 8 A) = 

AI%@ @ C). 

The assumptions of 2.1 imply that C and M GO B are the left M-objects via the 
structural arrows &a 8 C) and ( p,,, 63) B), respectively. C and M @ B are the 
right B-coobjects via the structural arrows p and (M @ $B)‘ respectively. More- 
over, C is the right B-coobject monoid, because p is the monoid morphism. Now, 
the arrow A becomes the isomorphism of both left M-objects and right B- 
coobjects (recall the commutative quadrangle of the diagram and (iii) from 2.1). 

The idea of an arrow being simultaneously an isomorphism of left modules over 
some algebra and of right comodules over some coalgebra is due to Milnor and 
Moore [8]. 

2.2. Remark. Every time, while speaking of the system of arrows induced from 
the A-extension E, we shall mean the arrows 

S=(M&&:C+M. y=A-‘(v,,@B):B-‘C, 

2.3. Theorem. Let E be an &-extension nnd (6, y, uhf, Q) be the system induced 
frmw it. Then we have the following identities: 
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Proof. The key to the whole proof is the identity 

A=(MC?$$)B)(A@B)p. (12) 

(i) Using (12) it is not difficult to show that 

w @ &?)AP,.(Y @ 4 

=(A@B)(p,.@B) 

o(A-‘~A-‘~B)(r),,~B~M~q,~B)(l, 3, 2)(&@M) 

=(M~E~~B~B)(A~B~B)(~(-~B~P) 

o(A-‘~A-‘~B~B)(~~~,~B~M~~~,~B~B) 

0(1.4.2.3)($;@M) 

= (M @ +R)(q\r @ B)( 1939 2,4)(& 8 M) . (13) 

Then, multiplying the first and the last compositions of (13) by (M @ Ed @ B) 
on the left, we get (i). 

(ii) Using ( 12), we have 

Then, mui:iplying the first and the last compositions of (14) by (M CO Ed 60 B) 
on the left, we get (ii). 



(iii) From (i) and (ii). associativity of pc. and the identity h - ’ = pJcy 8 y ) we 

get (iii). 

(iv) We have 

The other identities oi (iv) are verified similarly. Before doing (v) and (vi). let 
us mention that the associativity of 1~~. implies 

Decomposing both sides of (15) a;rd using (iii). we get that 

(v) Muhiplying both sides of ! 16) by ( qx, 0 B 8 M @ qH @ M @ qH) OR the right 
and by (M 0 E*) on the left and using (iv), wc get (v). 

(vi) Multiplying both sides of (16) by (q,%, @ B @q,%, CZJ B @ M @ B) on the right 
and by (M @ EJ on the left and using (iv) and (v), we get (vi). c1 

2.4. Remark. The previous theorem shows that 
(iii) The monoid structure on M @ B induced from C by the isomorphism h is 

fully described in terms of ‘action’ q, and ‘twisting function’ r,,,. 
(iv). (v). The pair (M. CT,,) is ‘like’ a left B-object monoid: ‘like’ because all 

axioms aie satisfied. except the identity u,,,( B @ a,,) = cr,J ,un @ M). 
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(vi) This identity can be transformed into a ‘cocycle condition’ for r,., by 
multiplying both sides of (vi) (B @ B 8 Q, QD B) on the right. But still, r,,, is 

not regular (i.e. an element Reg(B @ B, M)) and what is more important, 

there is no possibility to obtai he identity q,(B &, q,) = q,( p, GO M). The last 

identity is a very important p of (vi). In Section 3, putting additional conditions 

on extensions, we shall over e these difficulties. 

25 Remark. Let B be a cocommutative Hopf monoid and M a commutative 
monoid, and let CT,: B 0 M + M and Q, : B @ B+ M be arrows of the category 

A. Then these data determine the commutative diagram in A, 

2.6. Proposition. Let B, M, qg , Q,, , E, C, cy, p, q, c, A = 1 be as in 2.5. Then E is 
an &-extension, if and only if e arrows oM and q-M satisfy conditions (iv), (v) and 
(vi) of 2.3. 

Proof. Let E be an &extension. Then the system of arrows induced from E is 

(M@& rl,,,@B, OM, TM); the last two are the original ones from 2.5. Then 2.3 
gives the necessity condition. 

Conversely, let us assume that the pair (CM, r,,,) satisfies identities (iv), (v) and 
(vi) from 2.3. The agreement of I_C with q is implied I”rom (iv). The identities (v) 
and (vi) imply the identities (16) and (15), and this means that (C = M 0 B, c_c, q) 
is a monoid. The Hopf condition on B implies that p is the morphism of right 
B-coobjects. Cl 

2.7. Definition. Let 

Ei=(M~Ci~Ci~B, hi:Ci-z,M~B), i=l,2, 

be &-extensions. ,4 morphism of monoids f : C, + C 2 is called a morphism of 
Al -extensions f : E, + E, , iff the following diagram commutes: 
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Note, that A, and A, are not involved. 

2.8. Proposition. Let f : E, + E, be a morphism of .&-extensions, (6 ‘. y ‘, o*b, T,;,) _ 
and (S”, r”, oiI; , T:,) be the systems of arrows induced from E, and E,. respectively 
(see 2.2). Let us put g = S”fy’ : B 9 M. Then we have the following identities : 

0 i h,fh;‘=(~,~B)(M~g~B)(M~~B), 

( j ii fr 
I 

= a,g + y”, the sum is taken in the set-monoid A( B, Cz j. 

Proof. (i) The arrow A, fA 1’ is the morphism of ‘extended’ left M-objects and 
right B-coobjects and this fact implies (i). 

(ii) Multiplying both sides of (i) by y ’ on the left, we get (ii). 

(iii) Multiplying both sides of the identity 

fPc, = P,(f @fj 2 

by A, on the left and by A r ’ @ A r ’ on the right and using (iii) and (iv) from 2.3 we 
get the identity 

Multiplying both sides of (17) by (qM 8 B 69 M @ B) on the right and by 

(M @ &g) on the left, we get (iii). 0 

Unfortunately, we cannot pz-tive that every morphism of A-extensions is an 
isomorphism; as we shall see in Section 3, the last property is shortly connected 

with the regularity (of arrow g) condition. 



Arguments similar to 2.6 enable us to prove the following: 

2.9. Proposition. Let B be CI cocomrnrrtntir?e Hopf mo/loid. M n cornrmrtntire 

rnorioid. (oail, 7.6) aizd (a,$, T,:!) the puirs of m-I’OWS which sctisfy the corzditiorts of 

2.6 and thus, detemi~le the A! -extensions E, artd E, ! oee 2.9, respectiwly. Let 
g: B+ M be nrz arrow from A and put f = (CL,,!@ B)(M@g@J B)(M@ JIR). Then 
f is a morphism of s hi -extemions f : E, - E,, if nttd only if g satisfies (iii) from 

2.8. El 

Considerations dual to 2.1. 2.2 and 2.3 give the following: 

2.19. Definition. A %-extetzsion E of a cocommutative comonoid N by a com- 
mutative Hopf monoid A is a commutative diagram in A, 

such that 
(i) C is a comonoid, 

(ii) G and p are comonoid morphisms. 
(iii) A is an isomorphism in the category A and 

2.11. Theorem. Let E be a %-exterzsiort arzd put 

S=(A@O+)A:C*A, y=h-‘(Q3N):N+C, 

Then we have the following identities: 



Proof. Dual to 2.3. q 

Certainly. one can develop dual to the whole theory of .&extensions. We shall 
assume that this is done and use facts from %-extension theory. 

There appears an interesting notion obtained from the joining of the notions of 
l&Fxtensions and %-extensions. 

2.12. Definition. An Z-extension of a cocommutative Hopf monoid B by a 
commutative Hopf monoid A is a commutative diagram in the category A. 

A@B 

such that 
(i) C is a Hopf monoid. 

(ii) cy and p are Hopf monoid morphisms. 
(iii) A is an isomorphism in A and 

2.13. Proposition. Let A be a commrrtative and B a cocommutative Hopf monoid. 
A commutative diagram like (18) is an Z-extension, if and only if we have the 

folio wing: 
(i) C is a Hopf monoid, ar and p are Hopf monoid morphisms. 

CC@ I*<. 
(ii) E’ = (AA C-----, C 63 B, A) is an ,N -extension, 

(iii) E” = (A @ Cz’ CL B, A) is a %-extension. 

Proof. Obvious. Cl 

2.14. Theorem. Let E be an X-extension and pnt: 



(i) We have (i)-(vi) from 2.3 only one ttzus~ make the substitutiort M = A. 
(ii) We have (i)-(G) from 2.11_ only one must make the substitution N = B. 

(iii) We have the following identity (sum is taken ial the set-monoid 

A(B@A@B, A@B@A)): 

(Espressims for C&,~ and pRBB are given irz 0.19). 

Proof. Recalling 2.13, 2.3 and 2.11, it remains to prove only (iii). The Hopf 
condition on C implies the identity 

Using 2.3 and 2.11, we get from the above identity 



3. 5. 19. 7, 21. 9. 23. 11. 25. 2. 4. 6. 8, 10. 12. ‘3, 20. 14. 

XL 15. 24. 16, 26, 17. 27. 18. 28) 

CiA@A@F,@P,@Q+&Q+j 

1 

(1% 

Multiplying b sides of (19) by (r), B@?A@Bj on the right and by 
(A@B@A@e i on the ieft, we get identity (iii). •s 

2.15. Propositio Let A be a commtctative and B a cocommutative Hupf ntortoid 
and let 

be arrows from iie category A. The conmtmr’i:‘~ diagmm 

and the data 

determine an X-extension, if and only if we have the following: 
(i) We have (i+(vi) of 2.3, on/y one must make the substitution M = A. 

(ii) “II+ have (k)-(vi) of 2.11, only one must make the substitution N = B. 
(iii) We have (iii) of 2.14. 

Proof. Recalling 2.6, its dual consideration and 2.13, it remains to verify the Hopf 
condition for C. But this condition comes from a straightforward calculation. 
which uses the Hopf conditions for A and B and the identity (iii) from 2.14. q 
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Certainly. one can develop the whole theory of ‘%-extensions. similar to the 
theory of .M-extensions. We shall assume that this is done and use facts from the 

#-extension theory. 

3. Connections between cohomologies and extensions 

3.1. Proposition. Let B be a cocommutative Hopf monoid and let (X, 

px: X-+ X@ B, ps. T,~) and (Y, py: Y * B 8 Y, p,,, q,,) be B-coobject monoids. 

If there exists a cotensor product (X8” Y, v) of B-coobjects (see 0.9), then there 
exist unique arrows t.i and ij, such that they define the monoid structure on X@’ Y 

and the arrow v : X BB Y--, X@ Y is a monoid morphism (the monoid structure p 

on X@ Y is given as in 0.3). Thus, (X(8’ Y, v) is the equalizer of a pair in the 

category of monoids, too. 

Proof. Let us consider an arrow p, = P( v 8 v) = ( pLx 8 ~r)( 1, 3, 2, 4)(v @ v). 
For this arrow we have (px- @ Y)p, = (X@ppy)~t and then, by the universal 
property of the equalizer, there exists an arrow ii, such that p, = p( v 8 v) = v@. 
Ij is defined similarly. q 

3.2. Definition. An _&-extension E = (M ~C~C@B,A:C~M@B)iscalleda 
regular .&-extension, iff y = A-‘(Q, ‘$9 5) E Reg(B, C), i.e. if the arrow y is the 
invertible element of the set-monoid A(B, C). 

3.3. Theorem. Let M be a commutative monoid and B a cocommutative Hopf 

monoid with an antipode S, (see 0.13). Let (C, pc., pc-. Q) be a right B-coobject 

monoid. Then the following two statement’ are equivalent: 

(i) There exist arrows cy and A, such that the diagram 

E=M&C PC 
-C@B 

is a regular 4 -extension. 

(ii) There exist an arrow y E Reg( B, C) fl A’(B, C) and an isomorphism of 

monoids w : M 1, C @JR e, where e is the unit object of the category A (see O.l4(ii)). 

Proof. Let us assume (i), then we have 

p<.a =(A-‘@B)(M@(CIR)AA-‘(M&j,) 

=(A-‘@B)(M@&)(M@$J 

=(A-‘@B)(M@B@~,<)AA-‘(M@~A)=(C@,,R)~. 



Now let li : D + c be an arrow in A. such that p$ = (C@QJL Then we have 

h=(C~&R)p~,h=(C~&g)(h-‘~B)(M~~~)Alt 

=A-‘(M@B@~~)(M@t+b~)hh 

= A-‘(M@J+~ B)(A@ B)p,.h 

=A-‘(M63u,@B)(A@B)(C63qA)h 

= A-‘(M @q/&M @ r,)Ah 

= a(M 8 e,)Ah . 

Thus, M is the equalizer of the pair ( pt.. (C 8 Q)) in the category A. but by 3.1 
it is the equalizer in the category of monoids. too. 

Conversely, let us assume (ii). We can assume that ye = Q; if this is not so. 
then we can consider a new arrow y, = y + y*qB Ed E Reg( B. C). here y” is the 
inverse element to y (see 0.10). Then the fact that y is an element of A’( B. C) 
and the identity pc.y * = ( y * 60 S&, imply that y, E A”( B, C); but we must 
prove that the identity p(-y * = ( y * Q9 S&B is true. For this let us consider the 
sums 

PCY + (+=&)@B and (y”@SB)J/B + p(-y . 

We shall show that both are equal to the zero element of the set-monoid 
A( B, C@ B). The first sum is equal to 

PcY +(Y”@SB)$B=(~@B)$~ +(Y”@S,)$~; 

but B is cocommutative, and thus lli, is a comonoid morphism 

Arguments for the second sum are similar. 
Thus, we assume that yvR = q(.. Let us consider the composition g = 

QC 8 y *)p(. : C-, C, using the identity pc.y * = ( y * @ SB)+B one can easily 

verify that p(.g = (C % qB)g. Then, by the universality of u’ : MG C @ e there 
exists an arrow 6 : C+ A, such that S = a& where a) = VW. 

Let us consider the compositions 

A=@@B)p,.:C+M@B, A-‘=pJa@y):M@B--,C. 

It can be easily verified that A -!A = I. 
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We have the identity a&~&x 8 y) = LY(M@ Ed) and then, because LY = uw is a 
monomorphism. we get &.((Y @ y) = (M 8 Ed). Using this last identity, it can be 
easily verified that Ah-’ = 1. Cl 

3.4. Lemma. Let E be an Al -extension and (6, y, a,, q,,) the system of arrows 
induced from it (see 2.2). 

(i) If E is the regular A-extension and B has an antipode S,, then: 

(1) Q = 4&r @dQr*)(b 39 2)(&@M), 

(2) Q~ = ri(y(B @ Ed) + y& 63 B) + y*pB) E Reg(B 0 B, M). 
(ii) If rM E Reg(B 8 B, M), then: 

(1) (MT %, ~MdM~E1ub3A% 

(2) ~~~(B~~~~)-~~~(EL~~B)+~~~(B~~~)+~~(B~B~E~)=O. 
(iii) If TM E Reg(B, C) and B has an antipode S,, then y E Reg(B, C) and 

y*= aa,@ 8’ 7;,)(sB 8 B @ s,)#;: + ys, . 

Proof. (i) Assume that E is regular and B has an antipode S,. 
(1) Using (i) from 2.3 we have 

(2) Using (ii) from 2.3 we have 

aTM + ‘y&3 - k(y 8 y) = y(B @ &B) + Y(&B 8 B) 

and, r,ca!!ing that ( y&)* = y *pB, we conclude that 

aTM = YtB @ &B) + Y&i @ B, + y*& - 

Multiplying both sides of the last identity by 6 on the left, we get the formula 
for TM. 

Now we must construct an inverse of TM. Let us consider the arrow 
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It is easily verified that ph = (C@ qe)h. Then by the universality of 
M : MG C@IB e we have h = ash (see the proof of 3.3). Then we have that 
cu(Sh + Q,) = cuSh + “TV = h + T,,, = 0 = aq&eB @ Ed). The arrow (Y is mono, 
and thus Sh + T,,, = T,JE~ 8 Ed) = 0, i.e. Sh = 7;. 

(ii) Now let TV be regular arrow with inverse T:,. 

(1) Recalling the identities (iv) and (v) from 2.3, it remains to show that 

aicl(kI@W= %(B@%)’ 
By straightforward calculation we get that 

0(1,4,7,2,5,3,6)(IL~~ICr~~M). (21) 

Multiplying both sides of (vi) from 2.3 by (B @ B @ A4 8~ q8) on the right, we 

get 

Using this last identity, the right-hand side of (21) can be transformed to 

%(B @ %). 
(2) Multiplying both sides of (vi) from 2.3 by (B @ B @3 T,~ @ B) on the right, 

we get that 

Now it remains to notice that 

T~(P~@B)=(~~(P~@B))* and 

T~(B 8 B @ Ed) = (TJB @ B @ Ed))* . 

(iii) This is verified by a straightforward calculation which uses (20). Cl 

3.5. Lemma. Let f : E, --) E2 be a morphism of A-extensions, (6 ‘, y’, ujl, T,;,) 

and (S”, y”, uk, TEJI) the systems of arrows induced from E, and E,, respectively, 
and g = S”fy ‘. 

(i) Zf E, is a regular At-extensior and B has qn antipode S,, tl:cq: 
(1) gEReg(5,M) andg*=S”(y”+f(y )“). 
(2) y”E Reg(B, C,) and (y”)* = f(y’)* + c~?;r, and thus E, is a regular 

&-extension, too. 
(ii) The morphism f : C, + C, is an isomorphism, if and only if g is a regular 

arrow (i.e. g E Reg(B, M)). 
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(iii) If g E Reg(B, M). then cr.;, = o$ (and we denote both of them b_v CT,! ). afzd 

Proof. (i) (1) Using the identity p, (*y ‘)” = (( y ‘)” 8 S,)&, one can easily see 
that 

P,(Y”+f(Y’)*) = ~c,~rls)(Y”+f(Y’)“)’ 

Let us denote h = y”+ f(y’)*; then (22) implies that plh = (C2G3r/3 jh. Using 
this last identity, we have 

Thus we obtain 

a$*‘( y” + f( y’)“) = y” + f( y’)* . (23) 

From (ii) of 2.S it is known that fy’ = cy2g + y” and that cy, and f are the 
monoid morphisms. Then, using (23), we have 

(Y~(g+8”(y”+f(y’)*))YY~g+ck~S”(y”+f(y’)*) 

=a,g+ yF’+f(yF):‘=O_ 

The arrow cyl is mono, hence we obtain g + S”( y”+ f( y’):“) = 0 and SO g* = 
a”( y” + f( y’):“). 

(2) From the identity fy ’ = a,g + y” we obtain y” - Ly?g* + fy ’ and then 
(y”)* = f( y’)* + a,g. 

(ii) Let f : C, %‘z be an isomorphism. Then f -’ : C, 3 C, is a morphism of 
A-extensions too, and then, for the arrow g= S ‘f -‘y”_ B- M we have 

Now. if we make a decomposition of the identity A, f -‘A~‘A, fA 1’ = M @ B, we 
see that 



Multiplying both sides of (24) by (M 0 Ed) on the left and by (qatf 8 B) on the 
right, we obtain g + g= 0, i.e. g” = g= S’f-‘y”. 

Conversely, let g E Reg(B. M), then one can put 

(iii) Let g E Reg(B, M). It is easily verified that 

Multiplying both sides of (iii) from 2.8 by (B @ M 8 vR) on the right. we obtain 

Using (26) one can easil;t transform the right-hand side of (25) to a,:,. Hence. 
oh = 06, and we denote both by u-b,. 

Multiplying both sides of (iii) from 2.8 by (B @ T.,~ @ B) on the right and 
recalling that a,& = 01, = a,&,, we obtain 

3.6. Remark. Let E be an .,2X-extersion, we shall make our considerations in two 
(somehow parallel) situations: the first one is when E is regular aud B has an 
antipode and the second one is when A( B@", M) = Reg( B@". M). II = 1,2. 

In both cases 3.4 shows that (M, u,%~) is a left B-object commutative monoid 
and Q, : B 0 B+ M is a two-dimensional cocycle of the respective normalized 
complex (2) from Section 1. Lemma 3.5 shows that if f : E, + E, is a morphism of 
Al-extensions, then, if E, is regular, E, is also regular (in the assumption that B 
has an antipode), and that f is an isomorphism in both above-mentioned situa- 
tions. Moreover, the actions of B on M induced from E, and E, coincide and the 
difference between T,:, and T,:, is an element of Reg( B, M). i.e.-if g = S”fy ‘. then 
7;*- 7 j; = TJ;, + (T,T,) * = u,,,(B@g)+g*pR+g(B@Q=d’(g) (for d’ see (1)) 
and this fact holds in both situations. 

We can make considerations in the inverse direction. Let (M. q,) be a left 
B-object commutative monoid and T,~, be a two-dimensional cocycle of (2) from 
Section 1. Recalling 2.6 we have to show that we have the identities (iv)-(vi) of 

2.3. Parts (iv) and (v) are obviously satisfied. Let us put a cocycle condition for T,,, 
in the following form: 
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Now, decomposing both sides of this last identity, we obtain 

Using this last identity and the fact that M is a left B-object commutative 
monoid, we have 

And thus, by 2.6 we see that TV determines the &-extension. If, additionally, B 
has an antipode, then 3.4 shows that the induced J&extension is a regular one. 

Let 7,; and 7: be two cocycles representing one and the sarle cohomology 
classes from H"(B, M), i.e. there exists g E Reg(B, M), such that TA - rz = 

dl(g) = cr,,JB @g) - gpB + g(B 0 E&. Let us put this condition in the following 
form: 

Decomposing both sides of the last identity, we obtain 
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Now we wish to check the assumption of 2.9. Using the last identity, the 
observation that In our case a;; = cr.;, = o.,, and the facts that M is commutative 
and B is cocommutative, we obtain 

Thus, 2.9 implies that f = ( P,~ @ B)(M @g 63 B)( M @ &) is the morphism of 
&extensions f : E, + E, and (ii) from 3.3 implies that f is the isomorphism. 

Thus we have proved-the following: 

3.7. Theorem. Let B be a cocommutative Hopf monoid and M a commutative 
monoid. 

(i) If B has an antipode, then any regular &-extension E induces a left B-object 
commutative monoid structure (M, oM) on M, and the correspondence E H T.,~ 
determines the bijection 

JU,,,(B, M)s H’(B, M) , 

between the set of equivalence classes of regular A-extensions and the (respectively 
by c~) second cohomology group from 1.3. 

(ii) If A(B@“, M) = Reg(B@“, M), n = 1,2, then any A -extension E induces a 

left B-object commutative monoid structure (M, Us) on M and the correspondence 
E I+ rM determines the bijection 

&(B, M)-‘, H’(B, M), 

between the set of equivalence classes of A-extensions and the (respectively by odb9) 
second cohomology group from 1.3. 0 

We would like to mention that 3.7 generalizes Theorem 8.6 from [14] and is 
inspired by that one (see 4.3). 
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3.8. Remark. The dual consider tions in the original category A (or the original 

considerations in the dual category A““) give the connection between Z-exten- 
sions and the second cohomology group from 1.4 in both situations (see 3.6). 

3.9. Definition. A Z-extension E = (A 5 CA B, A : Cs A @ B) is called a 
regular X-extension, iff (A 63 E& E Reg(C, A) and A-‘(qA @ B) E Reg(B, C). 

3.10. Theorem. Let A be a commutative and B a cocommutative Hopf monoid. 
(i) If A and B have antipodes. then any regular X-extension E induces an 

abelian matched pair of Hopf monoids (B, A, crA, ps) and the one-dimensional 
cocycle (7~, qR) of the (respectively by (crA, pB)) normalized subbicomplex ( 10) 

from Section 1; the correspondence E I+ (TV , ‘ps) determines the bijection 

a%,,,(B. A)-2, H:,(R A), 

between the set of equivalence classes of regular X-extensions and the (respectively 
by (cr*, ps)) first cohomology group from 

(ii) If A(B@“‘, A@“) = Reg(B@‘“, A@“), 

1.9. 
m, n = 1,2, then any X-extension E 
monoids (B, A, oA, ps) and the one- 
the correspondence E H (TV , cps) de- 

kduces an abelian matched pair of Hopj 
dimensional cocycle (TV , qB) from (10); 
termines the bijection 

between the set of equivalence classes of X-extensions and the (respectively by 
( gA, ps)) first cohomology group from 1.9. 

Proof. As we see, we have two different situations to discuss. Most of our 
argument is valid in both situations. If this is the case, we do not mention 1.1 which 
situation we are. But, if there is any difference, we explain what we are doing in 
each case. 

Propositions 2.13 and 2.12, Theorem 2.14 and Remarks 3.6 and 3.8 insure us 
that the only things which are left to be proved, are the following: 

(i) We have (iii)-(v) from 0.18 for the pair (Us, ps) induced from E. 

(ii) The pair (Q , qe) induced from E satisfies the condition di”‘(TJ + 

d(:&) = 0 in the normalized bicomplex (11) from Section 1. 
(iii) If f : E, + E2 is a morphism of %-extensions and (a;, p;l, ‘i-i, cp;) and 

(OK, PLY 7:, 50:) are systems of arrows induced by E, and EZ, respectively, then 
the pairs (a;, p;) and (a:, p:) coincide, the arrow f is the isomorphism and the 
pairs (7; , &) and (7: , cpi) represent the equal cohomology classes. 

(iv) if (Q, tpB) is a one-dimensional cocycle from (11) in Section 1, then we 
have the ide.rtity (iii) from 2.14. 
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(AC3~s@A)~AqJB@JA@~~~ 

= (A @ rlf? @ 4GL4 (B@$,)(B@A@+) 9 (28) 

h.4@B@4PBkWWl@W 

= (VA @ B @ A)( & @ A)&3@,(B @&A @ B, ’ (29) 

From the condition di”‘(TA) + d(t)*‘(cpB) = 0, we obtain 

(A@T,QPAIC(P~P~ + @AT.~)(B@EA@‘B) 

= CA @ rlB Q9 A)(e~t23~ wh?)+ %AB@w 

+ h,s @ A)r.A + (‘A @ A)&I,)@ @ &B @ B) - (30) 

Now, taking the sum of (28), (29) and (30) and opening the parentheses in 
(30), we arrive at the identity (iii) from (2.14) Cl 

is 
We would like to mention that 3.10 generalizes Proposition (5.1) from [13] and 
inspired by that one (see 4.6). 

4. Examples 

Examples, which we are 
considerations in the main 
monoidal categories, i.e. wt 

going to give, are obtained by application of our 
part of this paper to different particular cases of 
make substitutions A = Set, A = K-mod, etc. 

4.1. A=Set 

Let A be the category of sets and mappings, 03) be the bifunctor of the direct 
product of two sets, x , and e be the (terminal) one-point set e = { *). 

There is a unique way to equip each set B with a natural comonoid structure. 
The comultiplication eB : B + B x B must be the diagonal mapping, and the 
counit eB : B + e is the unique mapping to the one-point set. So, we identify the 
following three categories: 

%%(Set) = %(Set) = Set . 

After this, the list of structures from Section 0 (evidently) gives the well-known 
notions of set-monoid, group and modules (in the case of existence of antipodes). 
etc. 
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Let B be a set-monoid and M a left B-module. Then we can apply 1.3 and we 
get the cohomology groups H"(B. M) from 121, only there the set-monoid is 
called a semi-group. If additionally B has an antipode, then 1.3 gives the 
well-known cohomology of group B with coefficients in the left B-module M from 

[2,6]. 
If B is a set-monoid and M is an abelian group, then (ii) of 3.7 gives the 

bijection between the set of equivalence classes of extensions of the set-monoid B 
by the abelian group M and the (respective) second cohomology group H'( B, M) 
from [9]. If, additionally, B has an antipode, then (i) of 3.7 coincides with (ii) of 
3.7 and (taking into account 3.3) both give the well-known bijection between the 
set of equivalence classes of group extensions of the group B by the abelian group 
M and the (respective) second cohomology group from [2,6]. Here we must 
explain, that if M and B have antipodes, then M X B (with the set-monoid 
structure described by Q and Q) also has an antipode, namely -(m, b) = 

(-b-‘m - b%,(b, b-l), b-l), structures on M and M x B are written additively 
and on B multiplicatively. 

Let A be an abelian group and N be a set. There exists a unique right 
A-coobject comonoid structure on N, namely pN : N + N X A. phi(n) = (n. 0). In 
this case we can apply 1.4 and we get the cohomology groups HF(N, A). But in 
this case the complex (3) from Section 1 has a contracting homotopy and we have 
HF(N, A) = Set(N, A) and HF(N, A) = 0, m 2 1. 

Let B DC a group and A a left B-module. These data can be considered as the 
assumptions of 1.9 and then we obtain the cohomology groups H;:(B, A). In such 
case all vertical complexes (C”‘. *, dy ** ), m 2 0, of the bicomplex ( 10) from 
Section 1 have the contracting homotopies and we get Hi@, A) = H”+‘(B, A), 
n 2 1, while in zero dimension we have the epimorphism 

Hi(B, A) = Set(B, A)+ H’(B, A), 

where H"(B, A) are the usual group cohomologies. 

4.2. @ = direct product 

Let A be a category with Unite direct products (and the terminal object), 8 the 
bifunctor of the direct product (in A) and e the terminal object of A. 

In this case arguments similar to those in Section 4.1 are true, and we identify 
%%‘(A) = %(A) = A. The data, B is a monoid (in A) and M is a leit B-object 
commutative monoid with an antipode S,,,,, can be considered as the .,;sumptions 

of 1.3 and we get H"( B, M) of 111, Proposition 3.21. In [ 111 the groups H"( B, M) 
are called the cohomology of the semi-group B with the coefficients in the left 
unitary B-module M. Then 3.7 (ii) makes it possible to describe t?(B, M) by 
extensions. 



4.3. A= K-mod 

Let K be a commutative ring (with unit) and A the category of K-modu!es. 60 
the tensor product over K and e equal to K. 

In this case 1.3 gives the cohomology groups li”‘(B, M) of a cocommutative 
Hopf algebra B with the coefficients in the left B-module commutative algebra M 
from (14, p. 2081, only there K is assumed to be a field. 

A regular M-extension E = (M %LhXfWS, A:C+M@B) from 3.2 coin- 

cides with a cleft extension in the sense of [14, p. 2291. Then 3.7(i) gives the 
bijection of f14, Theorem 8.61 between the cleft extensions and H’(B, M). 

4.4. A = ( K-mod)“P 

Let A be dual to the category of K-modules and a new product X(8, Y (in A) be 
the old Y 03) X one (see 0.17). 

In this case 1.3 (or, equivalently, I.4 in the case of A = K-mod) gives the 
cohomology groups H”(B, M), where M is a commutative Hopf algebra and B is 
a right M-comtidule cocommutative coalgebra. These groups coincide with the 
groups Coalg-H”(B, M) from [3, p. 6841, only there M coacts on B from the left 
side. 

A regular .&extension (or, equivalently, a regular %-extension in the case of 
A = K-mod) coincides with the cleft coalgebra extension from [3, p. 6941. Then 
3.7(i) gives the bijection from [3, Theorem 5.51 between the cleft coalgebra 
extensions and Coalg-H’( B, M). 

4.5. A = (K-alg)“” 

Let K-alg denote the category of K-algebras, 0 the tensor product over K, and 
if A and B are K-algebras, then A Q9 B is a K-algebra with multiplication 

(~~@~,)(1,3,2,4) and unit rl,@~. Thus we obtain the monoidal category 
(K-alg, 8, K). 

Let us put A = (K-alg)“q dual to the above-described category. 
In this case 1.3 (or, what is equivalent, 1.4 in the case of A = K-alg) gives the 

cohomology groups H”( B, M), where M is a commutative Hopf algebra and B is 
a nzht M-comodule cocommutative Hopf algebra [3, p. 6831. These groups 
coincide with the groups Hopf-H”(B, M) from [3, p. 6841 only there M coasts on 
B from the left side. 

A regular &extension (or what is equivalent, a regular %-extension in the case 
A = K-alg) coincides tv mith a cleft Hopf extension [3, p. 6941. Then, 3.7(i) gives the 
bijection from [3, Theorem 5.61 between the cleft Hopf extensions and Hopf- 
H’(R, Al). 

4.6. A= G.C. K-mod 

Let A be the category of the graded connected K-modules [8,13]. 
In this case 1.9 gives the cohomology groups H:(B, A) of an abelian matched 
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pair of graded connected Hopf algebras. In [IS] 11x suimmology groups of the 
same pair are constructed and we denote them by Singer-N”(B. A). There we 
have the following identities: 

Singer- H”( B, A) = 

A re@ar Z-extension coincides with a X-extension and coincides with an 
extension of the graded connected Hopf algebras from [ t 31. Then, 3.10(i) 
coincides with 3.1O(ii) arid both give the bijection from 113, Proposition 5. I] 
between the Hopf extensions and Hi(B, A) = ‘iineer-H’( 

The particular case of %-extensions in this catcgsq, kQ&th trivial action and 
coaction has been considered in [5]. 
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