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We study, in the long wave-length and static limits, the structure of the n-point graviton functions at
high temperature. Using the gauge and Weyl invariance of the theory, we derive a simple expression for
the hard thermal amplitudes in these two limits.
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An important issue in thermal perturbation theory is the study
of hard thermal loops (HTL), where the external energies and mo-
menta are much less than the temperature T [1]. These loops
are relevant in the resummation procedure which is necessary to
control the perturbative infra-red divergences. Such thermal am-
plitudes have simple gauge and symmetry properties, but are in
general non-local functionals of the external fields [2,3]. However,
in the long wave-length limit (L) where the external fields are
position-independent, and in the static limit (S) where the fields
are time-independent, the hard thermal amplitudes become local
functions of the external fields. It turns out that in these lim-
its, such amplitudes become (in momentum space) independent of
the external energies and momenta. Nevertheless, these two limits
lead to different functions for the thermal amplitudes [4,5].

The main purpose of this Letter is to derive a simple general
expression for the hard thermal loops which arise in the long
wave-length and static limits (see Eq. (20)). Since in these lim-
its higher point functions vanish in external electromagnetic and
Yang–Mills fields [4], we restrict here to the case of HTL in exter-
nal gravitational fields. We show, from an analysis of hard thermal
perturbation theory, that invariances under gauge and Weyl trans-
formations are sufficient to determine uniquely the structure of the
HTL in these limits.

We shall consider first, as an example, the 3-graviton ampli-
tude, but try to present the argument in a form which makes
clear how to extend it to high orders. According to [6,7], this
thermal amplitude involves an angular integration of a Lorentz
tensor Cμν,αβ,ρσ (Q ,k1,k2,k3) where ki are the external momenta
(Fig. 1), Q μ = (1, Q̂ ) and the angular integration is over the direc-
tion of the unit vector Q̂ .
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Fig. 1. One loop thermal diagrams. Solid lines denote thermal particles and wavy
lines represent the external gravitational fields.

We represent the gravitational metric as:
√−g gμν = ημν + hμν (1)

where ημν is the Minkowski metric and expand the perturba-
tive series in powers of hμν . We then find that the Ward identity
connecting the 3-graviton and 2-graviton amplitudes leads to the
relation:

2kμ
1 Cμν,αβ,ρσ (Q ,k1,k2,k3)

= [−k1αCνβ,ρσ (Q ,k3) − (α ↔ β) + k2νCαβ,ρσ (Q ,k3)
]

+ [
(k2,α,β) ↔ (k3,ρ,σ )

]
(2)

From (2) we deduce that the 3-graviton tensor Cμν,αβ,ρσ does
not have any terms containing the Minkowski metric. The reason
is that the 2-graviton tensors on the right hand side of (2) do not
contain this metric (see (3), (4)) and, moreover, there is no k1ν on
the right hand side as there would be if the 3-graviton tensor con-
tained ημν . Thus, the Lorentz tensor Cμν,αβ,ρσ could, in principle,
be proportional to some product of the vectors Q μ,k1μ,k2μ,k3μ .
However, since in the long wave-length and static limits the HTL

http://dx.doi.org/10.1016/j.physletb.2013.01.072
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:rarofra@if.usp.br
mailto:jfrenkel@fma.if.usp.br
http://dx.doi.org/10.1016/j.physletb.2013.01.072


158 R.R. Francisco, J. Frenkel / Physics Letters B 722 (2013) 157–159
are independent of the external momenta, it follows that in these
limits the 3-graviton tensor would only involve a product of Q μ .

The above argument may be extended iteratively to higher or-
ders, leading to the conclusion that all graviton tensors arising in
hard thermal perturbation theory involve, in the long wave-length
and static limits, only a symmetric product of the vector Q μ . For
instance, we give here the form of the 2-point graviton functions
in these two limits:

Γμ1ν1,μ2ν2 = Cπ T 4

240

(
−1

2

)∫
dΩ Cμ1ν1,μ2ν2(Q ) (3)

where the Casimir C gives the number of internal degrees of free-
dom, and:

C L
μ1ν1,μ2ν2

(Q ) = (w − 1)Q μ1 Q ν1 Q μ2 Q ν2 (4a)

C S
μ1ν1,μ2ν2

(Q ) = (w − 5)Q μ1 Q ν1 Q μ2 Q ν2 (4b)

where w is the number of Lorentz indices which are equal to zero.
We note that the Ward identities demand that loops with n

external lines must have the same T 4 dependence for all n. In par-
ticular, there is also a tadpole contribution for n = 1, which is given
by:

Γμ1ν1 = Cπ T 4

240

∫
dΩ Cμ1ν1(Q ) = Cπ T 4

240

∫
dΩ Q μ1 Q ν1 (5)

Using the simple structure we have just deduced for the gravi-
ton tensors, we shall next determine all the hard higher point
functions. We will proceed by induction, starting from (3) and (5),
and assuming that the n-point graviton amplitudes in the above
limits have the form:

Γμ1ν1,...,μnνn = Cπ T 4

240

(
−1

2

)n−1 ∫
dΩ Cμ1ν1,...,μnνn (Q ) (6)

where, for n � 2:

C L
μ1ν1,...,μnνn

(Q )

= (w − 1) · · · (w − 2n + 3)Q μ1 Q ν1 · · · Q μn Q νn (7a)

C S
μ1ν1,...,μnνn

(Q )

= (w − 5) · · · (w − 2n − 1)Q μ1 Q ν1 · · · Q μn Q νn (7b)

and w denotes the number of Lorentz indices which have the
value 0.

We now prove that also the (n + 1)-point graviton amplitudes
have the same basic structure as the one shown in (6), (7). To
this end, we use the fact these amplitudes obey the Weyl identity
which leads to:

ημn+1νn+1 Cμ1ν1,...,μnνn,μn+1νn+1(Q )

= −2nCμ1ν1,...,μnνn(Q ) (8)

In view of our previous discussion, we may write the tensor on
the left hand side of (8) in the form:

Cμ1ν1,...,μnνn,μn+1νn+1(Q )

= Pn(w)Q μ1 Q ν1 · · · Q μn Q νn Q μn+1 Q νn+1 (9)

where Pn(w) is a polynomial in w . With the help of (6) and (8),
we then obtain the relations:

P L
n(w + 2) − P L

n(w) = 2n(w − 1) · · · (w − 2n + 3) (10a)

P S
n (w + 2) − P S

n (w) = 2n(w − 5) · · · (w − 2n − 1) (10b)

These two equations show, firstly, that Pn(w) must be a poly-
nomial of degree n in w . Secondly, these provide (n−1) recurrence
relations which fix uniquely the coefficients of this polynomial, up
to a constant term which cancels in the differences on the left
hand side of (10). But this term may be determined by a further
use of the Ward identity. For example, in the long wave-length
limit and when all indices are 0, this identity leads to the condi-
tion:

P L
n(w = 2n + 2) = (2n + 1)P L

n−1(w = 2n) = (2n + 1)!! (11)

This, together with the relation (10a), completely fixes the poly-
nomial P L

n(w), leading to a result in accordance with the form
assumed in (7a). Proceeding in a similar way, we obtain for P S

n (w)

a result consistent with that in (7b), which concludes our induc-
tive reasoning. From these equations it follows that the graviton
amplitudes vanish when w is odd, which is consistent with the
symmetry properties of the angular integral in (6).

The effective actions which generate, in the static and long
wave-length limits, the hard thermal loops in external gravitational
fields are given by [4,8,9]:

Γ S = Cπ T 4

90

∫
d4x

√−g

g2
00

(12)

Γ L = −Cπ T 4

120

∫
d4x

∫
dΩ

[(
g0i Q i

g00

)2

− gij Q i Q j

g00

]1/2

(13)

These actions are invariant under the corresponding gauge
transformations as well as under Weyl transformations. But, in
view of the apparent differences between the above forms, it may
seen a bit surprising that these actions could generate the static
and long wave-length amplitudes (6), (7), which have a rather sim-
ilar structure.

In order to understand these features, we will use an alterna-
tive closed form for the effective actions, which is motivated by
a Boltzmann equation approach. In this method, the hard thermal
effective action can be written as [10]:

Γ = C

(2π)3

∫
d4x

∫
d4 p θ(p0)θ

(
gμν pμpν

)
N(P ) (14)

where N is the thermal distribution function and P is a constant
of motion. Let us consider, for example, the long wave-length limit
when P = √

pi pi . This form arises because, in this case, pi is
a solution of the Boltzmann equation, which is invariant under
space-independent gauge transformations. Using the metric repre-
sentation given in (1), and making the change of variables:

pi = Q̂ i P ; |Q̂ | = 1; p0 = zP (15)

we may perform the P integration in (14). In this way, the ex-
pression giving the effective action in the long wave-length limit
becomes:

Γ L = Cπ T 4

120

∫
d4x

∫
dΩ

∞∫
0

dz

× [
θ
(
z2 − 1 + Az2 + 2Bz + C

) − θ
(
z2 − 1

)]
(16)

where

A = h00; B = h0i Q i; C = hij Q i Q j (17)

and we have normalised Γ L so that it vanishes at hμν = 0.
We now expand the θ -function in (16) in powers of hμν . Let

z = √
u. Then we get, for the n-th term, an integral of the form:

1

n!
∞∫

du
1

2
√

u
δ(n−1)(u − 1)[Au + 2B

√
u + c]n (18)
0
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where δ(n−1) is the (n − 1)-th derivative of the delta function. Let
us take out of the expression in the square bracket in (18), a term
proportional to uw/2, that is, zw . For this term, assuming n � 2, we
get the contribution:

1

2n!
∞∫

0

du δ(n−1)(u − 1)u(w−1)/2

= 1

2n!
(

−1

2

)n−1

(w − 1) · · · (w − 2n + 3) (19)

From (16)–(18) one can see that for a given n, the coefficient
of zw involves a product of n functions hμν such that the number
of Lorentz indices which have the value 0 is equal to w . This prop-
erty, together with the result (19), show that the effective action
(14) generates in the long wave-length limit, an amplitude which
is equivalent to that given in (6) and (7a). Similarly, one can show
that in the static limit, the action (14) with P = p0, precisely gen-
erates the amplitudes given in (6) and (7b).

Thus, we conclude that in the long wave-length and static lim-
its, the hard thermal loops in external gravitational fields may be
expressed in the simple form:

Γμ1ν1,...,μnνn

= Cπ T 4

240

(
−1

2

)n−1

Pn−1(w)

∫
dΩ Q μ1 Q ν1 · · · Q μn Q νn (20)

where Q μ = (1, Q̂ ), w is the number of time-like Lorentz indices
and Pn−1(w) are polynomials of degree (n − 1) in w . These are
equal to 1 when n = 1 and for n � 2 they are given by:

P L
n−1(w) = (w − 1) · · · (w − 2n + 3) (21a)

P S
n−1(w) = (w − 5) · · · (w − 2n − 1) (21b)
We note that the angular integral in (20) vanishes when w is
odd, since in this case there will be an odd number of spatial in-
dices which make the integrand antisymmetric under Q̂ → −Q̂ .
When w = 2l is even, there will be 2(n − l) = 2s spatial in-
dices, which we denote generically by i1; j1; . . . ; is; js . Then, for
1 � s � n, the angular integral in (20) may be evaluated in terms
of products of Kronecker delta functions as follows:∫

dΩ Q i1 Q j1 · · · Q is Q js

= (
4π/(2s + 1)!!)[δi1 j1 · · · δis js + permutations] (22)

The above amplitudes lead (when summed to all orders) to the
static and long wave-length effective actions (12) and (13), which
are local functions of the external gravitational fields.
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