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introduction

In this paper we construct some new cohomologies and extensions in a
symmetric monoidal category A, and investigate the connection between them.

In Section 0 we give some preliminaries and notations.

In Section 1 we construct cohomology groups H"(B, M) of a cocommutative
Hopf monoid B with the coefficients in a left B-object commutative monoid M in
the category A, and cohomology groups H; (B, A) of an abelian matched pair of
Hopf monoids (B, A) in the same category.

In Section 2 we define the notion of extensions in the category A. More
precisely, there appear three kinds of extensions. We call them .-extension,
%-extension and Jf-extension. In fact, €-extensions are dual to . -extensions,
and the notion of #-extension is somehow the intersection of both above-
mentioned notions.

For example, let M be a commutative monoid and B a cocommutative Hopf
monoid (Uoth in A). Then the subject of .#-extension theory is the following:
How ‘many’ structures of a monoid exist on the product M ® B, such that the
arrows M2, M ® B-22%%, M ® B® B are morphisms of monoids? We inves-
tigate some properties of such extensions. Namely, similar to the classical
group-extension theory, for an /(-extension there are induced an ‘action’ of B on
M (i.e. an arrow o,,:B®M— M) and a ‘twisting function’ 7,,: B B— M.

* This paper is a translation into English of [10]. with very few and only stylistic changes. _
** Present address: Institute of Mathematics of the Academy of Sciences of the Republic of
Georgia, Tbilisi 380093.
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Main identities for such arrows (o,,.7,) are obtained (see Theorem 2.3 and
Proposition 2.6). Unfortunately. these identities are not yet (on this level of
generality) like the ‘cocycle condition” for 7,,. For #-extensions the same is done.

In Section 3 we put some additional conditions on extensions. For example,
these assumptions on an .f{-extension imply that it becomes a diagram of a
cotensor product of B-coobjects; the notion of cotensor product is dual to the one
from [12, p. 198]. These conditions enable us to transform the main identities for
(o4 7y) in such a way that they become like the ‘cocycle condition’. As a
consequence, we get a bijection between a set of equivalence classes of .-
extensions and the second group of cohomology H *(B. M). Similarly, a bijection
between a set of equivalence classes of #-extensions and the first group of
cohomology H, (B, A) is obtained.

In Section 4 we show that our cohomologies and extensions give 1 particular
cases several well-known theories, such as: group cohomology [2, 6], cohomology
of a group in an arbitrary category by Pareigis [11], Sweedler’s cohomology of
cocoerm:mutative Hopf algebras [14], Singer’s cohomology of an abelian matched
pair of Hopf algebras [13] and Doi’s cohomolegies over commutative Hopf
algebras [3].

0. Preliminaries

Here we briefly recall the relevant definitions and facts from [7].

If B is a category, then the class of objects of B will be denoted by |B| and if
.A, B £ |B|. then the set of arrows (morphisms) of B from A to B will be denoted
by B(A. B). '

A monoidal category A consists of a category A, a bifunctor ® :A X A—A,
which is associative up to a natural isomorphism and an object e € |A|, which
is a unit object up to natural isomorphisms of the bifunctor ® (i.e.
e® A> A< AQe, A€|A|), plus several axioms on these isomorphisms [7]. If,
additionally, A is equipped with the natural (in both variables) isomorphisms
AQ® B— B® A, which, together with the above-mentioned ones satisfy several
axioms, then A is called a symmetric monoidal category [7]. All diagrams in this
paper are of the kind to which the coherence results of [7] can be applied. That is,
we can omit all parentheses in big nroducts; writing, for example, AQ BQ CQ D
instead of A ® (B ®(C® D)). Similarly, we can and will omit explicit references
to isomorphisms derived from the associative, unitary, and permutation axioms.

In what follows, (A, &, e) denotes the fixed symmetric monoidal category. All
objects and arrows considered in this paper, are assumed to be from A.

We write permutation isomorphisms of the factors in the product of objects of
A as in [5]. For example,

(2.1.4,5.3): AQBOQCRDR®FES>BR®ARDRERC.
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Q:l:he symbol A‘T" denotes the nth power of A. i.e. A™" = A® (n-times)® A,
A®'=A and A™ =e.

0.1. Definition. A monoid (in A) is a triple
(A p,:AQA—-> A n,:e— A),

such that n,(AQu,) = u,(p, @A) and p,(n, O A)=1,=p,(A®n,).

The arrows u, and 7, are called a mudtiplication and a unit, respectively.

A set with an associative binary operation and with a unit element (i.e. a real
monoid) will be called a set-monoid in order to distinguish this notion from the
one of monoid objects in A.

0.2. Definition. If (A. u,.7n,) and (A’. p,..m,.) are monoids (in A). then the
arrow f: A— A’ is called a morphizin of monoids (or a monoid morphism), iff
Ba(fRf)=fu, and n,. = fr,.

0.3. Remark. If (A, u,.n,) and (A', pn,.7n,) are monoids, then, when we
speak of the monoid structuie on A® A’. we shall mean a multiplication

(L ®u,)1.3.2,4) AQARARA - AR A’

and a unit n,®7, :e—>AQ A"

0.4. Definition. Let (A, u,.7n,) be a monoid. We shall call it commutative. if one
of the following equivalent conditions occurs:

() a2 1) = p,.

(ii) the arrow u, is @ morphism of menoids.

0.5. Remark. Let (A.p,,n,) ve a monoid, a symbol u'y:A™ > A, n=2,
denotes any chain of arrows beginning a+ A™" and going to A, built of p, and its
& -products with itself or with A’s. Proposition 1 from [7, p. 167] guarantees that
our description of u; is unambiguous. The symbols n', and ', denote the arrows
1,=A and 7,, respectively. Moreover, if A is commutative, we have =
w' ot, where t is any of the permutation isomorphisms (of factors in A’s nth
power). If A and A’ are commutative monoids, the monoid A® A" (see 0.3) is
commutative too.

The category of monoids (in A) and monoid morphisms is denoted by .f((A).
while the category of commutative monoids is denoted by .f(.#{(A).

0.6. Definition. Let (A, u,.7,) be a monoid, a left A-object is a pair
(M, 0,,: AQ M — M), such that 0,,(A® c,,) = o, (., @ M) and 7, (n, @ M) =
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M. If (M.a,) and (M',g,.) are the left A-objects, we call f:M—>M' a
morphism of the left A-objects, iff fo,, = 0y (AR ).
The category of the left A-objects, and their morphisms is denoted by ,A.

0.7. Proposition. (Mac Lane [7]). Let (A, p,,n,) be a monoid. Then there exists
an adjunction

(T,

~

JY:A—= (A,

where U is the forgetful functor and

T(X)=(A®X, p,®X: ARARX—> AR X),
T(f)=A®f. O

0.8. Definition. A comonoid (in A) is a triple
(B,Yg:B—>BQ®B,eg:B—e),

such that (¢, ® B)Yy = (BR Y)Yy and (e, @ B)Yy, = B=(BQ &) .

The arrows ¢, and &, are called a comultiplication and a counit, respectively.
Definition of morphisms of comonoids (or comonoid morphisms) is similar to 0.2.
If (B, Yy, €5) and (B, Y., £5.) are comonoids, then, when we speak of the
comonoid structure on B® B’, we mean the duals to the formulas from 0.3. A
comonoid (B, ¥, &) is called cocommutative, iff Y is a comonoid morphism, or
equivalently, if ¢, = (2, 1)i,. We assume that we have made considerations dual
to those from 0.5. The category of comonoids and comonoid morphisms is
denoted by €(A), while the category of cocommutative comonoids is denoted by
€6(A).

If B is a comonoid, then the notions of a right B-coobject (N, p,: N—> N® B)
and of a morphism of right B-coobjects are defined dually to 0.6 and 0.7. The
category of right B-coobjects and their morphisms is denoted by A®.

Now we define a notion dual to that of a tensor product in [12, p. 198].

0.9. Definition. Let B be a comonyid and (N,py,:N—>N®B) and
(N, py-:N'— B® N') be a right and a left B-coobjecr, respectively. The equal-
izer (see [7]) of the pair of arrows (py @ N', N® p,.) in A (if it does exist) is a
cotensor product of B-coobjects N and N’ and is denoted by N®” N'. Thus we
have the equalizer diagram in A

pN®N'

NRQEN'SNRN' N®B®N'.

N%pp:
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All the following notions and propositions (0.10-0.22) are straightforward
generalizations of well-known ones and are inspired by (8, 13, 14].

0.10. Remark. If A is a monoid and B is a comonoid, then the set A(B. A) is
equipped with a set-monoidal structure (denoted additively), which is determined
by the following formulas:

fl o= { £06D Vb £f o= AR AN and N — an -~

J ¥ 6 '&A\J UB}WB, ."5““\”‘ l_l’ alig v IACB
A cnnlharaiin Af all thAaca aAlamanante Af tha cat_mannmnid AD AN atale lhera oee
11C DUUBIUUP Ul All LU ICHIVHILD UL LG YO L-inunuida ﬂ\Dg 1‘1}. WIILICEL H1aVvVe adll
inverse, is called a subgroup of regular arrows from B to A and is denoted by

Reg(B, A)={fEA(B, A)|3g=A(B, A). f+g=0=g+f}.
The inverse to f € Reg(B. A) is denoted by f*, so f+ f*=0=f*+f.

0.i1. Remark. Let p: A— A’ be a monoid morphism and g: B'— B a comonoid
morphism. Then for any f, g € A(B, A) we have the identities

p(f+8q=(pf+pgq=npfq+pgqg=p(fq+gq).

If h € Reg(B, A), then we have the identities

rh*q =(ph)*q=(phq)* = p(hq)* .

Hence the mapping

A(q, p):A(B, A)—>A(B', A"), A(q, p)(f)=rpfq.

is a homomorphism of set-monoids, and determines the homomorphism of the
corresponding groups

Reg(q, p):Reg(B, A)—>Reg(B', A").  Reg(q, p)(f)=pfq.

If A is a commutative monoid and B is a cocommutative comonoid, then the
set-monoid A(B, A) and the group Reg(B, A) are abelian.

0.12. Definition. A Hopf monoid (in A) is a 5-tuple (H, py,. ;. my- €4). such
that
(i) (H, puy,mny) is a monoid,
(ii) (H, ¢y, &) is a comonoid,
(iii) the arrows ¢,, and ¢, are the monoid morphisms.
The latter implies the identity
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by, = (mp @ pyy)(1, 3.2, )Y, ®iy) .

which is called a Hopf condition by many authors.

The notion of a morphism of Hopf monoids (Hopf monoid morphism) is
defined obvicusly. A Hopf monoid H is called commutative. iff p, is commuta-
tive, and it is cocommutative, iff ¢, is of the same kind. The categories of Hopf
monoids, of commutative Hopf monoids and of cocommutative Hopf ravonoids are
denoted by #(A), MH(A) and €FH1A), respectively.

0.13. Definition. An antipode of H € |%(A)| is an arrcw (if it does exist)
S,;:H— H. such that §,, +1,,=0=1, +§, in the set-monoid A(H, H). Thus,
Sy =(01y)"

0.14. Remark. (i) If H is a Hopf monoid and M, M’ are the left H-objects, then,
when we speak of the left H-object structure on M @ M’, we mean the action

(0, ®0,)(1,3.2.8) (Y, OMOM'): HRMOM' - MO M’ .

(i1) If H is a Hopf monoid and e is a unit object of A, then, when we speak of
the left H-object or the right H-coobject structure on e, we mean the action
£,®e:H®e— e or coaction e@n,:e—e@H.

0.15. Remark. Let H be a Hopf monoid. A left H-object monoid is a 4-tuple
(C, o¢, e, ). such that
(1) (C, o, ) is a left H-object,

(i) (C, p¢s me) is a monoid,

(iii) the arrows u. and 7. are the left H-object morphisms.

A morphism f:C— C' of the left H-object monoids is an arrow f:C— C’,
such that f is a morphism of the left H-objects and of monoids, simultaneously.
The category of left H-object monoids and their morphisms is denoted by #( ,A).
The full subcategory of the left H-object monoids which are commutative as
monoids, is denoted by JU(,A).

0.16. Remark. Similarly defined are (H is a Hopf monoid):
(i) The notion of a right H-coobject monoid

({pp:D—>D®H, u,:D®D— D,n,:e— D),
here the coaciion of H on D ® D is defined dually to 0.14(i); and the respective

categories .4i(A"") and JMU(AY).
(ii)) The notion of a left H-object comonoid
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(X.0p,  HRIX=> X Y : X—> XQX. ey : X—e).

and the respective categories €(,,A), €€(,A).
(iii) The notion of a right H-coobject comonoid

(Y.py: Y= Y®H ¢ Y>Y®Y.¢,:Y—>e).

and the respective categories 6(A"), €€(A").

0.17. Remark. As the reader has already noticed. every time considering the
dual to any notion, we change not only the direction of arrows but the ordering of
factors in ®-products too, for example: a left H-object (M. o, HOM— M)
and its ‘dual’, a right H-coobject (N. p,:N—>NQ H).

In what follows. every time, while speaking of the dual to any notion or
consideration, we shall reverse all arrows and, simultaneously. reverse the
ordering of factors in &-products, i.e. AXBX®C—>DQE becomes
EQD—CQRBR® A.

0.18. Definition. (Compare Definition 3.1 of [13]).) An abelian matched pair of
Hopf monoids (abelian pair) is a 4-tuple (B. A, 0,. pg). such that
(i) A is a commutative Hopf monoid and B is a cocommutative Hopf monoid.
(ii) (A, 0,) is a left B-object monoid and (B. pg) is a right A-coobject
comonoid,
(i) e,0,=e,®€,, pgng="1pOM,.
(iv) 4,0, =(AB )0, ®AB®0,)(1.4,2,.3.5)(ps ® BOA® A) (Y@ ¥,).
(V) patts = (1 @, (BRBR®A®0,)(1.4.2.3.5)(ps @ BO py (i ® B).

0.19. Remark. let (B, A,o,,p;) be an abelian pair, (M.a,)€E|zA| and
(N, py) €|A?|. Then we denote:
Opga = (MO p, )0y, ®A®G,)(1.4.2.3.5)
(pp ®BRIMRA) Y, QMR A) .

Ppoy=(BONQuNBONDA®T,)(1.4.2.3.5)
(pp@BOpy)(YzON).

0.20. Proposition. Let (B, A, o ,.p,) be an abelian pair and (M. oy,) € |,Al.
Then (M® A, 0.,) is a left B-object.

Proof. Using the facts that (A, o) is the left B-object moroid and (M. o,,) is the
left B-object, one can show that



116 B. Pachuashvili

Frpa(B® Gyg.s)
=(M®u)oy®A®c,Q0,)
(1, OMRVAQRBR AR u,;® A)
©(1,5,8,2,3,6.4,7,9)
(p;®BRBRp,® B®MS A)
(Y ®UOM®A).

On the other hand, using the Hopf condition on B and (v) from 0.18, one
can show that the arrow g ( 1tz ® M ® A) is equal to the right-hand composi-
tion of the identity above. Thus we conclude that 6,g, (B®dyg.) =
Troal s @ MR A).

The verification of the identity 04,5 (1, @M A)=M® A can be done
similarly. O

We would like to mention that 0.20 is the generalization of Proposition 3.2 from
[13], and our proof follows step by step the proof of that original one.

0.21. Definition. Let (B, A, o, pg) be an abelian pair. A (B, A)-biobject is a
triple (M, oy, p,), such that

(i) (M, o) is a left B-object and (M, p,,) is a right A-coobject,

(il) pyoy = Onea(BBpy)={oy® A)F_’B@M'

0.22. Definition. Let (B, A, o,, pz) be an abelian pair. A (B, A)-biobject
monoid is a 5-tuple (M, a,,, py;» My M), Such that

(1) (M, oy, py) is a (B, A)-biobject,

(il) the arrows u,, and 7,, are both morphisms of left B-objects and right
A-coobjects. :

The category of (B, A)-biobject monoids will be denoted by (5 _,,A) and the
full subcategory of (B, A)-biobjects which are commutative as monoids, will be
denoted by JMM( 5 4 A).

1. Cohomologies
The adjunction from 0.7 induces a new one.

1.1. Proposition. Let B be a cocommutative Hopf monoid. Then there exists an
adjunction

(T, U): 66(A)— €6(,A),
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where U is a forgetful functor and T is deternuned by the formulas

T(C e ec) = (BRC, o7, = (3B 0),
Urey = (1,3, 2, ) (¥ @ ¥,.), Erey = ep®ec) .,
I(f)=B®f.

Proof. If (C, ¢, £.) €|€%€(A)|. then the identities
O'T(C)(B ® UT((‘)) = (I-'-iz ®C)= O (g ® T(C)) .
YrcrOricy = (g Q@ CROu, ®C)(1,3,5.2,4,6)
(Y QU QY R Y.)

= (UT((') ® ("T<t‘))(1~ 3. 4.2,5, 6)(¢3 ® ‘PT((‘)) .

Ere Oriery = Y Z1(Cy »

show that 7(C) € |6%€(,A)|.
If f:C— C' is an arrow in €%6(A), then the identities

T(f)UT(C) =pp®f= o c(BRT(f)),
e T(f) = (BOF®BRf)(1,3,2,4) (¢ ® ¢.)
=(T(HRT(fN¥rc) »

show that T( f) is from €%6(A).
A bijection of the adjunction

8 : 66(zA)(B® C, D)> €€(A)(C, D)

is determined as 3(f) =f(,®C) and ¥ '(g)=0,(BQg). O

7

1.2. Remark. Any adjunction induces a comonad |7]; the comonad induced by

the adjunction from 1.1 is denoted by
T=(T=TuU:66(;A)—> 66(zA), a:T—1,8:T—T").

where o =0.:BQC—Cand §,=(BR®7;®():BRIC—-BYBIC.

Let (M, oy, 1y, m,,) be a fixed left B-object commutative monoid. For any
(C, 6c, Uy £c) €| €6(5A)| and f, g € ;A(C, M), the sum f + g = p,, (f @ )y is
a morphism of B-obijects, i.e. f + g € ,A(C, M). The reason is that the arrows ¢
and p, are morphisms of B-objects. Thus one can obtain the abelian group
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sReg(C. M) = ,A(C. M) NReg(C, M). Certainly. the correspondence of C and
the abelian group zReg(C. M), determines the cotravariant functor

JRegi—. M): 66(,A)"— Ab.

1.3. Definition. Let us consider the right derv:d functors [1] of the functor
sReg(-, M). relative to the comonad T from 1.2. The values of these derived
functors on the unit object e (regarded, in an obvious sense, as an object of
€%(3zA)) shall be called the cohomology groups of the cocommutative Hopf
monoid B with the coefficients in the left B-object commutative monoid M and te
denoted by H(B, M), n=0.

The bijection of the adjunction from 0.7 gives the isomorphism of abelian
groups (recall. that the group structure is described by means of 0.3 and 0.10):

SABTL MYNReg(B™" "', M)>Reg(B®", M), n=0.

The last ones enable us to identify the cohomology groups H"(B. M) with the
homology groups of the complex of abelian groups:

Cn:Reg(B®u' M). dn:C"—-\ .:n+l .
d"(f)=ou(BOf)+ 2 (-1)Yf(B> '@ u, ® B="™") (1)
i=1
+(=1)"""AB®"®ez). n=0.

Let us observe that here arises one interesting subgrovp of the set-monoid
A(B. M), namely the group of one-dimensional cocycles of the complex (1), i.e

Z'(B.M)={fEReg(B, M}|d'(f)=a\(BOf) ~ firy
+f(BRey)=0}.
We call them regular derivations and denote them by
Der(B. M)=2Z'(B. M).
By the normalization theorem for the cosimplicial abelian groups, the cohomol-

ogy groups H"(B, M) also can be identified with the homology groups of the
normalized subcomplex of the complex (1):

N"={;"EC"]f(B@i—‘®n3®3®"—i)=0,ISiSn}, nzl,

N 2\
N = (2)
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We would like to mention that complex (1) and its normalized subcomplex (2)
are straightforward generalizations of well-known ones (see 4.1-4.3) and arc
inspired by [2.4, 11, I4].

1.4. Remark. Duaily to 1.1-1.3, the .ohomology groups H((N. A) can be
defined, where A is a comnmutative Hopf monoid and N is a right A-ccobject
cocommutative comonowni The cohomology groups H;(N. A) can be identified
with the homology groups of the complex of abelian groups:

C¢=Reg(N.A™). d¢:C"—>T"",
di(g)=(n,®A™)g + 21 (AT 'Ry, ®A™ )¢ (3)
+(=1)" {g®Ayg,. n=0,
or with the homology grcups of the normalized subcomplex of (3):

Ni={geCL|(A® '®e, QA " g=0.1=i=n})., n=1. @
Ny =C¢..
We would like to mention that complex (3) and its normalized subcomplex (4)
aie straightforward generalizations of well-known ones (see 4.4 and 4.5) and are
inspired by [3).

1.5. Remark. In most of the proofs of our propositions we have to show several
identities. We do this by the very simple machinery of commutative diagrams in
the category A, i.e. both sides of an identity are transformed (identically) to one
and the same expression. But, in this process, there appear tremendous calcula-
tions, and to save space we shall show for every identity conly the form of the
expression to which both sides of the identity are transformed.

Now, we shall translate Proposition 3.8 from [13] into the context of monoidal
category.

1.6. Proposition. Let (B, A, ., pg) be un abelian pair. Then there exists an
adjunction

(¥.G): MU( 5 4 A)— LU (GA) .
where the left adjoint U is the forgetful functor and G is determined by the formulas

G(M, oy, oy M)
=(M® A, 0, = Ouzas Poan = MR, .
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I“"G(M)::(""M®“A)(1*3’2’4) s NG =1y On,) .,
G(f)=fIA4

(for apg 4 See 0.19).

Proof. First, let us show that G has values in MM( 5 4A). If M E |MM(zA)],
then we have that (M ® A, pgy) € |A"| and (M ® A, pgy M) € |MM(A)|.
It remains then to show that:

() (M® A, Gysa) €Al

(1) PonTann = Tcanea(B® Pusy) = (061 @ A)Ppac)»

(iii) (M ® A, 01y Moy Neon) € MLU(A)]

(iv) (M® A, pouys Moy Moon) € IM(AAN .

For (i) observe 0.20.

For (ii) we have

PconTeon =M u,Qul )0y, ®ARF,®ARARG.,)
°(1,7.2,4,8,3,5.6,9)
(BRY,QBRAQBRM®y,)
(ps@ps@BRIM®R A) Y, ® M® A)

= 0ganea(B® o6 = (06 @ A)I_’B@G(M) .

For (iii) it remains to mention that

P61 (B® ko) = (ky ® 1) (0,80, ® AR AR, R0,)
°(1,7,3,9,2,4,5, 8, 6, 10)
°(psQp; ®BAIBAMROAQM®R A)
c(YrOMOARM® A)
= ean(Teon B Toan )1, 3, 4, 2, 5, 6)
°(Yp @ G(M)® G(M)) ,
and gy (B ®@ngy) = (nyy @ 04) €5 = NG €5-
For (iv) it remains to observe that
Pean ke =My @, ®u)(1, 4, 2,5, 3, 6)
(MY, MO Y,)
= (ke @ AYCGM)® G(M)Q )
°(1, 2, 4,5, 3, 6)(psm, ®Psny) »
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and

Pcony eon = (My RN, Qn,) = (MG, Ony) .

Behaviour of G on the arrows of f.#(zA) is described similarly.
Now let us define a natural (in M and N) bijection

3 MM(GA)NN, M)— MM( 5 1 AN. M A),
by putting #(f)=(f® A)py and 8 "'(g)=(M®¢,)g. O
The adjunction from 1.6 induces thc monad

(—; = (G_ =GU ZVMJ“((B‘ A)A)—') "M"“((B. A)A) ,
B:1-G,vy:G’>G),

()

where B,, =p,, and y,, = (M Q ¢, A).
Dually, the existence of an adjunction

(S, U): €C6A")—> €€( 5 4)A)

is proved, where the right adjoint % is the forgetful functor and § is determined
by the formulas

S(N, py. Uy ex) = (BON. o5y = g & N, pgny = Paon -
Wsny = (1,3.2, ) (U ® ¥y £5vy = £5 D £4)-
S(f)=BOf.

The last adjunction induces the comonad

S=(5=SU:66(5 1,A)— 6%( 5. 1A -
a:S_—>1,6:§—>§2),

(6)

where a, = o and 8, =(B®n; & N).

1.7. Proposition. Let (B, A) be an abelian pair (we omit here o, pg). M€
| MM 5. 4yA)| and N € |€€( 5. 4\A)|, then the correspondence of f and the compo-
Sition Gpye(BR fQ A)(BQ py) determines the natural (in M and v ) isomcrph-
ism of abelian set-monoids

@: AN, M)> ;  A(S(N). G(M)).
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Proof. The agreement of ¢(f) with B-action and A-coaction follows from the
identities

Toun(B® () = Oupa(ns OMO AYBRIBRf® A)

°o(BQBQpy)
= o(Nosw) »

Poon®(f)=(MOp, @u;)0y®AC,®AQAR0,)
°(1,7,2,4,8,3,5,6,9)
*(BRQYy,®BRIAXBIMXY,)

(P Qp ®BRIM®D A)
(U ®f® ANBRpy)
= (e(f)® A)ps v, -

Preservation of sums:

e(f)+ @(8) = (ry ®u N0y, ®0,®ABR ARG, Q0,)
(BRFOBRIRARARBR AR B® A)
o(1,7.3,9,2,4,5,8, 6, 10)
(ps Rpy @ BRB®py®py) (¥ hy)

=o(ft+8.
The inverse to ¢ is defined as
¢ (8=(M®¢,)g(n;®N). O

1.8. Remark. As is shown in [1], every monad on a category induces a functor
from the same category to the categorv of cosimplicial objects of the main
category. Thus, for the monad G (see {5)) we have the functor

G :MM( 5. 4 A)— Cosimpl(MAM( 5. 4 A)) -

Dually, the comonad S (see (6)) induces the functor to the category of
simplicial objects,

S*: €€((5. 1)A)— SImpl(€E( 5. 4)A)) -

Let us consider the bicosimplicial abelian group
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. vA(S7(€). G.(e)) NReg(S*(e). G(e)) .

where e is the unit object of A, considered, in the obvious sense. as the object of
both categories. From this bicosimplicial abelian group we induce the
bicocomplex

~m. Xm + | R+ 1 Sm+1 X+
Cm n_ A(B@wn A ) N RCO(B A\ )
(B. A) N =) pl .

Jm.an ., ~m+1, Jman m. ~m.
drln n . Cm n_ Cm n . dg' n . Cm n_, G:IM n+l . m.n=0 .
m

d"(f)= 2 (=DfB @ py ® B™")

i=0

+(—l)'"+]f(33"'”®83). (7)
a1 (f)=(-1)"((n,® A" )f
n+1

+ 2 (-D)(AYTRUT® AT,
j=1

Now, let us delete from (7) the first vertical and horizontal lines and make &
dimensional shift of 1. We get the bicomplex

Cm.n — Cm+l.n+l . J:n.n — (?;)H-l.n-fl . I= 1., 2, m. n ZO . (8)

1.9. Definition. The cohomology groups H),(B. A) of an abelian matched pair of
Hopf monoids (B. A, o, p;) are the homology groups of the total complex
associated with the bicomplex of abelian groups (8).

The restriction of the isomorphism from 1.7 induces the natural (in M and N)
isomorphism of abelian groups

¢:Reg(N,M)—= 5 1 A(BON. M A)NReg(BON. MR A).
9)
1.10. Remark. The isomorphism (9) enables us to iderify the cohomology
groups H, (B, A) with the homology groups of the totai ccinplex asscciated with
the bicomplex
Cm.n — Reg(B®m+ l1 A®n +1 ) .

drln.n . G:m.n — Cm+ 1.n . dlzn.n . Cm.n — Cm.rH'l . m.n= () .

d'l”."(f) = &.-1®11+I(B ®f)
m+1

+ 2 (—l)if(B@!—l®MB®B§TIH—H—[)

i<

+ (_1)m+2f(Bﬂ’n+l ® 93) .
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_—~
o —
>

~—

dgx.n(f) — (_l)nwl((nA ® A®n+l)f

+ 2 (DAY @y, ® AT
+(=1)"(f @ A)pgen-1)

where the actions G,sn-1:B®(A®)®A—(A®")® A and the coactions
ppem+1: BR(B®")— BR(B®")® A are defined by induction:

0,=04. Pp=Ps-

Gasn=((A®HQ p )¢ ;sn® AR 0,)(1,4,2,3,5)
*(ps®B®(A’")® A) (Y ®(A®")® A),

pgoni1 = (BO(B®")® u,(BR(B®")®A®a,)
°(1,4,2,3,5)(ps ® B® pyen)(¥5 ® (B™")).

From the theory of spectral sequences and the theorem on the normalization of
cosimplicial abelian groups, one can deduce that the cohomology groups
H%(B, A) (in the reduction (10)) can also be identified with the homology groups
of the total complex associated with the subbicomplex of the last one in (10):

N().(I — CU,()

Nm.l) — {fecm.()l f(B®,®nB® B@,n_,') - 0 i OS l < m} i

N ={feC™"|(A”®:, R A®")f=0, 0=<j=n},

Nm." — {fe Cm.n | f(B®l®nB® B®m—i) = 0 , 0_<_ I-S m,
(A" ®e,® A% )f=0, 0=j=n},

(11)

m,n=0.
We would like to mention that the bicomplex (10) and its normalized sub-

bicomplex (11) are the straightforward generalizations (see 4 6) of the bicomplex
(4.1) from [13] and are inspired by that one.

2. Extensions

2.1. Definition. An .i-extension X of a cocommutative Hopf monoid B by a
commutative monoid M is a commutative diagram in the category A
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p

E=M—>C C®B

~F

MQug
M®B— M®B®B,

such that
(i) Cis a monoid,
(ii)) « and p are monoid morphisms.
(iii) A is an isomorphism in the category A and (u,,® B)(M®A)=
Ap(a®C).

The assumptions of 2.1 imply that C and M ® B are the left M-objects via the
structural arrows u.(a ® C) and (u,, ® B), respectively. C and M ® B are the
right B-coobjects via the structural arrows p and (M ® i), respectively. More-
over, C is the right B-coobject monoid, because p is the monoid morphism. Now.
the arrow A becomes the isomorphism of both left M-objects and right B-
coobjects (recall the commutative quadrangle of the diagram and (iii) from 2.1).

The idea of an arrow being simultaneously an isomorphism of left modules over
some algebra and of right comodules over some coalgebra is due to Milnor and
Moore [8].

2.2. Remark. Every time, while speaking of the system of arrows induced from
the -extension E, we shall mean the arrows

§=(MQ®ex)A:C— M, y=A"'(n,®B):B—C,
oy =0p (yRa):BOAM—->M, 7,=6u(y®y):BOB—>M.

2.3. Theorem. Let E be an M-extension and (8, vy, 0y, 7y,) be the system induced
from it. Then we have the following identities:

() Auc(y®a)=(0y ®B)(1.3.2) (b ® ).
(ii) Ay ®y) = (1, O pp)(1.3.2.4) (4 ® ) -
(iii) M (AT @AY = (), B uy)(M® 0,7, ® BO B)
0(1,2.5.3,6. 4. MRy, QM Y) .
(iv) oy ®M)=M, o, (BOny)=my¢s.
Tu(B®ng) =0y 5 = 7y(M; ® B).
V) oy (BOu,)=(0y,®0,)(1,3.2,4)(y, ®MIOM).
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(vi) a0y ® 0, 7, (B® 0, ®BRQ7,,® B® uy)
0(1,4,7,2,5,8,3,6,9)(, QY O M ¢)
=p,(MOa, @7y )1y Qu, OMQ pu; ® B)
0(1,4,2,5,7,3.6.8) (¢, QU ®M®B) .

Proof. The key to the whole proof is the identity
A=(M®e;®B) AR B)p. (12)
(i) Using (12) it is not difficult to show that

(MO dp)Ap(y ®a)
=(A® B)(u ® B)
c(AT'®A'®B)1,, ®BOM®1,® B)(1, 3. 2)(¢, ® M)
=(M®e, @B B)AQB®B)(1,Q BRR)
*(A"'QA '®BR®B)(1,®BOM®n,R BR B)
°(1.4,2,3) (¢ ® M)
=(M® Y, )0, @ B)1,3,2,4)(y,®M) . (13)
Then, multiplying the first and the last compositions of (13) by (M ® £, ® B)
on the left, we get (i).
(i) Using (12), we have
(MO Yp)Apn(y®y)
=(A®B)(u Quz)A'®1"'®BRB)
oy @ BBy, BB BB B)i.5.2.4)(¥,3¥,)
=MRez@BRIBYA®BOB)(pt Qg @ ug)
°(A7'®1'® BR B® B® B)
°(n,®B®n,, ® BOBR®BR B® B)
°(1,4.2,5.3,6)(¥, @ V;)
=(MQW,)(1, ® uy)(1,3,2,4) (¥, @Y,) . (14)

Then, muitiplying the first and the last compositions of (14) by (M ® ez ® B)
on the left, we get (ii).
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(iii) From (i) and (ii). associativity of u.. and the identity A ' = g (a ® y) we
get (iii).
(iv) We have
oy (Mg OM)=(M® ep)Apn (Y R a)(n, ® M)
=(MQex)Ap (1. ®Ca
=(MQeg)ha=(MQO e )(MBn,)=M.
The other identiiies of (iv) are verified similarly. Before doing (v) and (vi). let
us mention that the associativity of u,. implies
AMACOp A '®A'®A™Y
= A (R RCHAT'®AT'®ATY). (15)

Decomposing both sides of (15) aind using (iii). we get that

(kO uy)(MRa,, ®MQ B® B® B)
c(M®BR®u,,®7, B®BR® B)
(MOIBOIMRo,,37,3BRnu,3BRIBRB)
°(1,2,5,6,10,7,11.3,8.4,9.13)
(MY, OMR Y@M )
= (uy ®uy)puy® 0, ®7, ® B B B)
(MR, 7, Qu; OMOu, ® BB BRX B)
°(1,2,7,3,8,4,9,12,5,10, 13,6, 11, 14)
(MY, OMO YL, ®M® yy). (16)
(v) Muitiplying both sides of {16) by (n,, ® B M Qn, ® M & n;) on the right
and by (M ® €,) on the left and using (iv), we get (v).

(vi) Multiplying both sides of (16) by (7,,® B®n,,® B® M & B) on the right
and by (M ® ;) on the left and using (iv) and (v), we get (vi). U

2.4. Remark. The previous theorem shows that

(iii) The monoid structure on M @ B induced from C by the isomorphism A is
fully described in terms of ‘action’ o, and ‘twisting function’ 7,,.

(iv). (v). The pair (M. o,,) is ‘like’ a left B-object monoid: ‘like’ because all
axioms are satisficd. except the identity o, (B® a,) = oy, (ny ® M).
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(vi) This identity can be transformed into a ‘cocycle condition’ for 7,, by
multiplying both sides of (vi) by (B® B ®n,,® B) on the right. But still, 7,, is
not regular (i.e. an element of Reg(B® B, M)) and what is more important,
there is no possibility to obtain the identity ,,(B Q oy,) = o), ( ugy ® M). The last
identity is a very important part of (vi). In Section 3, putting additional conditions
on extensions, we shall overcome these difficulties.

2.5. Remark. Let B be a cocommutative Hopf monoid and M a commutative
monoid, and let o,,: BOM— M and 7,,: B® B— M be arrows of the category
A. Then these data determine the commutative diagram in A,

E=M—>C—2>C®B
M@m\‘ A=1 Il
M
M®B—> M®B®B,
and arrows

n:e—>C, p:CRC—->C, n=1,9n,,
ﬂz(#L®#B)(M®UM®TM®B®»H)
°(1,2,5,3,6, 4, MO Y, OM® y,) .

2.6. Proposition. Let B, M, 0, 7, E,C,a,p, 9, 0, A=1beasin?2.5. Then E is
an M-extension, if and only if the arrows a,, and 7,, satisfy conditions (iv), (v) and
(vi) of 2.3.

Proof. Let E be an /-extension. Then the system of arrows induced from E is

(M® &g, m,,® B, 0y, 7,,); the last two are the original ones from 2.5. Then 2.3
gives the necessity condition.

Conversely, let us assume that the pair (o, 7,,) satisfies identities (iv), (v) and
(vi) from 2.3. The agreement of p with 7 is implied irom (ivj. The identities v)
and (vi) imply the identities (16) and (15), and this means that (C= M ® B, p, 1)

is a monoid. The Hopf condition on B implies that p is the morphism of right
B-coobjects. O

2.7. Definition. Let
E,=(M—5C—5C®B,):CC5>M®B), i=1,2,

be .f{-extensions. A morphism of monoids f: C,— C, is called a morphism of
M-extensions f: E,— E,, iff the following diagram commutes:
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@
E,=M—>C,—C,®B

[T

E,=M—>C,—C,®B.

Note, that A, and A, are not involved.

2.8. Proposition. Let f: E,— E, be a morphism of M-extensions, (8'.y', o}, 7},)
and (8", y", oy, Ty) be the systems of arrows induced from E, and E,. respectively
(see 2.2). Let us put g = 8"fy': B—> M. Then we have the following identities:
() A =(py@BYMOg®B)MBY,),
(ii) fy' = a,g +v", the sum is taken in the set-monoid A(B, C,),

(i) pL,(MOMRg)o,Q7,® u;)(1,4,2,5.3,6) (¢} @ MQ )
=u,(MOM®a,,QM)(g®ao;,@®BRg®1;)
©(1,2,5,3,6,4, (Yr @M ).

Proof. (i) The arrow A,fA;' is the morphism of ‘extended’ left M-objects and
right B-coobjects and this fact implies (i).

(i) Multiplying both sides of (i) by ¥y’ on the left, we get (ii).

(iii) Multiplying both sides of the identity

fuc, = pc(fOf)

by A, on the left and by A;' ® A; ' on the right and using (iii) and (iv) from 2.3 we
get the identity

(L QuYMOIMIMRgRBRB)MP0,;,Q71,dpu; ® BR B)
°(1,2,6,3.7,4,8,5, (MO Y3 OMQ ¢},
=(u, Qu ) (MIMQ o), Q@74®B® B)
(M&ZRBAMRBRgQ®BRBR®B® B)
2(1,2,3,7,4,8,5,9,6, 10)(M@ Yy, @M y3) . (17)

Multiplying both sides of (17) by (1,,® B M ® B) on the right and by
(M ® gz) on the left, we get (iii). O

Unfortunately, we cannot prove that every morphism of .#/-extensions is an
isomorphism; as we shall see in Section 3, the last property is shortly connected
with the regularity (of arrow g) condition.



130

B. Pachuashvili

Arguments similar to 2.6 enable us to prove the following:

2.9. Proposition. Let B be a cocommutative Hopf monoid. M a commutative
monoid, (o}, 7,,) and (o y,. Ty,) the pairs of arrows which sctisfy the conditions of
2.6 and thus, determine the [Ml-extensions E, and E, !see 2.5), respectively. Let
g:B— M be an arrow from A and put f = (p,, ® BY(M Qg Q B)(M R ;). Then
f is a morphism of Ml-extensions f:E,— E,, if and only if g satisfies (iii) from
28. O

Considerations dual to 2.1. 2.2 and 2.3 give the following:

2.10. Definition. A €-extension E of a cocommutiative comonoid N by a com-

mutative Hopf monoid A is a commutative diagram in A,

such that

E= AQC—" C—2 N
j l /
!-‘A®.'\'
ARARNZI AN,

(i) C is a comonoid,
(i1) o and B are comonoid morphisms,
(ii1) A is an isomorphism in the category A and

(AQ Y )A=(ABN)CRB)Y, .

2.11. Theorem. Let E be a €-extension and put

8=(AQe)A:C— A, y=A"'n,®N):N->C,
Py=(BO8)Y,y:N>NQA, ¢,=(6®8)y.y:N>ARA.

Then we have the following identities:

(1)
(i)
(iii)
(iv)

v)
(vi)

(BRS8)A ™ =(N®p,)2, 1.3)(AB® py).

(BR8P = (1, ®u,y)(1.3.2.4) 0, Ro,).

(AQNYA"'=(pn, ONQu’, ®N)(1.3,5.2,4,6.7)
O(A®A®‘PN®pN®N)(¢'A®d’?V)'

(NQe,)py=N. (e,® A)py=1n,¢y -

(A®e.)py = Nty = (e, A)gy .

(Un® A)py = (NON® 1, )(1.3,2,4)(py ® py )ty

(LA®NQui®pu')(i,4,7.2,5,.8.3.6,9)

(W QAR oy ® AR p, ® A)(gy @ py @ py )}
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= AQNQ®u, ®ui)(1.4.2.5.7.3.6.8)
(ARQY, INDY, R )¢y ®p BN

Proof. Dual to 2.3. O

Certainly, one can develop dual to the whole theory of ./ -extensions. We shall
assume that this is done and use facts from %-extension theory.

There appears an interesting notion obtained from the joining of the notions of
#{->xtensions and €-extensions.

2.12. Definition. An 3 -extension of a cocommutative Hopf monoid B by a
commutative Hopf monoid A is a commutative diagram in the category A.

A /433 (18)

such that
(i) Cis a Hopf monoid,
(il)) « and B are Hopf monoid morphisms,
(iii) A is an isomorphism in A and

AMA(a®C)=(p,®B)ARA).

(AQYp)A=(A@B)(CBB)Y .
2.13. Proposition. Let A be a commutative and B a cocommutative Hopf monoid.
A commutative diagram like (18) is an -extension, if and only if we have the

following:
(i) C is a Hopf monoid, a and B are Hopf monoid morphisms.

(i) E' =(A—> C 22 c® B, ) is an M-extension,
(a®C . .
(iii) E"=(A® Cu; C—B> B, A) is a €-extension.

Proof. Obvious. [
2.14. Theorem. Let E be an % -extension and put:

8=(A®ez)A:C— A, y=A"'(n,®B):B—C.
0,=0u(y®a):BRA—>A. p=(B®8)Y.y:B—>BRA,
T, = (y®y):BB— .. op=(6R8)y,.y:B->ARA.
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Then we have the following:

(i) We have (i)—(vi) from 2.3 only one must make the substitution M = A.
(ii) We have (i)—(vi) from 2.11, only one must make the substitutioi: N = B.
(iii) We have the following identity (sum is taken in the set-monoid

A(BRAQ®B, AQBQ® A)):

(AQn;® A)Y,0,(BR AR eg)

+(AQn;® A)yY,7,(B®e,®B)

+(A®N; ® A)pgpup(B ® €4 ® B)

+(n,®B @ A)ppuz(B®e,®B)

=(A®M;® AT, (BRY, NBRAQ &)

(M, ®BRA)(p,® A)BB®B(B Qe,QB)
+ (AR ® A)ez(BR e, B gp)
+ (AR ® A)0,04(BB ¢;)(BRe,® B)
+(AQn; @ AN 7, ® A)ppep(B® e, ® B)
+ (1,8 Q@ A)7,(BRe,RB).

(Expressions for 6,5, and pggy are given in 0.19).

Proof. Recalling 2.13, 2.3 and 2.11, it remains to prove only (iii). The Hopf
condition on C implies the identity
(AB drepc(A~' @A)
= (AN ® pe)(1.3,2, )W QY )A'®A7Y).

Using 2.3 and 2.11, we get from the above identity

(L \®BOu,®u;)(1,3,5,7,9,2.4,6,8,10, 11, 12)
(AR ARV, RV, ® ¢, Qp, ® B B)
(ARARO, T, Qu, u, ® BAB)
°©(1,2,3,8,4,9,5,10,6,11,7, 12)(¢, Q3 R AR ¢3})
= (1, ®p ®uy ®upy)
(ARA®T,Q®c,®7,3BRBR A
DARARARVNARARG,®0,Q0,80,87,3BRB)
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(1030501907, 2109, 23, 11,25, 2. 4, 6. 8. 10, 12. 13, 20, 14.
22,15, 24, 16, 26, 17, 27. 18. 28)

AR ARG BppRpy Bps B p,
®BRBRYBRBYBRBR®AR ARG 0, ®p,®p, DB B)
°€‘»'IA®'!’;;I ®'J’A®$Z) . (19)

Multiplying both sides of (19) by (n,® B® A® B) on the right and by
(A®B® AQ¢,j on the ieft, we get identity (iii). O

2.15. Proposition. Let A be a commutative and B a cocommutative Hopf monoid
and let

0,:BYA—> A, p,:B—>BR®A,
T.:BO®B—>A, p;:B—>ARA

be arrows from tie category A. The cominutative diagram

E=A—">c-2.B,

!A=1/5‘®B
i

dovgg \ i
|
- A®B

¥

and the data

N=1,8n5. £=£,Q¢,
p=(pa®p)(A®0,®7,8 B® B)
°(1,2,5,3,6,4, 7)(AQu;, @ AQ ¢) .
¥=(r,®B®u},®B)
°(1,3,5,2,4,6,7NA®A® 0, @ p, @ B) (1, R Y3)
determine an ¥ -extension, if and only if we have the following:
(i) We have (iv)-(vi) of 2.3, only one must make the substitution M = A.

(11) We have (iv)~(vi) of 2.11, only one must make the substitution N = B.
(i) We have (iii) of 2.14.

Proof. Recalling 2.6, its dual consideration and 2.13, it remains to verify the Hopf
condition for C. Bui this condition comes from a straightforward calculation.
which uses the Hopf conditions for A and B and the identity (iii) from 2.14. 0
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Certainly, one can develop the whole theory of -extensions. similar to the
theory of ./ -extensions. We shall assume that this is done and use facts from the
J-extension theory.

3. Connections between cohomologies and extensions

3.1. Proposition. Let B be a cocommutative Hopf monoid and let (X,
Py X—=>X®B, py.ny) and (Y, py: Y= BRY, u,. n,) be B-coobject monoids.
If there exists a cotensor product (X ®® Y. v) of B-coobjects (see 0.9), then there
exist unique arrows j1 and 7, such that they define the monoid structure on X @® Y
and the arrow v: X ®° Y— X ® Y is a monoid morphism (the monoid structure p.
on X®Y is given as in 0.3). Thus, (X®® Y, v) is the equalizer of a pair in the
category of monoids., too.

Proof. Let us consider an arrow u, = u(r Q@ v)=(uy @ u, )1, 3, 2, 4)(r ).
For this arrow we have (p,®Y)u, =(X®p,)u, and then, by the universal
property of the equalizer, there exists an arrow g, such that g, = u(v ® v) = vu.
7 is defined similarly. O

3.2. Definition. An .#-extension E=(M->C->C®B, A:C>M® B) is called a
regular M-extension, iff y=A"'(y,,® B) € Reg(B, C), i.e. if the arrow v is the
invertible element of the set-monoid A(B, C).

3.3. Theorem. Let M be a commutative monoid and B a cocommutative Hopf
monoid with an antipode S (see 0.13). Let (C, ., . m.) be a right B-coobject
monoid. Then the following two statements are equivalent:

(1) There exist arrows a and A, such that the diagram

E=M——>cCc —* > Cc®B

Auxx l* [z\ ®B
M®dig

MIB—MQOBQ®B

is a regular M -extension.
(i) There exist an arrow y € Reg(B, C)NA%(B, C) and an isomorphism of
monoids w: M= C®" e, where e is the unit object of the category A (see 0.14(ii)).

Proof. Let us assume (i), then we have

pea=(A""®@B)YM® Yy )AA "' (M®n,)
=(AT'®@B)M® ;) (M Q)
=(A'®B)M®B®n,)AA" (M®n,) = (CQn,)e .
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Now let h: D— C be an arrow in A, such that p.i = (C®n,)h. Then we have

h=(C®ep)ph=(CRep)(A™'@BYM® y,)Ah
=2 (M®BQez)(M® ¥, )Ah
=A"'(M®e,®B)A® B)p.h
=A'M®e,®B)AQ B)(CQ®n,)h
=2 (M@, MQe,)Ah
=a(M®eg)Ah.

Thus, M is the equalizer of the pair (p,.. (C ®m;)) in the category A, but by 3.1
it is the equalizer in the category of monoids. too.

Conversely, let us assume (ii). We can assume that yn, = 7,.; if this is not so,
then we can consider a new arrow y, =y + y*nz¢, € Reg(B. C), here y* is the
inverse element to y (see 0.10). Then the fact that y is an element of A?(B. C)
and the identity p.y*=(y*®S,)¥, imply that y, €A%(B. C); but we must

prove that the identity p.y™ = (y*® S;) ¢, is true. For this let us consider the
sums

Py T (Y ®Sp)dy and (Y QSp)ds + pey -

We shall show that both are equal to the zero element of the set-monoid
A(B, C® B). The first sum is equal to

pcY T (Y ®Sp)p =(y®B)y + (v*® Sp)bg:
but B is cocommutative, and thus ¢, is a comonoid morphism
(YO B + (v*®Sp)hp = (v ®B) + (v7S5)) ¥

=N Bn)es D eg) Py
=(m:Bnple=0.

Arguments for the second sum are similar. .
Thus, we assume that yn, =n.. Let us consider the composition & =
wA(C®y*)p,.:C— C, using the identity p.y*=(y*®S,)d, one can easily
verify that p(~(§= (C®n3)§. Then, by the universality of w: M— CR®"e there
exists an arrow 6 : C— A, such that & = a8, where a = vw.
Let us consider the compositions

A=@Q®B)p.:CoM®B, A '=p(@a®y):M®B—C.

It can be easily verified that A A = 1.
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We have the identity adu (e ® y) = a(M ® g;) and then, because a = vwis a
monomorphism, we get du(a ®y) = (M ® &5). Using this last identity, it can be
easily verified that AA™'=1. O

3.4. Lemma. Let E be an M-extension and (b, vy, oy, 7)) the system of arrows
induced from it (see 2.2).
(i) If E is the regular M-extension and B has an antipode S, then:
(1) oy = sui(y ®a®y*)(1, 3, 2)(¥, ® M),
(2) 7y =3(¥(B® ;) + ¥(e; ® B) + y* 1) EReg(BO B, M).
(ii) If 7,, EReg(B® B, M), then:

(1) (M, opys pr- M) € IM(BA)L
(2) oy(B®7y) + (s ®B) + 7 (B ug) + Ti(BOB® g,) =0.
(iii) If 7,, € Reg(B, C) and B has an antipode Sy, then y € Reg(B, C) and

y*= oy (BRTiNS; OB S,y + vS, .

Proof. (i) Assume that E is regular and B has an antipode S,.
(1) Using (i) from 2.3 we have

Sui(y ® a®y*)(1,3,2)(%, ® M)
=pc(mc @ C)y B a®@y*)(1,3,2)(¥ ® M)
= dpc(pc @ CYa®y R C) oy, ®BRC)
°(1,3,2,4)(yy OMICYBOMRy*)(1,3,2) (v, ® M)
= (COUNCOYBY*NC R ¢y)
(@ ®B)(oy, ®B)(1,3,2) (¢, @ M)
= duc(a ®n)oy = daoy, = 0y, .

(2) Using (ii) from 2.3 we have

aty + Y = pe(y @ y) = ¥(B® &) + y(e5 ® B)
and, r.calling that (yu,)* = y*u,, we conclude that
aty =Y(B®eg) + (e ®B) + y*u, .
Multiplying both sides of the last identity by & on the left, we get the formula

for 7,,.
Now we must construct an inverse of 7,,. Let us consider the arrow

h=vyup+ pc(y*®@y*)(2,1)=yuz + y*(e, ® B) + y*(B® g,) . (20)
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It is easily verified that ph=(C®n;)h. Then by the universality of
w:M>C®% we have h=adh (see the proof of 3.3). Then we have that
a(bh+ 7y,)=adh+ ary=h+7,=0=an,(e,®ez). The arrow «a is mono,
and thus 6h + 7, =,(6, @ £5) =0, i.e. 6h=17f.

(i) Now let 7,, be regular arrow with inverse 73;.

(1) Recalling the identities (iv) and (v) from 2.3, it remains to show that
ou( s ® M) = 0, (BR® 7).

By straightforward calculation we get that

(e ®M)=p (0, QMO M)(py @ M V7, 73)
°(1,4,7,2.5,3.6) (¢ @ UL O M) . (21)
Multiplying both sides of (vi) from 2.3 by (B® B® M ®n;) on the right, we
get
Bp(0 @ M) (s @M 7, )(1,3.5,2,4) (Y3 ® ¢, @ M)
= (T OMY(pp @0y @7y )(1,3.5.2, ) (s S b, O M) .
Using this last identity, the right-hand side of (21) can be transformed to
oy(B® ay).

(2) Multiplying both sides of (vi) from 2.3 by (B® B ®n,,® B) on the right,
we get that

oy(BRt1y) + 1y (BOug) =1, (1 ®BY+ 7,(BOBR¢y).
Now it remains to notice that

(s ® B) = (7,,(pz ® B))* and
TH(BRBRey)=(1,(BOB®sg))*.

(iii) This is verified by a straightforward calculation which uses (20). O

3.5. Lemma. Let f: E,— E, be a morphism of M-extensions, (8', v', a4, Ty)
and (8", ¥", oy, 1}1;) the systems of arrows induced from E and E., respectively,
and g =8"fy’.
(i) If E, is a regular M -extensior and B has an antipode Sy, tlen:
(1) g€ Reg(8, M) and g*=8"(y" + f(y )*).
(2) y"EReg(B, C,) and (y")* = f(y')* + a,g, and thus E, is a regular
M -extension, too.
(ii) The morphism f:C,— C, is an isomorphism, if and only if g is a regular
arrow (i.e. g € Reg(B, M)).
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(iii) If g € Reg(B, M). then o, = a,, (and we denote both of them by a,,). and
Tyt 8y =8(BReg)+ o, (BRG)+ 7y

Proof. (i) (1) Using the identity p,('y')* =((y')* ® Sz)¥y. one can easily see
that

p(y" +f(v')) = (C;®me)(v" + A(¥')Y) .

Let us denote £ =y"+ f(y')*; then (22) implies that p.h = (C,®n,)h. Using
this last identity, we have
h=(C.®¢e,)p.h=(C,® e, (A;' @ BYM® Y, A.h
=A; ' (MO BQe,) (M)A h
=1;' (MQ e, ®B)(A,® B)p,h
=A;'(M®&,®B)(A,® B)(C,®n,)h
= A (M ®n,)(M® e5)Ah
=a,(MQep)h.

Thus we obtain

a8"(y"+ f(y'))=v"+f(¥')". (23)

From (ii) of 2.8 it is known that fy’'=a,g +y" and that a, and f are the
monoid morphisms. Then, using (23), we have

(g + 3"y + f(1')*) ~ ang + a:d"(y" + f(y'))
= ag+y"+ ()" =0,

The arrow a, is mono, hence we obtain g+ 8"(y" + f(y')*)=0 and so g* =
8"(v" + f(v')*).

(2) From the identity fy'=a,g+vy" we obtain y"=a,g*+ fy' and then
) =fy) + ag.

(ii) Let f:C,— C, be an isomorphism. Then f ~': C,— C, is a morphism of
Al-extensions too, and then, for the arrow §=8'f 'y": B— M we have

' =(1y®B)M®BE®BYM®yy).

Now. if we make a cecomposition of the identity A, f 'A;'A,fA;' = M® B, we
see that
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(ry®@B)MO(g+)@BYMRyY,)=MQSB. (24)

Multiplying both sides of (24) by (M ® £;;) on the left and by (1,,® B) on the
right, we obtain g+ =0, i.e. g*=g=8"f 'y"
Conversely, let g € Reg(B, M), then one can put

F'=2"(ry®BYM®g*® B)MQy,)A, .
(iii) Let g€ Reg(B, M). It is easily verified that
oy =m0y ®g®g*)(1.4,2.3) (W@ M). (25)

Multiplying both sides of (iii) from 2.8 by (B ® M ®n,,) on the right, we obtain

(0 ®2)(1.3.2) (Y, @ M) = Hy(8§R o) (b M) . (26)

Using (26) one can easily transform the right-hand side of (25) to o},. Hence,
oy = 0, and we denote both by o,,.

Multipiying both sides of (iii) from 2.8 by (B®m,, ® B) on the right and
recalling that o, = o, = o,,, we obtain

Tyt 8up =8g(B®ey)+ 0y (B&g)+7y,. O

3.0. Remark. Let E be an ./{-extevsion, we shall make our considerations in two
(somehow parallel) situations: the first one is when E is regular and B has an
antipode and the second one is when A(B®", M) =Reg(B*". M). n=1,2.

In both cases 3.4 shows that (M, o,,) is a left B-object commutative monoid
and 7,: BOB— M is a two-dimensional cocycle of the respective normalized
complex (2) from Section 1. Lemma 3.5 shows that if f : E, — E, is a morphism of
Jl-extensions, then, if E| is regular, E, is also regular (in the assumption that B
has an antipode), and that f is an isomorphism in both above-mentioned situa-
tions. Moreover, the actions of B on M induced from E, and E, coincide and the
difference between 7,, and 7}, is an element of Reg(B. M). i.e. if g=8"fy'. then
Ty Th= Tyt (1) = 0y (B®g)+ g p, + g(B® ;) = d'(g) (for d' see (1))
and this fact holds in both situations.

We can make considerations in the inverse direction. Let (M. o,,) be a left
B-object commutative monoid and 7,, be a two-dimensional cocycle of (2) from
Section 1. Recalling 2.6 we have to show that we have the identities (iv)-(vi) of
2.3. Parts (iv) and (v) are obviously satisfied. Let us put a cocycle condition for 7,,
in the following form:
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oy (BOT,) + 1y (BOpg) =7 (13 ®B) + 7,,(BOBR ).
Now, decomposing both sides of this last identity, we obtain

a0y ®M)(B® 7, @7 (BOB®BRBQ )
°(1,3,5,2,4,6) (4 @ Y ® Yg)
= py (T ® Ty (BOB® py ® B)(1,3,2,4,5)(:45 O ¢ @ B)

Using this last identity and the fact that M is a left B-object commutative
monoid, we have

(o, R0, ®7,(BR o, ®BR®7,Q BO 1y)
0(1,4,7.2,5,8,3,6,9) (43 QU3 O M® )
= u (g, ®MOIM)BR v, ®MIM)BIBOMR0s,,® M)
*(BRBAM®B®7,®7,)
«(BRBOMRBR®BRBQBQ u,)
°(1.4,7,2,5,8,3,6,9) W, @4, 8 M® )
=l (o, OMIOIM)pu, ®MOM)BQBOIMRT1,BT,)
" (B®BOM®B®BQu,®B)(1,4,7,2,5,3,6.8)
(P35 Py ®MQB)
= (M@0, @7, )(7y @y @M ® py @ B)
°(1,4,2,5,7,3,6,8) (4, QU ®MDB).

And thus, by 2.6 we see that 7,, determines the /(-extension. If, additionally, B
has an antipode, then 3.4 shows that the induced .#-extension is a regular one.
Let 75, and 7;, be two cocycles representing one and the sarie cohomology
classes from H’(B, M), i.e. there exists g€ Reg(B, M), such that 7, — 7l =

d'(g)=0,(BQg)—gun®+g(B®c«,). Let us put this condition in the following
form:

Tat 81 =8(BR®eg) + 0y (B®g) + 7.
Decomposing both sides of the last identity, we obtain

My (MO g) (7, ® 1p)(1,3,2,4) (¢ ® Vg)
=uy(M®a, OM)(g®B®g®7y)(1,2,4,3,5) (¥ Q).



Cohomologies and extensions in monoidal categories 141

Now we wish to check the assumption of 2.9. Using the last identity, the
observation that in our case oy, = ¢, = o,, and the facts that M is commutative
and B is cocommutative, we obtain

py(MOM®g) o, @7, ® us)(1.4,2,5.3,.6) (b @M® y,)

=, MO u, (MMM, ® uy)(1,2.4,3,5)
(M Y, ® )0y, ® B® B)(1,3.2,4) (¢, ® M Q B)

=py (MO U, ) MOMRo,, SM)(MR®g®BRg®r/,
°(1,2,3,5,4,6)(M @ 4z ® ¥3)(5,,® B® B)
2(1,3,2,4)(y,® M ® B)

=uy(MOM®a,, ®M)(g®0,OBRg® T},
0(1,2,5,3,6,4, (Y @M@ ) .

Thus, 2.9 implies that f=(p, ® B)(M ®g® B)(M Q ) is the morphism of
M-extensions f: E,— E, and (ii) from 3.3 implies that f is the isomorphism.
Thus we have proved the following:

3.7. Theorem. Let B be a cocommutative Hopf monoid and M a commutative
monoid.

(i) If B has an antipode, then any regular . -extension E induces a left B-object
commutative monoid structure (M, a,,) on M, and the correspondence E— 7,
determines the bijection

M...(B, M)> H(B, M),

between the set of equivalence classes of regular M-extensions and the (respectively
by o) second cohomology group from 1.3.

(ii) If A(B®", M)=Reg(B®", M), n=1,2, then any M-extension E induces a
left B-object commutative monoid structure (M, o,,) en M and the correspondence
E — 7,, determines the bijection

M(B, M)> H (B, M),

between the set of equivalence classes of M-extensions and the (respectively by o,,)
second cohomology group from 1.3. L[]

We would like to mention that 3.7 generalizes Thcorem 8.6 from [14] and is
inspired by that one (see 4.3).



142 B. Pachuashvili

3.8. Remark. The dual considerations in the original category A (or the original
considerations in the dual category A°") give the connection between 6-exten-
sions and the second cohomology group from 1.4 in both situations (see 3.6).

3.9. Definition. A -extension E = (A—— C—— B, A:C> A® B) is called a
regular -extension, iff (A® £,)A € Reg(C, A) and A~ '(n, ® B) € Reg(B, C).

3.10. Theorem. Let A be a commutative and B a cocommutative Hopf monoid.

(i) If A and B have antipodes, ther any regular ¥ -extension E induces an
abelian matched pair of Hopf monoids (B, A, o,, pg) and the one-dimensional
cocycle (t,, ¢p) of the (respectively by (o, pg)) normalized subbicomplex (10)
from Section 1; the correspondence Ew— (7,, ¢g) determines the bijection

%#..(B. A)=> H,(B, A),

between the set of equivalence classes of regular #-extensions and the (respectively
by (o4, pg)) first cohomology group from 1.9.

(ii) If A(B®", A®")=Reg(B®", A®"), m,n=1,2, then any ¥-extension F
:nduces an abelian matched pair of Hopf monoids (B, A, o, pg) and the one-
dimensional cocycle (7,, ¢g3) from (10); the correspondence E v (7,, @) de-
termines the bijection

H(B, A)= H,(B, A)

between the set of equivalence classes of ¥-extensions and the (respectively by
(04, pg)) first cohomology group from 1.9.

Proof. As we see, we have two different situations to discuss. Most of our
argument is valid in both situations. If this is the case, we do not mention ..1 which
situation we are. But, if there is any difference, we explain what we are doing in
each case.

Propositions 2.13 and 2.15, Theorem 2.14 and Remarks 3.6 and 3.8 insure us
that the only things which are left to be proved, are the following:

(i) We have (iii)-(v) from 0.18 for the pair (o,, p,) induced from E.

(ii) The pair (7,, ¢;) induced from E satisfies the condition d)'(r,)+
d}"'(¢z) =0 in the normalized bicomplex (11) from Section 1.
(iii) If f: E,— E, is a morphism of 9-extensions and (o, pj. 74, ¢4) and
(04, P> T4, @) are systems of arrows induced by E, and E,, respectively, then
the pairs (o, p;) and (o);, p};) coincide, the arrow f is the isomorphism and the
pairs (7,, ¢p) and (7}, ¢}) represent the equal cohomology classes.

(iv) if (74, ¢p) is a one-dimensional cocycle from (11) in Section 1, then we
have the ideatity (iii) from 2.14.
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(i) Now, part (iii) of Definition 0.18 is evident. Multiplying both sides ¢ (iii)
from 2.14 by (B ® A ®mnj) on the right and by (A ® £, ® A) on the left and vsing
the fact that both these arrows are Hopf monoid morphisms, we see that

Y0, +0+ @(BRe,)+0
=004 (BOY,) +0+ gp(BRe,)+0+0+0.

The arrow ¢, is regular in both situations ((i) and (ii)), and then the composition
¢p(B®ey) is also regular. Thus, from the last identity we get ¢,0, =
Taa(B®¥,) and this means exactly (iv) from 0.18.

Similarly we prove part (v) from 0.18.

(ii) Multiplying both sides of (iii) from 2.14 by (B ®mn, ® B) on the right and
by (A® e, ® A) on the left, we see that

0+, 7+ ophrt0=0+ @z(B®¢y) + 0,5.,(BR¢,)
+(74 ®A)£B®B + (1, A)7, . (27)

Using the fact that 7, EReg(B® B, A) and ¢, € Reg(B, A® A) in both
situations ((i) and (ii)), we obtain from (27) that

d°(r,) + d}" (g4)
=M@ A)T, + P, 7+ (1, ® A)BB@B
+0,04(BO @) + @pug + @5(BROe;)=0.

(iii) Assume that f: E,— E, is a morphism of -extensions. We can assume
that f is the morphism of ./ -extensions, which are induced from E, and E, (by the
scheme of 2.13), respectively. Then 3.6 implies that o) =0 and if g=
(AQez)A, fa]'(n,® B), then g is regular. Thus f becomes an isomorphism and
Ta—Ta=04(BOg) — gy + g(B®&p).

Similarly, one can assume that f is the morphism of €-extensions, which are
induced from E, and E, (by the scheme of 2.13), and then the arguments dual to
those from 3.6 imply that p,=ppand ¢, — ¢z=(n, @ A)g — ¥,g+(g® A)p,.
for the same g. Thus, f is the isomorphism. pairs (¢ ;. pg) and (o . pg) coincide,
and

(i 08) = (75 ) = d1(8) + a3 "(g)

(iv) So we have that (B, A, o,, pg) is a matched pair and (7,.¢p) is a
normalized one-dimensional cocycle from (11). From (iv) and (v) of 0.18 we
obtain
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(A®M ® A)Y,0,(BR AR £p)

=(AQ®N;® A)0,.(BOY,NBO AR &4) . (28)
(M ®BR A)ppup(B&e,® B)

=N, ®BR A) (1 ® A)ppes(BO £, & B). (29)

From the condition d°(t,) + d}"'(¢z) =0, we obtain

(A®N; ® A)(pgpp + Pa7,)(B® e, ® B)
=(AQM; B AN 454 (BO ¢3) + (B 5)
+(, @A), +(7,® A)BB@B)(B Qe ®B). (30)

Now, taking the sum of (28), (29) and (30) and opening the parentheses in
(30), we arrive at the identity (iii) from (2.14) O

We would like to mention that .10 generalizes Proposition (5.1) from [13] and
is inspired by that one (see 4.6).

4. Examples

Examples, which we are going to give, are obtained by application of our
considerations in the main part of this paper to different particular cases of
monoidal categories, i.e. we make substitutions A = Set, A = K-mod, etc.

4.1. A=Set

Let A be the category of sets and mappings, ® be the bifunctor of the direct
product of two sets, X, and e be the (terminal) one-point set e = { *).

There is a unique way to equip each set B with a natural comonoid structure.
The comultiplication ¢,: B— B X B must be the diagonal mapping, and the
counit ¢;: B— e is the unique mapping to the one-point set. So, we identify the
following three categories:

€6(Set) = €(Set) = Set .

After this, the list of structures from Section 0 (evidently) gives the well-known

notions of set-monoid, group and modules (in the case of existence of antipodes).
etc.
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Let B be a set-monoid and M a left B-module. Then we can apply 1.3 and we
get the cohomology groups H"(B. M) from [2], only there the set-monoid is
called a semi-group. If additionally B has an antipode, then 1.3 gives the
well-known cohomology of group B with coefficients in the left B-module M from
[2, 6].

If B is a set-monoid and M is an abelian group, then (ii) of 3.7 gives the
bijection between the set of equivalence classes of extensions of the set-monoid B
by the abelian group M and the (respective) second cohomology group H~(B, M)
from [9]. If, additionally, B has an antipode, then (i) of 3.7 coincides with (ii) of
3.7 and (taking into account 3.3) both give the well-known bijection between the
set of equivalence classes of group extensions of the group B by the abelian group
M and the (respective) second cohomology group from [2,6]. Here we must
explain, that if M and B have antipodes, then M X B (with the set-monoid
structure described by o, and 7,,) also has an antipode, namely —(m, b)=
(=b"'m—b""7,(b,b™"), b™"), structures on M and M X B are written additively
and on B multiplicatively.

Let A be an abelian group and N be a set. There exists a unique right
A-coobject comonoid structure on N, namely p,: N— N X A, p,(n)=(n,0). In
this case we can apply 1.4 and we get the cohomology groups H (N, A). But in
this case the complex (3) from Section 1 has a contracting homotopy and we have
HY(N, A) =Set(N, A) and H"(N, A)=0, m=1.

Let B oc a group and A a left B-module. These data can be considered as the
assumptions of 1.9 and then we obtain the cohomology groups H; (B, A). In such
case all vertical complexes (C™*,d5"*), m=0, of the bicomplex (10) from
Section 1 have the contracting homotopies and we get H (B, A)= H""'(B, A),
n =1, while in zero dimension we have the epimorphism

H)(B, A) =Set(B, A)— H'(B, A),

where H"(B, A) are the usual group cohomologies.

4.2. ® = direct product

Let A be a category with £nite direct products (and the terminal object), ® the
bifunctor of the direct product (in A) and e the terminal object of A.

In this case arguments similar to those in Secticn 4.1 are true, and we identify
€%€(A) = €(A) = A. The data, B is a monoid (in A) and M is a lcit B-object
commutative monoid with an antipode S,,, can be considered as the .i:sumptions
of 1.3 and we get H"(B, M) of [11, Proposition 3.2]. In [11] the groups H"(B, M)
are called the cohomology of the semi-group B with the coefficients in the left
unitary B-module M. Then 3.7 (ii) makes it possible to describe E*(B, M) by
extensions.
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4.3. A= K-mod

Let K be a commutative ring (with unit) and A the category of K-modules, &
the tensor product over K and e equal to K.

In this case 1.3 gives the cohomology groups H"(B, M) of a cocommutative
Hopf algebra B with the coefficients in the left B-module commutative algebra M
from [14, p. 208], only there K is assumed to be a field.

A regular .#{-extension E=(M 5C5C®B, A:C— M® B) from 3.2 coin-
cides with a cleft extension in the sense of [14, p. 229]. Then 3.7(i) gives the
bijection of [14, Theorem 8.6] between the cleft extensions and H B, M).

4.4. A=(K-mod)’®

Let A be dual to the category of K-modules and a new product X® Y (in A) be
the old Y® X one (see 0.17).

In this case 1.3 (or, equivalently, 1.4 in the case of A= K-mod) gives the
cohomology groups H"(B, M), where M is a commutative Hopf algebra and B is
a right M-comudule cocommutative coalgebra. These groups coincide with the
groups Coalg-H"(B, M) from [3, p. 684], only there M coacts on B from the left
side.

A regular (-extension (or, equivalently, a regular €-extension in the case of
A = K-mod) coincides with the cleft coalgebra extension from [3, p. 694]. Then
3.7(i) gives the bijection from [3, Theorem 5.5] between the cleft coalgebra
extensions and Coalg-H>(B, M).

4.5. A= (K-alg)*®

Let K-alg denote the category of K-algebras, ® the tensor product over K, and
if A and B are K-algebras, then AQ B is a K-algebra with multiplication
(r,®pug)1,3,2,4) and unit ny, ®n,. Thus we obtain the monoidal category
(K-alg, ®, K).

Let us put A = (K-alg)”, dual to the above-described category.

In this case 1.3 (or, what is equivalent, 1.4 in the case of A = K-alg) gives the
cohomology groups H"(B, M), where M is a commutative Hopf algebra and B is
a nght M-comodule cocommutative Hopf algebra [3,p. 683]. These groups
coincide with the groups Hopf-H"(B, M) from [3, p. 684] only there M coacts on
B from the left side.

A regular J-extension (or what is equivalent, a regular 6-extension in the case
A = K-alg) coincides with a cleft Hopf extension [3, p. 694]. Then, 3.7(i) gives the

leectlon from [3, Theorem 5.6] between the cleft Hopf extensions and Hopf-
H*(B, M).

4.6. A=G.C. K-mod

Let A be the category of the graded connected K-modules [8, 13].
In this case 1.9 gives the cohomology groups H},(B, A) of an abelian matched
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pair of graded connected Hopf algebras. In [13] the coilomology groups of the
same pair are constructed and we denote them by Singer-H"(B. A). There we
have the following identities:

. " 0, n=0.1,
Slnger‘H (B, A) = ;:-2(3, A). n 22‘

A regular ¥ -extension coincides with a #-extension and coincides with an
extension of the graded connected Hopf algebras from [13]. Then. 3.10(i)
coincides with 3.10(ii) and both give the bijection from {13, Proposition 5.1]
between the Hopf extensions and H, (8, A) = Singer-H'(B. 4).

The particular case of #-extensions in this catcgoiy. with trivial action and
coaction has been considered in [5].
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